Low-Rank Tensors for Scoring Dependency Structures

Tao Lei

Yu Xin, Yuan Zhang, Regina Barzilay, Tommi Jaakkola
CSAIL, MIT

|l|in

Dependency Parsing

- Dependency parsing as maximization problem:

$$
y^{*}=\underset{y \in T(x)}{\operatorname{argmax}} S(x, y ; \theta)
$$

- Key aspects of a parsing system:

1. Accurate scoring function $S(x, y ; \theta) \longrightarrow$ Our Goal
2. Efficient decoding procedure argmax

Finding Expressive Feature Set

Traditional view:
requires a rich, expressive set of manually-crafted feature templates

High-dim. sparse vector $\phi(x, y) \in \mathbb{R}^{L}$

Finding Expressive Feature Set

Traditional view:
requires a rich, expressive set of manually-crafted feature templates

High-dim. sparse vector $\phi(x, y) \in \mathbb{R}^{L}$

| 1 0 1 1 0 0 0 \cdots \cdots |
| :--- | | Feature Template: |
| :--- |
| head word and modifier word |

Finding Expressive Feature Set

Traditional view:

requires a rich, expressive set of manually-crafted feature templates

High-dim. sparse vector $\phi(x, y) \in \mathbb{R}^{L}$

1	0	2	1	2	0	0	\cdots	\cdots

Parameter vector $\theta \in \mathbb{R}^{L}$

0.1	0.3	2.2	1.1	0	0.1	0.9	\ldots	\ldots

$$
S_{\theta}(x, y)=\langle\theta, \phi(x, y)\rangle
$$

Traditional Scoring Revisited

- Features and templates are manually-selected concatenations of atomic features, in traditional vector-based scoring:

Traditional Scoring Revisited

- Features and templates are manually-selected concatenations of atomic features, in traditional vector-based scoring:

Traditional Scoring Revisited

- Features and templates are manually-selected concatenations of atomic features, in traditional vector-based scoring:

Traditional Scoring Revisited

- Problem: very difficult to pick the best subset of concatenations

| Too few templates | Lose performance |
| :--- | :--- | :--- |
| Too many templates | Too many parameters to estimate |
| Searching the best set? | $\square \quad$Features are correlated
 Choices are exponential |

- Our approach: use low-rank tensor (i.e. multi-way array)
- Capture a whole range of feature combinations
- Keep the parameter estimation problem in control

Low-Rank Tensor Scoring: Formulation

- Formulate ALL possible concatenations as a rank-1 tensor

Low-Rank Tensor Scoring: Formulation

- Formulate ALL possible concatenations as a rank-1 tensor

ϕ_{h}	\otimes	ϕ_{m}
atomic head	}{atomic arc feature vector}	$\phi_{h, m}$
feature vector		

$$
(x \otimes y \otimes z)_{i j k}=x_{i} y_{j} z_{k}
$$

tensor product

Each entry indicates the occurrence of one feature concatenation

Low-Rank Tensor Scoring: Formulation

- Formulate ALL possible concatenations as a rank-1 tensor

ϕ_{h}	\bigotimes	ϕ_{m}
atomic head feature vector	}{feature vector}	$\phi_{h, m} \quad$atomic arc feature vector

- Formulate the parameters as a tensor as well

$$
\begin{aligned}
& \theta \in \mathbb{R}^{L}: \quad S_{\theta}(h \rightarrow m)=\left\langle\theta, \phi_{h \rightarrow m}\right\rangle \\
& A \in \mathbb{R}^{n \times n \times d}: \quad S_{\text {tensor }}(h \rightarrow m)=\left\langle A, \phi_{h} \otimes \phi_{m} \otimes \phi_{h, m}\right\rangle \quad \text { (vector-based) } \\
& \text { Involves features not in } \theta \\
& \text { Can be huge. On English: } \\
& n \times n \times d \approx 10^{11}
\end{aligned}
$$

Low-Rank Tensor Scoring: Formulation

- Formulate ALL possible concatenations as a rank-1 tensor

ϕ_{h}	\bigotimes	ϕ_{m}
atomic head feature vector	atomic modifier feature vector	$\phi_{h, m} \quad$atomic arc feature vector

- Formulate the parameters as a low-rank tensor
$\theta \in \mathbb{R}^{L}:$
$S_{\theta}(h \rightarrow m)=\left\langle\theta, \phi_{h \rightarrow m}\right\rangle$
$A \in \mathbb{R}^{n \times n \times d}: \quad S_{\text {tensor }}(h \rightarrow m)=\left\langle A, \phi_{h} \otimes \phi_{m} \otimes \phi_{h, m}\right\rangle$

$U, V \in \mathbb{R}^{r \times n}, W \in \mathbb{R}^{r \times d}:$

$$
A=\sum_{\text {Low-rank tensor }} U(i) \otimes V(i) \otimes W(i)
$$

Low-Rank Tensor Scoring: Formulation

$$
A=\sum U(i) \otimes V(i) \otimes W(i) \quad \Rightarrow \quad \begin{gathered}
S_{\text {tensor }}(h \rightarrow m)=\left\langle A, \phi_{h} \otimes \phi_{m} \otimes \phi_{h, m}\right\rangle \\
=\sum_{i=1}^{r}\left[U \phi_{h}\right]_{i}\left[V \phi_{m}\right]_{i}\left[W \phi_{h, m}\right]_{i}
\end{gathered}
$$

Dense low-dim representations: $U \phi_{h} \quad V \phi_{m} \quad W \phi_{h, m} \quad \in \mathbb{R}^{r}$

Low-Rank Tensor Scoring: Formulation

$$
A=\sum U(i) \otimes V(i) \otimes W(i) \quad \Rightarrow \quad \begin{array}{r}
S_{\text {tensor }}(h \rightarrow m)=\left\langle A, \phi_{h} \otimes \phi_{m} \otimes \phi_{h,}\right. \\
=\sum_{i=1}^{r}\left[U \phi_{h}\right]_{i}\left[V \phi_{m}\right]_{i}\left[W \phi_{h, m}\right]_{i}
\end{array}
$$

Dense low-dim representations: $U \phi_{h} \quad V \phi_{m} \quad W \phi_{h, m} \quad \in \mathbb{R}^{r}$

Element-wise products:
$\left[U \phi_{h}\right]_{i}\left[V \phi_{m}\right]_{i}\left[W \phi_{h, m}\right]_{i}$

Sum over these products:

$$
\sum_{i=1}^{r}\left[U \phi_{h}\right]_{i}\left[V \phi_{m}\right]_{i}\left[W \phi_{h, m}\right]_{i}
$$

Intuition and Explanations

Example: Collaborative Filtering
Approximate user-ratings via low-rank

- Ratings not completely independent
- Items share hidden properties ("price" and "quality")
- Users have hidden preferences over properties

Intuition and Explanations

Example: Collaborative Filtering

user-rating sparse matrix A

Approximate user-ratings via low-rank

$$
A=U^{\mathrm{T}} V=\Sigma U(i) \otimes V(i)
$$

\# of parameters:

$$
(n+m) r
$$

Intuition: Data and parameters can be approximately characterized by a small number of hidden factors

Intuition and Explanations

Our Case:

Approximate parameters (feature weights) via low-rank

$$
A=\Sigma U(i) \otimes V(i) \otimes W(i)
$$

- Hidden properties associated with each word
- Share parameter values via the hidden properties

Low-Rank Tensor Scoring: Summary

- Naturally captures full feature expansion (concatenations)
-- Without mannually specifying a bunch of feature templates
- Controlled feature expansion by low-rank (small r)
-- better feature tuning and optimization
- Easily add and utilize new, auxiliary features
-- Simply append them as atomic features

Combined Scoring

- Combining traditional and tensor scoring in $S_{\gamma}(x, y)$:

$$
\begin{array}{cl}
\gamma \cdot S_{\theta}(x, y)+(1-\gamma) \cdot S_{\text {tensor }}(x, y) & \gamma \in[0,1] \\
\text { Set of manual } & \text { Full feature expansion } \\
\text { selected features } & \text { controlled by low-rank }
\end{array}
$$

Similar "sparse+low-rank" idea for matrix decomposition:
Tao and Yuan, 2011; Zhou and Tao, 2011;
Waters et al., 2011; Chandrasekaran et al., 2011

- Final maximization problem given parameters θ, U, V, W :

$$
y^{*}=\underset{y \in T(x)}{\operatorname{argmax}} S_{\gamma}(x, y ; \theta, U, V, W)
$$

Learning Problem

- Given training set $\mathrm{D}=\left\{\left(\hat{x}_{i}, \hat{y}_{i}\right)\right\}_{i=1}^{N}$
- Search for parameter values that score the gold trees higher than others:

$$
\forall y \in \operatorname{Tree}\left(x_{i}\right): \quad S\left(\hat{x}_{i}, \widehat{y_{i}}\right) \geq S\left(\hat{x}_{i}, y\right)+\left|\widehat{y_{i}}-y\right|-\xi_{i}
$$

- The training objective:

Non-negative loss unsatisfied constraints are penalized against

$$
\min _{\theta, U, V, W, \xi_{i} \geq 0} C \sum_{i} \xi_{i}+\|U\|^{2}+\|V\|^{2}+\|W\|^{2}+\|\theta\|^{2}
$$

Training loss Regularization

Calculating the loss requires to solve the expensive maximization problem;
Following common practices, adopt online learning framework.

Online Learning

- Use passive-aggressive algorithm (Crammer et al. 2006) tailored to our tensor setting
(i) Iterate over training samples successively:

Efficient parameter update via closed-form solution

Experiment Setup

Datasets

- 14 languages in CoNLL 2006 \& 2008 shared tasks

Features

- Only 16 atomic word features for tensor
- Combine with $1^{\text {stt}}$-order (single arc) and up to $3^{\text {rd }}$-order (three arcs) features used in MST/Turbo parsers

Unigram features:		
form	form-p	form-n
lemma	lemma-p	lemma-n pos morph
pos-p bias	pos-n	
Bigram features:		
pos-p, pos		
pos, pos-n		
pos, lemma		
morph, lemma		
Trigram features:		
pos-p, pos, pos-n		

Experiment Setup

Datasets

- 14 languages in CoNLL 2006 \& 2008 shared tasks

Features

- Only 16 atomic word features for tensor
- Combine with $1^{\text {st }}$-order (single arc) and up to $3^{\text {rd }}$-order (three arcs) features used in MST/Turbo parsers

Implementation

- By default, rank of the tensor r=50
- 3-way tensor captures only $1^{\text {st- }}$ order arc-based features
- Train 10 iterations for all 14 languages

Baselines and Evaluation Measure

MST and Turbo Parsers
representative graph-based parsers; use similar set of features

NT-1st and NT-3rd
variants of our model by removing the tensor component; reimplementation of MST and Turbo Parser features

Unlabeled Attachment Score (UAS) evaluated without punctuations

Overall $1^{\text {stt-order Results }}$

- > 0.7% average improvement
- Outperforms on 11 out of 14 languages

Impact of Tensor Component

Impact of Tensor Component

- Tensor component achieves better generalization on test data

Impact of Tensor Component

- Tensor component achieves better generalization on test data
- Combined scoring outperforms single components

Overall $3^{\text {rd }}$-order Results

- Our traditional scoring component is just as good as the state-of-the-art system

Overall 3rd_order Results

- The $1^{\text {st-}}$-order tensor component remains useful on high-order parsing
- Outperforms state-of-the-art single system
- Achieves best published results on 5 languages

Leveraging Auxiliary Features

- Unsupervised word embeddings publicly available*

English, German and Swedish have word embeddings in this dataset

- Append the embeddings of current, previous and next words into ϕ_{h}, ϕ_{m}
$\phi_{h} \otimes \phi_{m}$ involves more than $(50 \times 3)^{2}$ values for 50-dimensional embeddings!

* https://github.com/wolet/sprml13-word-embeddings

Conclusion

- Modeling: we introduced a low-rank tensor factorization model for scoring dependency arcs
- Learning: we proposed an online learning method that directly optimizes the low-rank factorization for parsing performance, achieving state-of-the-art results
- Opportunities \& Challenges: we hope to apply this idea to other structures and NLP problems.

Source code available at:
https://github.com/taolei87/RBGParser

Rank of the Tensor

Choices of Gamma

