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Abstract

In this paper we study the problem of recov-

ering a low-rank matrix from linear measure-

ments. Our algorithm, which we call Procrustes

Flow, starts from an initial estimate obtained by

a thresholding scheme followed by gradient de-

scent on a non-convex objective. We show that

as long as the measurements obey a standard

restricted isometry property, our algorithm con-

verges to the unknown matrix at a geometric rate.

In the case of Gaussian measurements, such con-

vergence occurs for a n1 × n2 matrix of rank

r when the number of measurements exceeds a

constant times (n1 + n2)r.

1. Introduction

Low rank models are ubiquitous in machine learning, and

over a decade of research has been dedicated to determin-

ing when such models can be efficiently recovered from

partial information (Fazel, 2002; Rennie & Srebro, 2005;

Candès & Recht, 2009). See (Davenport & Romberg,

2016) for an extended survey on this topic. The simplest

such recovery problem concerns how can we can find a

low-rank matrix obeying a set of linear equations? What is

the computational complexity of such an algorithm? More

specifically, we are interested in solving problems of the

form

min
M∈Rn1×n2

rank(M) s.t. A(M) = b , (1.1)

where A : Rn1×n2 −→ R
m is a known affine transforma-

tion that maps matrices to vectors. More specifically, the
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k-th entry ofA(X) is 〈Ak,X〉 := Tr(AT

kX), where each

Ak ∈ R
n1×n2 .

Since the early seventies, a popular heuristic for solving

such problems has been to replace M with a low-rank fac-

torization M = UV T and solve matrix bilinear equations

of the form

find
U∈Rn1×r,V ∈Rn2×r

s.t. A(UV T) = b, (1.2)

via a local search heuristic (Ruhe, 1974). Many researchers

have demonstrated that such heuristics work well in prac-

tice for a variety of problems (Rennie & Srebro, 2005;

Funk, 2006; Lee et al., 2010; Recht & Ré, 2013). How-

ever, these procedures lack strong guarantees associated

with convex programming heuristics for solving (1.1).

In this paper we show that a local search heuristic solves

(1.2) under standard restricted isometry assumptions on the

linear map A. For standard ensembles of equality con-

straints, we demonstrate that M can be estimated by such

heuristics as long as we have Ω((n1 + n2)r) equations.1

This is merely a constant factor more than the number of

parameters needed to specify a n1×n2 rank r matrix. Spe-

cialized to a random Gaussian model and positive semidef-

inite matrices, our work improves upon recent independent

work by Zheng and Lafferty (Zheng & Lafferty, 2015).

2. Algorithms

In this paper we study a local search heuristic for solving

matrix bilinear equations of the form (1.2) which consists

of two components: (1) a careful initialization obtained by

a projected gradient scheme on n1×n2 matrices, and (2) a

series of successive refinements of this initial solution via a

1Here and throughout we use f(x) = Ω(g(x)) if there is a
positive constant C such that f(x) ≥ Cg(x) for all x sufficiently
large.
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gradient descent scheme. This algorithm is a natural exten-

sion of the Wirtinger Flow algorithm developed in (Candès

et al., 2015) for solving vector quadratic equations. Follow-

ing (Candès et al., 2015), we shall refer to the combination

of these two steps as the Procrustes Flow (PF) algorithm.

We shall describe two variants of our algorithm based on

whether the sought after solution M is positive semidefi-

nite (PSD) or not. The former is detailed in Algorithm 1,

and the latter in Algorithm 2.

The initialization phase of both variants is rather similar

and is described in Section 2.1. The successive refinement

phase is explained in Section 2.2 for PSD matrices and in

Section 2.3 for arbitrary matrices. Throughout this paper

when describing the PSD case, we assume the size of the

matrix is M is n× n, i.e. n1 = n2 = n.

2.1. Initialization via low-rank projected gradients

In the initial phase of our algorithm we start from M̃0 =
0n1×n2

and apply successive updates of the form

M̃τ+1 = Pr

(
M̃τ − ατ+1

m∑

k=1

(
〈Ak,M̃τ 〉 − bk

)
Ak

)
,

(2.1)

on rank r matrices of size n1 × n2. Here, Pr denotes pro-

jection onto either rank-r matrices or rank-r PSD matri-

ces, both of which can be computed efficiently via Lanczos

methods. We run (2.1) for T0 iterations and use the re-

sulting matrix MT0
for initialization purposes. In the PSD

case, we set our initialization to an n × r matrix U0 obey-

ing M̃T0
= U0U

T

0 . In the more general case of rectan-

gular matrices we need to use two factors. Let M̃T0
=

CT0
ΣT0

DT

T0
be the Singular Value Decomposition (SVD)

of M̃T0
. We initialize our algorithm in the rectangular case

by setting U0 = CT0
Σ

1/2
T0

and V0 = DT0
Σ

1/2
T0

.

Updates of the form (2.1) have a long history in com-

pressed sensing/matrix sensing literature (see e.g. (Tropp

& Gilbert, 2007; Garg & Khandekar, 2009; Needell &

Tropp, 2009; Needell & Vershynin, 2009; Blumensath &

Davies, 2009; Meka et al., 2009; Cai et al., 2010)). Fur-

thermore, using the first step of the update (2.1) for the pur-

poses of initialization has also been proposed in previous

work (see e.g. (Achlioptas & McSherry, 2007; Keshavan

et al., 2010; Jain et al., 2013)).

2.2. Successive refinement via gradient descent –

positive semidefinite case

We first focus on the PSD case. As mentioned earlier, we

are interested in finding a matrix U ∈ R
n×r obeying ma-

trix quadratic equations of the form A(UUT) = b. We

wish to refine our initial estimate by minimizing the non-

convex function

f(U) :=
1

4

∥∥A(UUT)− b
∥∥2
ℓ2
, (2.2)

over U ∈ R
n×r, which minimizes the misfit in our

quadratic equations via the square loss. To solve (2.2),

starting from our initial estimate U0 ∈ R
n×r we apply the

successive updates

Uτ+1 := Uτ −
µτ+1

‖U0‖2
∇f(Uτ )

= Uτ −
µτ+1

‖U0‖2

(
m∑

k=1

(〈Ak,UτU
T

τ 〉 − bk)AkUτ

)
.

(2.3)

Here and throughout, for a matrix X , σℓ(X) denotes the

ℓ-th largest singular value of X , and ‖X‖ = σ1(X) is the

operator norm. We note that the update (2.3) is essentially

gradient descent with a carefully chosen step size.

Algorithm 1 Procrustes Flow (PF)

Require: {Ak}mk=1, {bk}mk=1, {ατ}∞τ=1, {µτ}∞τ=1, T0 ∈ N.

// Initialization phase.

M̃0 := 0n×n.

for τ = 0, 1, ..., T0 − 1 do

// Projection onto rank r PSD matrices.

M̃τ+1 ← Pr(M̃τ − ατ+1

∑m
k=1(〈Ak,M̃τ 〉 − bk)Ak).

end for

// SVD of M̃T0
, with Q ∈ R

n×r,Σ ∈ R
r×r.

QΣQT := M̃T0
.

U0 := QΣ
1/2.

// Gradient descent phase.

repeat

Uτ+1 ← Uτ − µτ+1

‖U0‖2∇f(Uτ ).

until convergence

2.3. Successive refinement via gradient descent –

general case

We now consider the general case. Here, we are interested

in finding matrices U ∈ R
n1×r and V ∈ R

n2×r obeying

matrix quadratic equations of the form b = A(UV T). In

this case, we refine our initial estimate by minimizing the

non-convex function

g(U ,V ) :=
1

2

∥∥A(UV T)− b
∥∥2
ℓ2
+

1

16

∥∥UTU − V TV
∥∥2
F

.

(2.4)

over U ∈ R
n1×r and V ∈ R

n2×r. Note that this is

similar to (2.2) but adds a regularizer to measure mismatch

between U and V . Given a factorization M = UV T, for

any invertible r × r matrix P , UP and V P−T is also a

valid factorization. The purpose of the second term in (2.4)
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is to account for this redundancy and put the two factors on

“equal footing”. To solve (2.4), starting from our initial

estimates U0 and V0 we apply the successive updates

Uτ+1 := Uτ −
µτ+1

‖U0‖2
∇Ug(Uτ ,Vτ ) (2.5)

Vτ+1 := Vτ −
µτ+1

‖V0‖2
∇V g(Uτ ,Vτ ) (2.6)

where ∇Ug(Uτ ,Vτ ) is equal to

m∑

k=1

(〈Ak,UτV
T

τ 〉 − bk)AkVτ +
1

4
Uτ (U

T

τ Uτ − V T

τ Vτ )

and ∇V g(Uτ ,Vτ ) is equal to

m∑

k=1

(〈Ak,UτV
T

τ 〉 − bk)A
T

kUτ +
1

4
Vτ (V

T

τ Vτ −UT

τ Uτ ) .

Again, (2.5) and (2.6) are essentially gradient descent with

a carefully chosen step size.

Algorithm 2 Rectangular Procrustes Flow (RPF)

Require: {Ak}mk=1, {bk}mk=1, {ατ}∞τ=1, {µτ}∞τ=1, T0 ∈ N.

// Initialization phase.

M̃0 := 0n1×n2
.

for τ = 0, 1, ..., T0 − 1 do

// Projection onto rank r matrices.

M̃τ+1 ← Pr(M̃τ − ατ+1

∑m
k=1(〈Ak,M̃τ 〉 − bk)Ak).

end for

// SVD of M̃T0
, with

// C ∈ R
n1×r,Σ ∈ R

r×r,D ∈ R
n2×r .

CΣDT := M̃T0
.

U0 := CΣ
1/2.

V0 := DΣ
1/2.

// Gradient descent phase.

repeat

Uτ+1 ← Uτ − µτ+1

‖U0‖2∇Ug(Uτ ,Vτ ).

Vτ+1 ← Vτ − µτ+1

‖V0‖2∇V g(Uτ ,Vτ ).

until convergence

3. Main Results

For our theoretical results we shall focus on affine maps A
which obey the matrix Restricted Isometry Property (RIP).

Definition 3.1 (Restricted Isometry Property (RIP)

(Candès & Tao, 2005; Recht et al., 2010)). The mapA sat-

isfies r-RIP with constant δr, if

(1− δr) ‖X‖2F ≤ ‖A(X)‖2ℓ2 ≤ (1 + δr) ‖X‖2F ,

holds for all matrices X ∈ R
n1×n2 of rank at most r.

As mentioned earlier it is not possible to recover the factors

U and V in (1.2) exactly. For example, in the PSD case

it is only possible to recover U up to a certain rotational

factor as if U obeys (3.5), then so does any matrix UR

with R ∈ R
r×r an orthonormal matrix satisfying RTR =

Ir. This naturally leads to defining the distance between

two matrices U ,X ∈ R
n×r as

dist(U ,X) := min
R∈Rr×r: RTR=Ir

‖U −XR‖F . (3.1)

We note that this distance is the solution to the classic or-

thogonal Procrustes problem (hence the name of the al-

gorithm). It is known that the optimal rotation matrix

R minimizing ‖U −XR‖F is equal to R = ABT,

where AΣBT is the singular value decomposition (SVD)

of XTU . We now have all of the elements in place to state

our main results.

3.1. Quadratic measurements

When the low-rank matrix M ∈ R
n×n is PSD we are in-

terested in finding a matrix U ∈ R
n×r obeying quadratic

equations of the form

A(UUT ) = b, (3.2)

where we assume b = A(M) for a planted rank-r solu-

tion M = XXT ∈ R
n×n with X ∈ R

n×r. We wish to

recover X . This is of course only possible up to a certain

rotational factor as if U obeys (3.5), then so does any ma-

trix UR with R ∈ R
r×r an orthonormal matrix satisfying

RTR = Ir. Our first theorem shows that Procrustes Flow

indeed recovers X up to this ambiguity factor.

Theorem 3.2. Let M ∈ R
n×n be an arbitrary rank-r

symmetric positive semidefinite matrix with singular val-

ues σ1(M) ≥ σ2(M) ≥ ... ≥ σr(M) > 0 and condition

number κ = σ1(M)/σr(M). Assume M = XXT for

some X ∈ R
n×r and let b = A(M) ∈ R

m be m linear

measurements. Furthermore, assume the mappingA obeys

rank-6r RIP with RIP constant δ6r ≤ 1/10. Also let ατ =
1 for all τ = 1, 2, . . .. Then, using T0 ≥ log(

√
rκ) + 2

iterations of the initialization phase of Procrustes Flow as

stated in Algorithm 1 yields a solution U0 obeying

dist (U0,X) ≤ 1

4
σr(X). (3.3)

Furthermore, take a constant step size µτ = µ for all

τ = 1, 2, . . ., with µ ≤ 36/425. Then, starting from any

initial solution obeying (3.3), the τ -th iterate of Algorithm 1

satisfies

dist (Uτ ,X) ≤ 1

4

(
1− 8

25

µ

κ

) τ

2

σr(X). (3.4)
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3.2. Bilinear measurements

In the more general case when the low-rank matrix M ∈
R

n1×n2 is rectangular we are interested in finding matrices

U ∈ R
n1×r, V ∈ R

n2×r obeying bilinear equations of the

form

A(UV T) = b, (3.5)

where we assume b = A(M) for a planted rank-r solu-

tion M ∈ R
n1×n2 with M = XY T where X ∈ R

n1×r

and Y ∈ R
n2×r. Again we wish to recover the factors X

and Y . The next theorem shows that we can also provide

a guarantee similar to that of Theorem 3.2 for this more

general rectangular case.

Theorem 3.3. Let M ∈ R
n1×n2 be an arbitrary rank-r

matrix with singular values σ1(M) ≥ σ2(M) ≥ ... ≥
σr(M) > 0 and condition number κ = σ1(M)/σr(M).
Let M = AΣBT be the SVD of M and define X =
AΣ

1/2 ∈ R
n1×r and Y = BΣ

1/2 ∈ R
n2×r. Also, let

b = A(M) ∈ R
m be m linear measurements where the

mapping A obeys rank-6r RIP with RIP constant δ6r ≤
1/25. Also let ατ = 1 for all τ = 1, 2, . . .. Then, using

T0 ≥ 3 log(
√
rκ) + 5 iterations of the initialization phase

of Procrustes Flow as stated in Algorithm 2 yields a solu-

tion U0,V0 obeying

dist

([
U0

V0

]
,

[
X

Y

])
≤ 1

4
σr(X). (3.6)

Furthermore, take a constant step size µτ = µ for all τ =
1, 2, . . . and assume µ ≤ 2/187. Then, starting from any

initial solution obeying (3.6), the τ -th iterate of Algorithm 2

satisfies

dist

([
Uτ

Vτ

]
,

[
X

Y

])
≤ 1

4

(
1− 4

25

µ

κ

) τ

2

σr(X). (3.7)

The above theorem shows that Procrustes Flow algorithm

achieves a good initialization under the RIP assumptions

on the mapping A. Also, starting from any sufficiently ac-

curate initialization the algorithm exhibits geometric con-

vergence to the unknown matrix M . We note that in the

above result we have not attempted to optimize the con-

stants. Furthermore, there is a natural tradeoff involved

between the upper bound on the RIP constant, the radius

in which PF is contractive (3.6), and its rate of convergence

(3.7). In particular, as it will become clear in the proofs one

can increase the radius in which PF is contractive (increase

the constant 1/4 in (3.6)) and the rate of convergence (in-

crease the constant 4/25 in (3.7)) by assuming a smaller

upper bound on the RIP constant.

The most common measurement ensemble which satisfies

the isotropy and RIP assumptions is the Gaussian ensemble

here each matrix Ak has i.i.d. N (0, 1/m) entries.2 For

this ensemble to achieve a RIP constant of δr, we require at

least m = Ω( 1
δ2
r

nr) measurements. Using Equation (3.7)

together with a simple calculation, we can conclude that for

Mτ = UτV
T

τ , we have

‖Mτ −M‖F ≤
9

4

√
σ1(M) · dist

([
Uτ

Vτ

]
,

[
X

Y

])

≤ 9

16

√
σ1(M)σr(M)

(
1− 4

25

µ

κ

) τ

2

≤ 9

16
‖M‖F

(
1− 4

25

µ

κ

) τ

2

. (3.8)

Thus, applying Theorem 3.3 to this measurement ensem-

ble, we conclude that the Procrustes Flow algorithm yields

a solution with relative error (‖Mτ −M‖F / ‖M‖F ≤ ǫ)
in O(κ log(1/ǫ)) iterations using only Ω(nr) measure-

ments. We would like to note that if more measurements

are available it is not necessary to use multiple projected

gradient updates in the initialization phase. In particular,

for the Gaussian model if m = Ω(nr2κ2), then (3.3) will

hold after the first iteration (T0 = 1).

How to verify the initialization is complete. Theorems

3.2 and 3.3 require that T0 = Ω(log(
√
rκ)), but κ is a

property of M and is hence unknown. However, under the

same hypotheses regarding the RIP constant in Theorems

3.2 and 3.3, we can use each iterate of initialization to test

whether or not we have entered the radius of convergence.

The following lemma establishes a sufficient condition we

can check using only information from M̃τ . We establish

this result only in the symmetric case– the extension to the

general case is straightforward.

Lemma 3.4. Assume the RIP constant of A satisfies δ2r ≤
1/10. Let M̃τ denote the τ -th step of the initialization

phase in Algorithm 1, and let U0 ∈ R
n×r be the such that

M̃τ = U0U
T

0 . Define

eτ :=
∥∥∥A(M̃τ )− b

∥∥∥
ℓ2

=
∥∥∥A(M̃τ −XXT)

∥∥∥
ℓ2
.

Then, if eτ ≤ 3
20σr(M̃τ ), we have that dist(U0,X) ≤

1
4σr(X).

One might consider using solely the projected gradient up-

dates (i.e. set T0 =∞) as in previous approaches (Tropp &

Gilbert, 2007; Garg & Khandekar, 2009; Needell & Tropp,

2009; Needell & Vershynin, 2009; Blumensath & Davies,

2009; Meka et al., 2009; Cai et al., 2010). We note that

the projected gradient updates in the initialization phase

2We note that in the PSD case the so called spiked Gaussian
ensemble would be the right equivalent. In this case each sym-
metric matrix Ak has N (0, 1/m) entries on the diagonal and
N (0, 1/2m) entries elsewhere.
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require computing the first r singular vectors of a matrix

whereas the gradient updates do not require any singular

vector computations. Such singular computations may be

prohibitive compared to the gradient updates, especially

when n1 or n2 is large and for ensembles where matrix-

vector multiplication is fast. We would like to empha-

size, however, that for small n1, n2 and dense matrices us-

ing projected gradient updates may be more efficient. Our

scheme is a natural interpolation: one could only do pro-

jected gradient steps, or one could do one projected gradi-

ent step. Here we argue that very few projected gradients

provide sufficient initialization such that gradient descent

converges geometrically.

4. Related work

There is a vast literature dedicated to low-rank matrix re-

covery/sensing and semidefinite programming. We shall

only focus on the papers most related to our framework.

Recht, Fazel, and Parrilo were the first to study low-rank

solutions of linear matrix equations under RIP assump-

tions (Recht et al., 2010). They showed that if the rank-r
RIP constant of A is less than a fixed numerical constant,

then the matrix with minimum trace satisfying the equality

constraints coincided with the minimum rank solution. In

particular, for the Gaussian ensemble the required number

of measurements is Ω(nr) (Candès & Plan, 2011). Subse-

quently, a series of papers (Candès & Recht, 2009; Gross,

2011; Recht, 2011; Candès et al., 2014) showed that trace

minimization and related convex optimization approaches

also work for other measurement ensembles such as those

arising in matrix completion and related problems. In this

paper we have established a similar result to (Recht et al.,

2010). We require the same order of measurements Ω(nr)
but use a more computationally friendly local search al-

gorithm. Also related to this work are projection gradient

schemes with hard thresholding (Tropp & Gilbert, 2007;

Garg & Khandekar, 2009; Needell & Tropp, 2009; Needell

& Vershynin, 2009; Blumensath & Davies, 2009; Meka

et al., 2009; Cai et al., 2010). Such algorithms enjoy simi-

lar guarantees to that of (Recht et al., 2010) and this work.

Indeed, we utilize such results in the initialization phase of

our algorithm. However, such algorithms require a rank-

r SVD in each iteration which may be expensive for large

problem sizes. We would like to emphasize, however, that

for small problem sizes and dense matrices (such as Gaus-

sian ensembles) such algorithms may be faster than gradi-

ent descent approaches such as ours.

More recently, there has been a few results using non-

convex optimization schemes for matrix recovery prob-

lems. In particular, theoretical guarantees for matrix com-

pletion have been established using manifold optimization

(Keshavan et al., 2010) and alternating minimization (Ke-

shavan, 2012) (albeit with the caveat of requiring a fresh set

of samples in each iteration). See also (Hardt, 2014; Sun

& Luo, 2015). Later on, Jain et.al. (Jain et al., 2013) an-

alyzed the performance of alternating minimization under

similar modeling assumptions to (Recht et al., 2010) and

this paper. However, the requirements on the RIP constant

in (Jain et al., 2013) are more stringent compared to (Recht

et al., 2010) and ours. In particular, the authors require

δ4r ≤ c/r whereas we only require δ6r ≤ c. Specialized to

the Gaussian model, the results of (Jain et al., 2013) require

Ω(nr3κ2) measurements.3

Our algorithm and analysis are inspired by the recent pa-

per (Candès et al., 2015) by Candes, Li and Soltanolkotabi.

See also (Soltanolkotabi, 2014; Cai et al., 2015) for some

stability results. In (Candès et al., 2015) the authors in-

troduced a local regularity condition to analyze the con-

vergence of a gradient descent-like scheme for phase re-

trieval. We use a similar regularity condition but generalize

it to ranks higher than one. Recently, independent of our

work, Zheng and Lafferty (Zheng & Lafferty, 2015) pro-

vided an analysis of gradient descent using (2.2) via the

same regularity condition. Zheng and Lafferty focus on

the Gaussian ensemble, and establish a sample complexity

of m = Ω(nr3κ2 log n). In comparison we only require

Ω(nr) measurements removing both the dependence on κ
in the sample complexity and improving the asymptotic

rate. We would like to emphasize that the improvement

in our result is not just due to the more sophisticated ini-

tialization scheme. In particular, Zheng and Lafferty show

geometric convergence starting from any initial solution

obeying dist(U0,X) ≤ c · σr(X) as long as the number

of measurements obeys m = Ω(nrκ2 log n). In contrast,

we establish geometric convergence starting from the same

neighborhood of U0 with only Ω(nr) measurements. Our

results also differs in terms of the convergence rate. We

establish a convergence rate of the form 1 − µ
κ whereas

(Zheng & Lafferty, 2015) establishes a slower convergence

rate of the form 1 − µ
nr2κ2 . Moreover, the theory of re-

stricted isometries in our work considerably simplifies the

analysis.

Finally, we would also like to mention (Sa et al., 2015)

for guarantees using stochastic gradient algorithms. The

results of (Sa et al., 2015) are applicable to a variety of

models; focusing on the Gaussian ensemble, the authors

require Ω ((nr log n)/ǫ) samples to reach a relative error

of ǫ. In contrast, our sample complexity is independent of

the desired relative error ǫ. However, their algorithm only

requires a random initialization.

3The authors also propose a stage-wise algorithm with im-
proved sample complexity of Ω(nr3κ̃2) where κ̃ is a local con-
dition number defined as the ratio of the maximum ratio of two
successive eigenvalues. We note, however, that in general κ̃ can
be as large as κ.
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Since the first version of this paper appeared on arXiv,

a few recent papers have also studied low-rank recovery

from RIP measurements via Procrustes Flow type schemes

(Bhojanapalli et al., 2015; Zhao et al., 2015; Chen & Wain-

wright, 2015). We would like to point out that the results

presented in these papers are suboptimal compared to ours.

For example, by utilizing some of the results of the pre-

vious version of this paper, (Bhojanapalli et al., 2015) pro-

vides a similar convergence rate to ours. However, this con-

vergence occurs in a smaller radius around the planted so-

lution so that the required number of measurements is sig-

nificantly higher. Furthermore, the results of (Bhojanapalli

et al., 2015) only apply when the matrix is PSD and do not

work for general rectangular matricies. Similarly, result in

(Chen & Wainwright, 2015) holds only for PSD matrices,

and the convergence rate has a high-degree polynomial de-

pendence on condition number. The algorithm from (Zhao

et al., 2015) does generalize to rectangular matrices, but the

sample complexity is of the order of O(nr3 log n) rather

than the complexity O(nr) we establish here. Moreover,

our analysis of both the PSD and rectangular cases is far

more concise.

5. Proof ideas

We first sketch the proof outline for the symmetric PSD

case (Theorem 3.2) However, whenever possible we will

state lemmas in the more general setting. Full proofs can

be found in the extended version of this paper (Tu et al.,

2016).

Recall in this setting that we assume a fixed symmetric PSD

M ∈ R
n×n of rank r, which admits a factorization M =

XXT for X ∈ R
n×r. Before we dive into the details of

the proofs, we would like to mention that we will prove our

results using the update

Uτ+1 = Uτ −
µ

‖X‖2
∇f(Uτ ), (5.1)

in lieu of the PF update

Uτ+1 = Uτ −
µPF

‖U0‖2
∇f(Uτ ). (5.2)

We will prove that our initial solution obeys

dist(U0,X) ≤ σr(X)/4. Hence, applying the tri-

angle inequality we conclude that ‖U0‖2 ≤ 25
16‖X‖2 ,

and similarly, ‖U0‖2 ≥ 9
16‖X‖2. Thus, any result proven

for the update (5.1) will automatically carry over to the

PF update with a simple rescaling of the upper bound on

the step size via the former inequality. Furthermore, we

can upper bound the convergence rate of gradient descent

using the PF update in terms of properties of X instead of

U0 via the latter.

5.1. Preliminaries

We start with a well known characterization of RIP.

Lemma 5.1. (Candès, 2008) Let A satisfy 2r-RIP with

constant δ2r. Then, for all matrices X,Y of rank at most

r, we have

|〈A(X),A(Y )〉 − 〈X,Y 〉| ≤ δ2r ‖X‖F ‖Y ‖F .

Next, we state a recent result which characterizes the con-

vergence rate of projected gradient descent onto general

non-convex sets specialized to our problem. See (Meka

et al., 2009) for related results using singular value hard

thresholding. Throughout, Pr(M) denotes projection onto

rank-r matrices. For a symmetric PSD matrix M ∈ R
n×n

denotes projection onto the rank-r PSD matrices and for a

rectangular matrix M ∈ R
n1×n2 it denotes projection onto

rank-r matrices.

Lemma 5.2. (Oymak et al., 2015) Let M ∈ R
n1×n2 be an

arbitrary matrix of rank r. Also let b = A(M) ∈ R
m be

m linear measurements. Consider the iterative updates

Zτ+1 ← Pr

(
Zτ −

m∑

k=1

(〈Ak,Zτ 〉 − bk)Ak

)
.

Then

‖Zτ −M‖F ≤ ρ(A)τ ‖Z0 −M‖F ,

holds. Here, ρ(A) is defined as

ρ(A) := 2 sup
‖X‖

F
=1,rank(X)≤2r,

‖Y ‖
F
=1,rank(Y )≤2r

|〈A(X),A(Y )〉−〈X,Y 〉|.

We shall make repeated use of the following lemma

which upper bounds
∥∥UUT −XXT

∥∥
F

by some factor of

dist(U ,X) , which is immediate from two applications of

the triangle inequality.

Lemma 5.3. For any U ∈ R
n×r obeying dist(U ,X) ≤

1
4 ‖X‖, we have

∥∥UUT −XXT
∥∥
F
≤ 9

4
‖X‖ dist(U ,X).

Finally, we also need the following lemma which upper

bounds dist(U ,X) by some factor of
∥∥UUT −XXT

∥∥
F

.

Lemma 5.4. For any U ,X ∈ R
n×r, we have

dist2(U ,X) ≤ 1

2(
√
2− 1)σ2

r(X)

∥∥UUT −XXT
∥∥2
F

.

We would like to point out that the dependence on σ2
r(X)

in the lemma above is unavoidable.
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5.2. Proof of convergence of gradient descent updates

(Equation (3.4))

We first outline the general proof strategy. See Sections 2.3

and 7.9 of (Candès et al., 2015) for related arguments. We

first will show that gradient descent on an approximate es-

timate of the function f converges. The approximate func-

tion we use is F (U) := 1
4

∥∥UUT −XXT
∥∥2
F

. When the

map A is random and isotropic in expectation, F (U) can

be interpreted as the expected value of f(U), but we stress

that our result is a purely deterministic result. We demon-

strate that F (U) exhibits geometric convergence in a small

neighborhood around X . The standard approach in opti-

mization to show this is to prove that the function exhibits

strong convexity. However, due to the rotational degrees of

freedom for any optimal point, it is not possible for F (U)
to be strongly convex in any neighborhood around X ex-

cept in the special case when r = 1. Thus, we rely on the

approach used by (Candès et al., 2015), which establishes a

sufficient condition that only relies on first-order informa-

tion along certain trajectories. After showing the sufficient

condition holds on F (U), we use standard RIP results to

show that this condition also holds for the function f(U).

To begin our analysis, we start with the following formulas

for the gradient of f(U) and F (U)

∇f(U) =
m∑

k=1

〈Ak,UUT −XXT〉AkU

= A∗A(UUT −XXT) ·U ,

∇F (U) = (UUT −XXT)U .

Above, A∗ : Rm → R
n×n is the adjoint operator of A,

i.e. A∗(z) =
∑m

i=1 Akzk. Throughout the proof R is the

solution to the orthogonal Procrustes problem. That is,

R = argmin
R̃∈Rn×n: R̃TR̃=Ir

∥∥∥U −XR̃

∥∥∥
F
,

with the dependence on U omitted for sake of exposition.

The following definition defines a notion of strong convex-

ity along certain trajectories of the function.

Definition 5.5. (Regularity condition, (Candès et al.,

2015)) Let X ∈ R
n×r be a global optimum of a function

f . Define the set B(δ) as

B(δ) := {U ∈ R
n×r : dist(U ,X) ≤ δ} .

The function f satisfies a regularity condition, denoted by

RC(α, β, δ), if for all matrices U ∈ B(δ) the following

inequality holds:

〈∇f(U),U −XR〉 ≥ 1

α
‖U −XR‖2F +

1

β
‖∇f(U)‖2F .

If a function satisfies RC(α, β, δ), then as long as gradi-

ent descent starts from a point U0 ∈ B(δ), it will have a

geometric rate of convergence to the optimum X . This is

formalized by the following lemma.

Lemma 5.6. (Candès et al., 2015) If f satisfies RC(α, β, δ)
and U0 ∈ B(δ), then the gradient descent update

Uτ+1 ← Uτ − µ∇f(Uτ ),

with step size 0 < µ ≤ 2/β obeys Uτ ∈ B(δ) and

dist2(Uτ ,X) ≤
(
1− 2µ

α

)τ

dist2(U0,X) ,

for all τ ≥ 0.

The proof is complete by showing that the regularity condi-

tion holds. To this end, we first show in Lemma 5.7 below

that the function F (U) satisfies a slightly stronger variant

of the regularity condition from Definition 5.5. We then

show in Lemma 5.8 that the gradient of f is always close

to the gradient of F , and in Lemma 5.9 that the gradient of

f is Lipschitz around the optimal value X .

Lemma 5.7. Let F (U) = 1
4

∥∥UUT −XXT
∥∥2
F

. For all

U obeying

‖U −XR‖ ≤ 1

4
σr(X),

we have

〈∇F (U),U −XR〉 ≥
1

20

(∥∥UUT −XXT
∥∥2
F
+
∥∥(U −XR)UT

∥∥2
F

)

+
σ2
r(X)

4
‖U −XR‖2F +

1

5

∥∥UUT −XXT
∥∥2
F
.

(5.3)

Lemma 5.8. Let A be a linear map obeying rank-4r RIP

with constant δ4r. For any H ∈ R
n×r and any U ∈ R

n×r

obeying dist(U ,X) ≤ 1
4 ‖X‖, we have

|〈∇F (U)−∇f(U),H〉| ≤ δ4r
∥∥UUT −XXT

∥∥
F

∥∥HUT
∥∥
F
.

This immediately implies that for any U ∈ R
n×r obeying

dist(U ,X) ≤ 1
4 ‖X‖, we have

‖∇f(U)−∇F (U)‖F ≤ δ4r
∥∥UUT −XXT

∥∥
F
‖U‖ .

Lemma 5.9. Let A be a linear map obeying rank-6r RIP

with constant δ6r. Suppose that δ6r ≤ 1/10. Then for all

U ∈ R
n×r, we have that

∥∥UUT −XXT
∥∥2
F
≥ 10

17

1

‖U‖2 ‖∇f(U)‖2F .
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We now explain how the regularity condition follows from

these three lemmas. To begin, note that

〈∇F (U),U −XR〉 − 〈∇f(U),U −XR〉 (5.4)

= 〈∇F (U)−∇f(U),U −XR〉
(a)

≤ 1

10

∥∥UUT −XXT
∥∥
F

∥∥(U −XR)UT
∥∥
F

(b)

≤ 1

20

(∥∥UUT −XXT
∥∥2
F
+
∥∥(U −XR)UT

∥∥2
F

)

(5.5)

where (a) holds from Cauchy-Schwarz followed by

Lemma 5.8, using the fact that δ6r ≤ 1
10 as assumed in

the statement of Theorem 3.2 and (b) follows from 2ab ≤
a2 + b2.

Combining (5.5) with Lemma 5.7 for any U obeying

‖U −XR‖ ≤ 1
4σr(X), we have

〈∇f(U),U −XR〉

≥ σ2
r(X)

4
‖U −XR‖2F +

1

5

∥∥UUT −XXT
∥∥2
F

(a)

≥ σ2
r(X)

4
‖U −XR‖2F +

2

17

1

‖U‖2 ‖∇f(U)‖2F
(b)

≥ σ2
r(X)

4
‖U −XR‖2F +

32

425

1

‖X‖2 ‖∇f(U)‖2F ,

(5.6)

where (a) follows from Lemma 5.9 and (b) follows from

the fact that ‖U‖ ≤ 5
4‖X‖ when dist(U ,X) ≤

1
4 ‖X‖. Equation (5.6) shows that f(U) obeys

RC(4/σ2
r(X), 425

32 ‖X‖
2
, 1
4σr(X)). The convergence re-

sult in Equation (3.4) now follows from Lemma 5.6.

5.3. Rectangular case

We now turn our attention to the general case where the ma-

trices are rectangular. Recall that in this case, we want to

recover a fixed but unknown rank-r matrix M ∈ R
n1×n2

from linear measurements. Assume that M has a singu-

lar value decomposition of the form M = AΣBT. De-

fine X = AΣ
1/2 ∈ R

n1×r and Y = BΣ
1/2 ∈ R

n2×r.

With this piece of notation the iterates Uτ ∈ R
n1×r,Vτ ∈

R
n2×r in Algorithm 2 can be thought of as estimates of X

and Y . The proof of the correctness of the initialization

phase of Procrustes Flow (Theorem 3.3, Equation (3.6)) in

the rectangular case is similar to the PSD case (Theorem

3.2, Equation (3.3)). In this section we shall describe the

main ideas of the proof.

To simplify exposition we aggregate the pairs of matrices

(U ,V ), (X,Y ), and (X,−Y ) into larger “lifted” matri-

ces as follows

W :=

[
U

V

]
, Z :=

[
X

Y

]
, and Z̃ :=

[
X

−Y

]
.

To prove Theorem 3.3, Equation (3.7), we will demonstrate

that the function g(W ) := g(U ,V ) over the variable W

has similar form to f(U) over the variable U . As in the

proof for the PSD case, the crux of Theorem 3.3 lies in

establishing that the regularity condition

〈∇g(W ),W −ZR〉

≥ σr(M)

8
‖W −ZR‖2F +

16

1683 ‖M‖ ‖∇g(W )‖2F ,

(5.7)

holds for all W ∈ R
(n1+n2)×r obeying

dist (W ,Z) ≤ 1
2
√
2
σ
1/2
r (M). Assuming that

this condition holds, we have that g(W ) obeys

RC(8/σr(M), 1683
16 ‖M‖ , 1

2
√
2
σ
1/2
r (M)), and hence

Theorem 3.3, Equation (3.7) immediately follows by

appealing to Lemma 5.6.

To prove (5.7), we make use of the similarity of the expres-

sions with the PSD case. We start, as before, by defining a

reference function F (W ) := 1
4

∥∥WW T −ZZT
∥∥2
F

with

gradient ∇F (W ) = (WW T − ZZT)W . We now state

two lemmas relating g and F , which together immediately

imply (5.7). The first lemma relates the regularity condi-

tion of g to that of F by utilizing RIP. The second lemma

provides a Lipschitz type property for the gradient of g.

Lemma 5.10. Assume the linear mappingA obeys 4r-RIP

with constant δ4r. Then g obeys the following regularity

condition for any W ∈ R
(n1+n2)×r and R ∈ R

r×r,

〈∇g(W ),W −ZR〉

≥ −δ4r
2

∥∥WW T −ZZT
∥∥
F

∥∥(W −ZR)W T
∥∥
F

+
1

4
〈∇F (W ),W −ZR〉+ 1

8‖M‖
∥∥∥Z̃Z̃TW

∥∥∥
2

F
.

(5.8)

Lemma 5.11. Let A be a linear map obeying rank-6r RIP

with constant δ6r ≤ 1/10. Then for all W ∈ R
(n1+n2)×r

satisfying dist(W ,Z) ≤ 1
4 ‖Z‖, we have that

21

400
‖WW T −ZZT‖2F +

1

8‖M‖
∥∥∥Z̃Z̃TW

∥∥∥
2

F

≥ 16

1683

1

‖M‖ ‖∇g(W )‖2F . (5.9)

With these lemmas in place we have all the elements to

prove (5.7). By applying Lemma 5.7 to 〈∇F (W ),W −
ZR〉 and combining (5.8) and (5.9), Equation (5.7) follows

after some simple manipulations. This concludes the proof

of Theorem 3.3.
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