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Abstract

In this paper, we explore the problem of multiview sub-

space clustering. We introduce a low-rank tensor constrain-

t to explore the complementary information from multiple

views and, accordingly, establish a novel method called

Low-rank Tensor constrained Multiview Subspace Cluster-

ing (LT-MSC). Our method regards the subspace represen-

tation matrices of different views as a tensor, which captures

dexterously the high order correlations underlying multi-

view data. Then the tensor is equipped with a low-rank

constraint, which models elegantly the cross information

among different views, reduces effectually the redundan-

cy of the learned subspace representations, and improves

the accuracy of clustering as well. The inference process

of the affinity matrix for clustering is formulated as a ten-

sor nuclear norm minimization problem, constrained with

an additional ℓ2,1-norm regularizer and some linear equal-

ities. The minimization problem is convex and thus can be

solved efficiently by an Augmented Lagrangian Alternating

Direction Minimization (AL-ADM) method. Extensive ex-

perimental results on four benchmark image datasets show

the effectiveness of the proposed LT-MSC method.

1. Introduction

Many problems in machine learning and computer vi-

sion involve multiview data, in which each data point is rep-

resented by different information from multiple sources of

features. For example, in computer vision problems, im-

ages and videos are often described by different kinds of

features, such as color, texture and edge. Web pages are also

able to be represented in a multiview fashion, based on the

text, hyperlinks and possibly existing visual information. In

general, the multiview representation can capture seamless-

ly the rich information from multiple data cues as well as
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the complementary information among different cues, and

thus be beneficial to various tasks, e.g., clustering, classi-

fication, de-noising. In this paper, we focus on advancing

clustering by making use of the multiview representation.

To integrate different features into a unified framework,

most existing multiview clustering methods employ graph

based models. Early methods focus on the setting of “two-

view” [14, 1, 6]: The most recent method in [14] constructs

a bipartite graph to connect two types of features, and us-

es a standard spectral clustering algorithm to obtain the final

clustering result. The method in [1] extends k-means to han-

dle the data of two conditionally independent views. These

early methods depend on the assumption that there are only

two views, and thus it is hard to extend them to the cases of

three or more views. The approach in [35] fuses the infor-

mation from multiple graphs with Linked Matrix Factoriza-

tion (LMF).To exploit complementary information, some

methods employ co-regularization and co-training strate-

gies, e.g., [4], [5], [23], [37] and [22]. The methods [2, 7]

based on dimension reduction typically use Canonical Cor-

relation Analysis (CCA) to project high dimensional mul-

tiview data onto a low-dimensional subspace. The method

[39] recovers a shared low-rank transition probability ma-

trix as a crucial input to the standard Markov chain method

for clustering. The work in [10] learns a common represen-

tation under the spectral clustering framework by combin-

ing Laplacians of different views.

While effectual, existing methods may not fully explore

the advantages of multiview representation. In fact, most

previous methods capture only the pairwise correlations be-

tween different views, but essentially ignore the high or-

der correlations underlying the multiple views. Moreover,

the inference procedure of existing methods often leads to

non-convex optimization problems, which in general can-

not guarantee to produce globally optimal solutions. The

method in [38] reaches a convex formulation, but, again, is

limited to the case of two-view. The proposed method, as

will be shown later, formulates the inference procedure as
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a convex optimization problem and seamlessly captures the

high order cross information among multiple views.

We propose a novel multiview clustering method, termed

Low-rank Tensor constrained Multiview Subspace Cluster-

ing (LT-MSC). Unlike most existing methods, which gener-

ally ignore the high order information of the multiview rep-

resentation, our LT-MSC considers all the subspace repre-

sentations of the individual views as a high order structure,

i.e., a tensor, as shown in Fig. 1. Then the tensor is equipped

with a low-rank constraint, which models elegantly the high

order cross information among different views, reduces ef-

fectually the redundancy of the learned subspace represen-

tations, and improves the accuracy of clustering as well.

Similar to the prevalent subspace clustering methods (e.g.,

[15, 28, 21]), LT-MSC also adopts a two-stage framework

for clustering: It firstly learns an affinity matrix from the

given data points, and then uses spectral clustering to pro-

duce the final clustering results. We formulate the inference

process of the affinity matrix as a tensor nuclear norm mini-

mization problem constrained with an additional ℓ2,1-norm

regularizer. The minimization problem is convex and hence

can be solved efficiently by an Augmented Lagrangian Al-

ternating Direction Minimization (AL-ADM) [26] method.

The contributions of this work are summarized as fol-

lows: 1) We propose a novel method, termed LT-MSC, for

clustering the data of multiview representation. By using a

low-rank tensor to integrate together all the subspace rep-

resentations of the individual views, LT-MSC well captures

the high order information so as to perform distinctly better

than previous methods in our extensive experiments. 2) The

tensor in our method is utilized to capture the global struc-

ture of all the views and explore the correlations within and

across multiple views, rather than keep the spatial informa-

tion of images (e.g., [16, 20, 3]). 3) We provide an effectual

extension for the recently established Low-Rank Represen-

tation (LRR) [28], which is a subspace clustering method

for single view data.

2. Related Work

In recent years, a large number of multiview learning

approaches have been proposed. Most of existing meth-

ods focus on supervised learning by means of labeled da-

ta. For the clustering task, the exisiting approaches could

be roughly categorized into three lines. The first line ex-

ploits the multiview features with graph-based models. For

example, the work in [14] constructs a bipartite graph to

connect the two-view features, and uses a standard spectral

clustering to obtain the 2-view clustering result. The ap-

proach in [35] fuses the information from multiple graph-

s with Linked Matrix Factorization, where each graph is

approximated by matrix factorization with a graph-specific

factor and a factor common to all graphs. The second cate-

gory of methods often firstly learn a common space before

(1)

(V)

�

Figure 1. Overview of LT-MSC. Given a collection of data points

with multiple views (a), X(1)
· · ·X

(V ), LT-MSC integrates all the

subspace representations (b), Z(1)
· · ·Z

(V ), into a low-rank tensor

(c), Z , so as to involve the information of each individual views

as well as the high order correlations among multiple views.

clustering. The approaches in [23], [37] co-regularize the

clustering hypotheses to exploit the complementary infor-

mation within the spectral clustering framework. In [22], a

co-training based framework is proposed where it searches

for the clusterings that agree across the different views. The

third line of research is based on Multiple Kernel Learn-

ing (MKL). As suggested in earlier work [11], even simply

combining different kernels by adding them often leads to

near optimal results as compared to more sophisticated ap-

proaches for classification. Instead of equally adding these

kernels, views are expressed in terms of given kernel matri-

ces and a weighted combination of these kernels is learned

in parallel to the partitioning in [17]. Note that, the affini-

ty matrices in these methods are independently constructed,

while our LT-MSC constructs the affinity matrices jointly

aiming to capture the high order correlations across differ-

ent views.

Our work is closely related to the work of [15, 28, 21, 42]

in that we also concentrate on subspace clustering, but dif-

fers in the data setting. In our case, the data are equipped

with multiview features. The methods [15, 28, 21] have

achieved the state-of-the-art performance. However, they

only consider the single view feature, where the affinity

matrix is constructed based on these reconstruction coef-

ficients. The work in [18] formulates the subspace learning

with multiple views as a joint optimization problem with a

common subspace representation matrix and a group spar-

sity inducing norm. The work in [38] provides a convex

reformulation of 2-view subspace learning. There are some

methods based on dimensionality reduction, which usually

learn a low-dimensional subspace from the multiple views

and then apply any existing clustering method to get the

result. The representative methods in this stream are pro-

posed in [2, 7], which use canonical correlation analysis

(CCA) to project the multiview high-dimensional data on-
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to a low-dimensional subspace. Note that, unlike the self-

representation based methods[15, 28, 21], all these mul-

tiview clustering methods pursue a low-dimensional sub-

space. In contrast, we extend the self-representation based

subspace clustering to multiview setting by using the high

order tensor constraint to explore the correlations across d-

ifferent views.

3. The Proposed Approach

Subspace clustering approaches cluster data into mul-

tiple subspaces. Specifically, in this paper, we consider

the self-representation based subspace clustering method-

s, which construct affinity matrix via reconstruction coeffi-

cients. Suppose X = [x1,x2, ...,xN ] ∈ R
D×N is the ma-

trix of data vectors, where each column is a D dimensional

sample vector. To cluster the data into their respective sub-

spaces, we firstly compute a subspace representation matrix

Z following [15, 28, 21]:

min
Z,E

R(Z) + λL(X,XZ)

s.t. X = XZ+E,
(1)

where Z = [z1, z2, ..., zN ] ∈ R
N×N is the learned sub-

space representation matrix with each zi being the learned

subspace representation of sample xi, and E is the recon-

struction error matrix. L(·, ·) denotes the loss function,

R(·) is the regularizer and λ is the hyperparameter that

controls the intensity of the loss penalty. After obtaining

the self-representation matrix Z, an affinity matrix (e.g.,

(|Z| + |ZT |)/2 with |Z| being the matrix formed by tak-

ing the absolute values of the elements of Z) is further ob-

tained, and input into a spectral clustering algorithm [30] to

produce the final clustering result.

In spite of the achieved promising performance, all these

methods concentrate on single view data. A naive manner

to extend Eq. (1) to handle multiview data is as follows:

min
Z(v),E(v)

V
∑

v=1

(

R(Z(v)) + λvL(X
(v),X(v)Z(v))

)

s.t. X(v) = X(v)Z(v) +E(v), v = 1, 2, ..., V,

(2)

where X(v), Z(v) and E(v) denote the data matrix, the sub-

space representation matrix and the reconstruction error ma-

trix for the vth view, respectively. λv is a hyperparameter

which controls the intensity of loss penalty for vth view. V
is the number of views. However, this naive manner on-

ly considers each view independently, ignoring the corre-

lations among different views. To address this issue, we

propose to constrain these affinity matrices with tensor.

3.1. Formulation

In our efforts, we introduce a low-rank tensor constraint

into the subspace clustering and propose a low-rank tensor

constrained multiview subspace clustering method to learn

the subspace representations of different views jointly and

explore the intrinsic correlations across different views. The

tensor is the generalization of the matrix concept. We give

the definition of tensor nuclear norm as used in [29, 36],

which generalizes the matrix (i.e., 2-mode or 2-order ten-

sor) case (e.g., [28, 40, 41]) to higher-order tensor as

||Z||∗ =

M
∑

m=1

ξm||Z(m)||∗, (3)

where ξm’s are constants satisfying ξi > 0 and
∑M

m=1 ξm = 1. Z ∈ R
I1×I2×...×IM is a M -order ten-

sor, and Z(m) is the matrix by unfolding the tensor Z a-

long the mth mode defined as unfoldm(Z) = Z(m) ∈

R
Im×(I1×...×Im−1×Im+1...×IM ) [13, 12]. The nuclear norm

|| · ||∗ enforces the tensor under a low-rank constraint. In

essence, the nuclear norm of a tensor is a convex combi-

nation of the nuclear norms of all matrices unfolded along

each mode. With the low-rank tensor constraint, the objec-

tive function of our LT-MSC is formulated as

min
Z(v),E(v)

||Z||∗ + λ||E||2,1,

s.t. X(v) = X(v)Z(v) +E(v), v = 1, 2, ..., V,

Z = Ψ(Z(1),Z(2), ...,Z(V )),

E = [E(1);E(2); ...;E(V )],

(4)

where Ψ(·) constructs the tensor Z by merging the differ-

ent representations Z(v) to a 3-order tensor with the di-

mensionality of N × N × V , as shown in Fig. 1(c).

E = [E(1);E(2); ...;E(V )] is formed by vertically concate-

nating together along the column of errors corresponding

to each view. ||.||2,1 is the ℓ2,1-norm, which encourages

the columns of E to be zero. The underlying assumption

here is that corruptions are sample-specific, i.e., some data

points are corrupted and some are clean. This manner of

integration will enforce the columns of E(1),E(2), ...,E(V )

to have jointly consistent magnitude values, and the effec-

tiveness of which has been widely proved [8]. Note that,

we perform normalization on the data matrices of different

views to force the error of different views to be the same

scale, which could reduce the variation in the magnitude of

the error across the different views. Intuitively, the objec-

tive function in Eq. (4) seeks the lowest rank of the self-

representation via collaborating multiple views jointly.

For our objective function Eq. (4), we substitute ||Z||∗
by the definition in Eq. (3), accordingly, the optimization

problem of Eq. (4) is transformed as:

min
Z(v),E(v)

||E||2,1 +
M
∑

m=1

γm||Z(m)||∗, (5)
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where γm = ξm
λ

> 0 encodes the strength of the low-rank

tensor constraint, and the constraints are the same as in (4).

Note that, Z(v) is the subspace representation matrix cor-

responding to the vth view, while Z(m) is the mth mode

unfolding matrix of Z .

3.2. Optimization Procedure

To the best of our knowledge, ALM is the fastest algo-

rithm for solving the problem. To adopt alternating direc-

tion minimizing strategy to our problem (5), we need to

make our objective function separable. Thus, we follow

[36] to introduce M auxiliary variables Gm’s, and convert

it to a convex optimization problem as

min
Z(v),E(v),Gm

||E||2,1 +

M
∑

m=1

γm||Gm||∗,

s.t. Pmz = gm, m = 1, 2, ...,M,

Z = Ψ(Z(1),Z(2), ...,Z(V )),

X(v) = X(v)Z(v) +E(v), v = 1, 2, ..., V,

E = [E(1);E(2); ...;E(V )],

(6)

where z is the vectorization of the tensor Z , and gm is the

vectorization of the matrix Gm. Pm is the alignment ma-

trix corresponding to the mode-k unfolding which is a per-

mutation matrix used to align the corresponding elements

between Z(m) and Gm. The first constraint (the first two

equalities) ensures the solution Z to be low-rank as Gms

are enforced to be low-rank. The second constraint (the

third equality) relates the data points of the same cluster,

i.e., the same linear subspace, while the last constraint (the

last equality) with ℓ2,1-norm gives the underlying assump-

tion of error, i.e., sample-specific error. The optimization

problem of Eq. (6) can be solved by the AL-ADM method

[26], which minimizes the following augmented Lagrangian

function:

Lµ>0(Z
(1), ...,Z(V );E(1), ...,E(V );G1, ...,GM ) =

||E||2,1 +

M
∑

m=1

(

γm||Gm||∗ + µΦ(αm,Pmz− gm)
)

+

V
∑

v=1

µΦ(YT
v ,X

(v) −X(v)Z(v) −E(v)).

(7)

For simplicity, we give the definition Φ(Y,C) = 1
2 ||C||2F+

〈Y,C〉, where 〈·, ·〉 represents matrix inner product and µ
is a positive penalty scalar. The above problem is uncon-

strained. Therefore, it can be minimized with respect to the

variables E(v), Z(v) and Gm by alternating minimization

method, and then updating the Lagrange multipliers Yv and

αm accordingly. Fortunately, each subproblem has a simple

closed-form solution, and hence can be computed efficient-

ly. In this paper, the inexact ALM algorithm [26] with the

alternating direction strategy is employed and outlined in

Algorithm 1. The convergence properties of the algorithm

could be proved similarly as those in [26]. For each itera-

tion, we update each variable as follows:

1. Z(v)-subproblem: For updating the subspace represen-

tation Z(v), we solve the following subproblem:

Z(v)∗ = argmin
Z(v)

M
∑

m=1

µΦ(αm,Pmz− gm)

+ µΦ(YT
v ,X

(v) −X(v)Z(v) −E(v))

= argmin
Z(v)

M
∑

m=1

µΦ(Ωv(αT
m),Ωk(Pmz− gm))

+ µΦ(YT
v ,X

(v) −X(v)Z(v) −E(v)),

(8)

where Ωv(·) denotes the operation which selects the ele-

ments and reshapes them into a matrix corresponding to the

vth view. And the closed-form solution of Z(v) is obtained

by:

Z(v)∗ = (

M
∑

m=1

B(v)
m −

M
∑

m=1

A(v)
m +X(v)TX(v) −X(v)TE(v)

+X(v)TYv)(MI+X(v)TX(v))−1

with

A(v)
m = Ωv(αm) and B(v)

m = Ωv(gm).
(9)

Specifically, there are M unfolding ways for a M -way ten-

sor. For all the three unfolding modes in our model, the

operator Ωv(·) only selects N ×N elements corresponding

to the vth views and reshapes it to the N ×N dimensional

matrices A
(v)
m and B

(v)
m corresponding to Z(v).

2. z-subproblem: With the updated Z(v), we update z by

directly replacing the corresponding elements as:

z∗ ← Z(v). (10)

Since Yv and E(v) are independent of other views in cur-

rent iteration, i.e., the inner loop of Algorithm 1, updating z

is also independent among multiple views. We can update

z once when all Z(v)s of multiple views are obtained.

3. E-subproblem: The reconstruction error matrix E is

optimized by:

E∗ =argmin
E

||E||2,1

+

V
∑

k=1

µΦ(YT
v ,X

(v) −X(v)Z(v) −E(v))

= argmin
E

1

µ
||E||2,1 +

1

2
||E− F||2F ,

(11)

where F is formed by vertically concatenating the matrices

X(v) −X(v)Z(v) +Y(v) together along column. This sub-

problem can be efficiently solved by Lemma 3.2 in [28].
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4. Yv-subproblem: The multiplier Yv is updated by:

Y∗

v = Yv + (X(v) −X(v)Z(v) −E(v)). (12)

Intuitively, the multiplier is updated proportionally to the

violation of the equality constraint.

5. Gm-subproblem: Gm is updated by:

G∗

m = argmin
Gm

γm||Gm||∗ + µΦ(αm,Pmz− gm)

= proxtr
βm

(Ωm(Pmz+αm)),
(13)

where Ωm(Pmz+αm) reshapes the vector Pmz+αm to

a matrix corresponding to the mth mode unfolding. βm =
γm/µ denotes the thresholds of the spectral soft-threshold

operation proxtr
βm

(L) = Umax(S − βm, 0)VT with L =

USVT being the Singular Value Decomposition (SVD) of

the matrix L, and the max operation being taken element-

wise. Intuitively, the solution is truncated according to the

subspace representation tensor Z .

6. gm-subproblem: Similarly to updating z, we update gm

by directly replacing the corresponding elements:

g∗

m ← Gm. (14)

7. αm-subproblem: Similarly to updating Yv , the variable

αm is updated by:

α
∗

m = αm + (Pmz− gm). (15)

The accuracy of this estimate improves at every step.

The major advantage of the ALM method is that, unlike

the penalty method it is not necessary to take µ → ∞ in

order to solve the original constrained problem. Instead,

because of the presence of the Lagrange multiplier term,

our algorithm converges fast since µ can stay much small-

er. We only provide a general optimization solution for our

problem in Eq. (6). In fact, any optimization algorithm can

be employed to further improve our optimization scheme.

Specifically, LADMPSAP [27] is a more efficient substi-

tution for AL-ADM, which is more suitable for large scale

problem. Furthermore, there are some fast methods [33, 34]

for approximating matrix inversion computation and some

methods [31, 19] for Singular Value Thresholding (SVT) to

update Gm, which can also be adopted for our problem.

4. Experiments

The datasets used in our experiments are widely used

in recent works [15, 28, 21] for face and image clustering.

Fig. 2 are example images of these datasets. Specifically,

we conduct our experiments using four benchmark datasets:

•Yale 1. The Yale face dataset contains 165 grayscale

images of 15 individuals. There are 11 images per subject,

one per different facial expression or configuration.

1http://cvc.yale.edu/projects/yalefaces/yalefaces.html

Algorithm 1: Algorithm of LT-MSC

Input: Multiple types of feature matrices: X(1), X(2),

..., X(V ), parameters γm’s and the cluster

number K
Initialize: Z(1)... = Z(V ) = 0;

E(1) = 0, ...,E(V ) = 0; Y1 = ... = YV = 0;

α1 = α2 = ... = αM = 0; G1 = 0, ...,GM = 0;

µ = 10−6; ρ = 1.1; ε = 10−8; maxµ =1010

while not converged do

for each of V views do

Update Z(v), E(v) and Yv according to Eq.

(9), (11) and (12), respectively;

end

Update z according to Eq. (10);

for each of M modes do
Update Gm, gm and αm according to Eq.

(13), (14) and (15), respectively;

end

Update the parameter µ by µ = min(ρµ; maxµ);

check the convergence conditions:

||X(v) −X(v)Z(v) −E(v)||∞ < ǫ and

||Pmz− gm||∞ < ǫ;
end

Combine all subspace representations of each view by

S = 1
V

∑V
v=1 |Z

(v)|+ |Z(v)T |;
Apply the spectral clustering algorithm with the

affinity matrix S;

Output: Clustering result C.

•Extended YaleB 2. The Extended YaleB dataset con-

sists of 38 individuals and around 64 near frontal images

under different illuminations for each individual. Similarly

to the other work [28], we use the images for the first 10

classes, including 640 frontal face images .

•ORL 3. There are 10 different images of each of 40 dis-

tinct subjects in the ORL face dataset. They took the images

at different times, changing the lighting, facial expressions

and facial details for some subjects.

•COIL-20 4. The Columbia Object Image Library

(COIL-20) dataset contains 1440 images of 20 object cat-

egories. Each category contains 72 images. All the images

are normalized to 32× 32 pixel arrays with 256 gray levels

per pixel.

For all the datasets, we extract three types of features:

intensity, LBP [32] and Gabor [24]. The standard LBP

features are extracted with the the sampling density size

of 8 and the blocking number of 7×8. Gabor wavelet-

s are extracted with one scale λ = 4 at four orientations

2http://cvc.yale.edu/projects/yalefacesB/yalefacesB.html
3http://www.uk.research.att.com/facedatabase.html
4http://www.cs.columbia.edu/CAVE/software/softlib/
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Table 1. Results (mean ± standard deviation) on Yale. We set γ = 0.2 in LT-MSC.
Method NMI ACC AR F-score Precision Recall

SPCbest 0.654±0.009 0.616±0.030 0.440±0.011 0.475±0.011 0.457±0.011 0.495±0.010

LRRbest 0.709±0.011 0.697±0.000 0.515±0.004 0.547±0.007 0.529±0.003 0.567±0.004

RTC 0.607±0.013 0.594±0.016 0.371±0.005 0.412±0.012 0.384±0.005 0.443±0.025

FeatConcatePCA 0.665±0.037 0.578±0.038 0.396±0.011 0.434±0.011 0.419±0.012 0.450 ±0.009

PCA+LRR 0.632±0.006 0.582±0.038 0.353±0.009 0.396±0.008 0.360±0.007 0.441 ±0.008

co-Reg SPC 0.648±0.002 0.564±0.000 0.436±0.002 0.466±0.000 0.455±0.004 0.491±0.003

co-Train SPC 0.672±0.006 0.630±0.011 0.452±0.010 0.487±0.009 0.470±0.010 0.505±0.007

Min-Disagreement 0.645±0.005 0.615±0.043 0.433±0.006 0.470±0.006 0.446±0.005 0.496±0.006

ConvexReg SPC 0.673±0.023 0.611±0.035 0.466±0.032 0.501±0.030 0.476±0.032 0.532±0.029

RMSC 0.684±0.033 0.642±0.036 0.485±0.046 0.517±0.043 0.500±0.043 0.535±0.044

LT-MSC 0.765±0.008 0.741±0.002 0.570±0.004 0.598±0.006 0.569±0.004 0.629±0.005

Table 2. Results (mean ± standard deviation) on Extended YaleB. We set γ = 100 in LT-MSC.
Method NMI ACC AR F-score Precision Recall

SPCbest 0.360±0.016 0.366±0.059 0.225±0.018 0.303±0.011 0.296±0.010 0.310±0.012

LRRbest 0.625±0.004 0.615±0.013 0.451±0.002 0.508±0.004 0.481±0.002 0.539±0.001

RTC 0.373±0.001 0.360±0.000 0.215±0.005 0.291±0.003 0.287±0.005 0.294±0.002

FeatConcatePCA 0.152±0.003 0.232±0.005 0.069±0.002 0.161±0.002 0.158±0.001 0.164±0.002

PCA+LRR 0.568±0.005 0.569±0.012 0.400±0.003 0.463±0.002 0.433±0.002 0.498±0.002

Co-Reg SPC 0.151±0.001 0.224±0.000 0.066±0.001 0.160±0.000 0.157±0.001 0.162±0.000

Co-Train SPC 0.302±0.007 0.186±0.001 0.043±0.001 0.140±0.001 0.137±0.001 0.143±0.002

Min-Disagreement 0.186±0.003 0.242±0.018 0.088±0.001 0.181±0.001 0.174±0.001 0.189±0.002

ConvexReg SPC 0.163±0.022 0.216±0.019 0.072±0.012 0.164±0.010 0.163±0.010 0.165±0.011

RMSC 0.157±0.019 0.210±0.013 0.060±0.014 0.155±0.012 0.151±0.012 0.159±0.013

LT-MSC 0.637±0.003 0.626±0.010 0.459±0.03 0.521±0.006 0.485±0.001 0.539±0.002

Figure 2. Example images of the four datasets used in this paper

(the rows from top to bottom correspond to Yale, Extended YaleB,

ORL and COIL-20, respectively).

θ = {0o, 45o, 90o, 135o}. Accordingly, the dimensionali-

ties of LBP and Gabor are 3304 and 6750, respectively.

Most existing clustering approaches perform standard

spectral clustering algorithm after obtaining the affinity ma-

trix, which is equipped with k-means. Therefore, we com-

pare our approach with the 10 methods by running these

methods 30 times and reporting the average performance

and standard derivation. Specifically, the compared meth-

ods include 3 single view and 7 multiview ones:

• SPCbest. The method employs the most informative

view with the standard spectral clustering algorithm [30].

•LRRbest [28]. Low-rank constraint and the best per-

formed single view feature are used in the method LRR.

•RTC [3]. The method utilizes tensor to represent im-

ages and it is robust to the outliers.

•FeatConcatePCA. The method concatenates all views

and employ PCA to reduce the feature dimension to 300.

•PCA+LRR. The method concatenates all views and

employ PCA to reduce the feature dimension to 300, on

which LRR is applied.

•Co-Reg SPC [23]. The method co-regularizes the clus-

tering hypotheses to enforce corresponding data points to

have the same cluster membership.

•Co-Training SPC [22]. The method uses the co-

training manner within the spectral clustering framework.

•Min-Disagreement [14]. The idea of “minimizing-

disagreement” is realized based on a bipartite graph.

•RMSC [39]. The method recovers a shared low-rank

transition probability matrix for clustering.

•ConvexReg SPC[10]. The method learns a common

representation for all views.

Six evaluation metrics are used to evaluate the perfor-

mances: Normalized Mutual Information (NMI), Accura-

cy (ACC), Adjusted Rand index (AR), F-score, Precision

and Recall, which are widely used in clustering evaluation

[9, 25]. For all these metrics, a higher value indicates better

clustering quality. Each metric penalizes or favors different

properties in the clustering, and hence we report results on

these diverse measures to perform a comprehensive evalu-

ation. These metrics have been widely used for evaluating

clustering performance. For example, the compared meth-

ods, Co-Train SPC [22] and LRR [28], also use the same

metrics for evaluating. Specifically, Co-Train SPC uses F-

score, Precision, Recall, NMI, AR and LRR uses accura-

cy(ACC) for evaluating clustering task.

The inner product kernel is used for computing the graph
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Table 3. Results (mean ± standard deviation) on ORL. We set γ = 0.1 in LT-MSC.
Method NMI ACC AR F-score Precision Recall

SPCbest 0.884±0.002 0.726±0.025 0.655±0.005 0.664±0.005 0.610±0.006 0.728±0.005

LRRbest 0.895±0.006 0.773±0.003 0.724±0.020 0.731±0.004 0.701±0.001 0.754±0.002

RTC 0.792±0.001 0.601±0.000 0.450±0.002 0.465±0.002 0.388±0.003 0.581±0.001

FeatConcatePCA 0.835±0.004 0.675±0.028 0.564±0.010 0.574±0.010 0.532±0.011 0.624±0.008

PCA+LRR 0.867±0.003 0.750±0.033 0.650±0.007 0.658±0.007 0.624±0.007 0.696±0.008

Co-Reg SPC 0.853±0.003 0.715±0.000 0.602±0.004 0.615±0.000 0.567±0.004 0.666±0.004

Co-Train SPC 0.901±0.003 0.730±0.005 0.656±0.007 0.665±0.007 0.612±0.008 0.727±0.006

Min-Disagreement 0.876±0.002 0.748±0.051 0.654±0.004 0.663±0.004 0.615±0.004 0.718±0.003

ConvexReg SPC 0.883±0.013 0.734±0.031 0.668±0.032 0.676±0.035 0.628±0.041 0.731±0.030

RMSC 0.872±0.012 0.723±0.025 0.645±0.029 0.654±0.028 0.607±0.033 0.709±0.027

LT-MSC 0.930±0.002 0.795±0.007 0.750 ±0.003 0.768±0.007 0.766±0.009 0.837±0.004

Table 4. Results (mean ± standard deviation) on COIL-20. We set γ = 1 in LT-MSC.
Method NMI ACC AR F-score Precision Recall

SPCbest 0.806±0.008 0.661±0.061 0.619±0.018 0.640±0.017 0.596±0.021 0.692±0.013

LRRbest 0.829±0.006 0.761±0.003 0.719±0.020 0.734±0.004 0.717±0.001 0.751±0.002

RTC 0.755±0.002 0.654±0.021 0.543±0.001 0.568±0.005 0.522±0.002 0.623±0.000

FeatConcatePCA 0.810±0.005 0.701±0.044 0.635±0.010 0.654±0.009 0.614±0.013 0.702±0.008

PCA+LRR 0.832±0.004 0.770±0.031 0.718±0.007 0.732±0.011 0.725±0.004 0.739±0.011

Co-Reg SPC 0.765±0.001 0.560±0.000 0.568±0.003 0.593±0.000 0.558±0.003 0.627±0.002

Co-Train SPC 0.813±0.005 0.648±0.016 0.604±0.012 0.625±0.011 0.588±0.016 0.671±0.005

Min-Disagreement 0.789±0.002 0.661±0.052 0.597±0.005 0.619±0.005 0.579±0.007 0.666±0.003

ConvexReg SPC 0.815±0.023 0.693±0.049 0.647±0.055 0.666±0.051 0.622±0.071 0.720±0.033

RMSC 0.801±0.018 0.685±0.045 0.637±0.044 0.656±0.042 0.620±0.057 0.698±0.026

LT-MSC 0.862±0.002 0.804±0.011 0.748±0.004 0.761±0.007 0.741±0.009 0.776±0.006

similarity in all experiments if not stated otherwise. On all

the four datasets, for the parameters of our method, we sim-

ply set the M parameters with equal value, i.e., γ1 = .. =
γM = γ, and accordingly tune the parameter γ. We run

each task for 30 times and report the mean performance and

standard deviation. For all the compared methods, we have

tuned the parameters to the best.

We report the detailed clustering results on four bench-

mark datasets in Tables 1-4. On Yale, our approach excels

all the baselines. The most competitive multiview cluster-

ing method, RMSC, has achieved a relatively promising re-

sults, however, given the best feature, the performance of

LRR is even better. Our method further gains significant

improvements around 5.6%, 3.6%, 5.5%, 5.1%, 4.0% and

6.2% over LRR in terms of NMI, ACC, AR, F-score, Pre-

cision and Recall, respectively. Besides, according to the

results, directly concatenating features with PCA is not a

promising manner since it does not always performs better

than that of the best single view. Our method also outper-

forms two most recently published methods [39, 10], and

the performance on ORL and COIL-20, as shown in Table

3-4, further demonstrates the effectiveness of our method.

Note that, the low performances of most comparisons

are relatively low except the self-representation based meth-

ods (e.g., LRR) on Extended YaleB. The major reason is

the large variation of illumination. Take the intensity fea-

ture for example, the subspace clustering methods are ro-

bust for the advantage of the self-representation, while tra-

ditional distance-based methods degrade sharply. As shown

in Table 2, LRR performs best among the baselines (e.g.,

Min-Disagreement, Co-Reg SPC, and Co-Training SPC).

However, our method further significantly outperforms P-

CA+LRR thanks to the high order low-rank tensor con-

straint. We also note that the improvement of LT-SMC over

LRR on Extended YaleB is not such significant as on the

other three datasets. The main reason is that the features

LBP and Gabor are obviously worse than the best feature,

i.e., intensity, which affects the performance of LT-MSC, as

shown in Fig. 4. Fig. 4 shows the comparison between LR-

R with different single view feature and our LT-SMC with

multiview features. LRR achieves promising performance

given the best single view feature. However, as shown in

Fig. 4, the performances of LRR with different features are

of great difference on different datasets. For example, LBP

performs as the best on ORL and COIL-20, while the per-

formance degrades significantly on Extended YaleB. Hence,

it is unreasonable to select the same feature for different

datasets. In contrast, LT-MSC directly employs all types of

features and achieves competitive results, while the perfor-

mances of other multiview clustering methods degrade.

Fig. 3 compares the affinity matrices between LT-MSC

and the naive manner with LRR, which constructs the affin-

ity matrices of different views independently and then adds

them. We plot these affinity matrices according to the in-

tended clusters. The matrices corresponding to LT-MSC

reveal the underlying clustering structures more clearly,
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Figure 3. Affinity matrices of using naive manner with LRR (top row) as in Eq. 2 and LT-SMC (bottom row).
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Figure 4. Comparison between LRR with the single view feature

and our LT-SMC in terms of NMI and accuracy.

which further validates the advantages of exploring the high

order correlations among different views.

The parameter tuning examples are shown in Fig. 5.

Note that, the value of γ is obviously larger on Extend-

ed YaleB than on Yale for promising performances. This

mainly due to that the Extended YaleB dataset is more chal-

lenging for the large variation of illumination, hence a more

strengthened regularization is essential to relieve the influ-

ence of illumination. For example, without regularization

(γ = 0), the performance on Extended YaleB is relatively

low, while it it not the case for Yale.

5. Conclusion

In this paper, we have shown how to discover the under-

lying structure of data via exploiting the complementary in-

formation of different views jointly. To this end, the tensor

is employed to explore the high order correlations. We have

formulated the problem in a unified optimization framework

and proposed an efficient algorithm to find the optimal solu-
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Figure 5. Parameter tuning in terms of accuracy on Yale (left) and

Extended YaleB (right). Since we set γ1 = ... = γM = γ in our

experiment, we only should tune the parameter γ.

tion. The experimental results, compared to the state-of-the-

art methods, have demonstrated the clear advantages of the

proposed method on four benchmark datasets. Moreover,

the proposed method is relatively robust for noisy views,

which guarantees the high quality of clustering results. In

the future, we will focus on incorporating the low-rank ten-

sor decomposition into our method.
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