Low-Rank Tensors for Scoring Dependency Structures

Tao Lei

Yu Xin, Yuan Zhang, Regina Barzilay, Tommi Jaakkola

CSAIL, MIT

Dependency Parsing

• Dependency parsing as maximization problem:

$$y^* = \underset{y \in T(x)}{\operatorname{argmax}} S(x, y; \theta)$$

- Key aspects of a parsing system:
 - 1. Accurate scoring function $S(x, y; \theta) \rightarrow Our Goal$
 - 2. Efficient decoding procedure argmax

Finding Expressive Feature Set

Traditional view:

requires a rich, expressive set of manually-crafted feature templates

Finding Expressive Feature Set

Traditional view:

requires a rich, expressive set of manually-crafted feature templates

Finding Expressive Feature Set

Traditional view:

requires a rich, expressive set of manually-crafted feature templates

$$S_{\theta}(x, y) = \langle \theta, \phi(x, y) \rangle$$

• Features and templates are *manually-selected* concatenations of atomic features, in traditional vector-based scoring:

• Features and templates are *manually-selected* concatenations of atomic features, in traditional vector-based scoring:

• Features and templates are *manually-selected* concatenations of atomic features, in traditional vector-based scoring:

• Problem: very difficult to pick the best subset of concatenations

- Our approach: use low-rank tensor (i.e. multi-way array)
 - Capture a whole range of feature combinations
 - Keep the parameter estimation problem in control

• Formulate ALL possible concatenations as a rank-1 tensor

• Formulate ALL possible concatenations as a rank-1 tensor

$$(x \otimes y \otimes z)_{ijk} = x_i y_j z_k$$

tensor product

Each entry indicates the occurrence of one feature concatenation

• Formulate *ALL possible* concatenations as a rank-1 tensor

• Formulate *ALL possible* concatenations as a rank-1 tensor

$$A = \sum U(i) \otimes V(i) \otimes W(i) \qquad \Longrightarrow \qquad$$

$$S_{tensor}(h \to m) = \langle A, \phi_h \otimes \phi_m \otimes \phi_{h,m} \rangle$$
$$= \sum_{i=1}^r [U\phi_h]_i [V\phi_m]_i [W\phi_{h,m}]_i$$

$$A = \sum U(i) \otimes V(i) \otimes W(i) \qquad \Longrightarrow \qquad$$

$$S_{tensor}(h \to m) = \langle A, \phi_h \otimes \phi_m \otimes \phi_{h,m} \rangle$$
$$= \sum_{i=1}^r [U\phi_h]_i [V\phi_m]_i [W\phi_{h,m}]_i$$

Dense low-dim representations:

 $U\phi_h \quad V\phi_m \quad W\phi_{h,m} \in \mathbb{R}^r$

Element-wise products:

 $[U\phi_h]_i [V\phi_m]_i [W\phi_{h,m}]_i$

Sum over these products:

$$\sum_{i=1}^{r} [U\phi_h]_i [V\phi_m]_i [W\phi_{h,m}]_i$$

Intuition and Explanations

- Ratings not completely independent
- Items share hidden properties ("price" and "quality")
- Users have hidden preferences over properties

Intuition and Explanations

$$A = U^{\mathrm{T}}V = \sum U(i) \otimes V(i)$$

of parameters: $n \times m$ (n+m)r

Intuition: Data and parameters can be approximately characterized by a small number of hidden factors

Intuition and Explanations

$A = \sum U(i) \otimes V(i) \otimes W(i)$

- Hidden properties associated with each word
- Share parameter values via the hidden properties

Low-Rank Tensor Scoring: Summary

- Naturally captures full feature expansion (concatenations)
 - -- Without mannually specifying a bunch of feature templates

• Controlled feature expansion by low-rank (small r)

-- better feature tuning and optimization

• Easily add and utilize new, auxiliary features

-- Simply append them as atomic features

Combined Scoring

• Combining traditional and tensor scoring in $S_{\gamma}(x, y)$:

$$\gamma \cdot S_{\theta}(x, y) + (1 - \gamma) \cdot S_{tensor}(x, y)$$
 $\gamma \in [0, 1]$

Set of manualFull feature expansionselected featurescontrolled by low-rank

Similar "sparse+low-rank" idea for matrix decomposition: Tao and Yuan, 2011; Zhou and Tao, 2011; Waters et al., 2011; Chandrasekaran et al., 2011

• Final maximization problem given parameters θ , U, V, W:

$$y^* = \underset{y \in T(x)}{\operatorname{argmax}} S_{\gamma}(x, y; \theta, U, V, W)$$

Learning Problem

• Given training set $D = \{(\hat{x}_i, \hat{y}_i)\}_{i=1}^N$

•

• Search for parameter values that score the gold trees higher than others:

$$\forall y \in \mathbf{Tree} (x_i): \qquad S(\hat{x}_i, \hat{y}_i) \ge S(\hat{x}_i, y) + |\hat{y}_i - y| - \xi_i$$
The training objective:
$$\begin{array}{l} \text{Non-negative loss} \\ \text{unsatisfied constraints} \\ \text{are penalized against} \end{array}$$

$$\begin{array}{l} \underset{\theta, U, V, W, \xi_i \ge 0}{\text{Training loss}} \qquad C \sum_i \xi_i + ||U||^2 + ||V||^2 + ||W||^2 + ||\theta||^2 \end{array}$$

Calculating the loss requires to solve the expensive maximization problem; Following common practices, adopt online learning framework.

Online Learning

Use passive-aggressive algorithm (Crammer et al. 2006) *tailored* to our tensor setting

(i) Iterate over training samples successively:

$$(\hat{x}_{1}, \hat{y}_{1}) \cdots \longrightarrow (\hat{x}_{i}, \hat{y}_{i}) \longrightarrow \cdots \longrightarrow (\hat{x}_{N}, \hat{y}_{N})$$
revise parameter values for i-th training sample
$$\sum_{i=1}^{r} [U\phi_{h}]_{i} [V\phi_{m}]_{i} [W\phi_{h,m}]_{i}$$
is not linear nor convex
$$(ii) \text{ choose to update a pair of sets } (\theta, U), \ (\theta, V) \text{ or } (\theta, W):$$
Increments: $\theta^{(t+1)} = \theta^{(t)} + \Delta\theta, \quad U^{(t+1)} = U^{(t)} + \Delta U$
Sub-problem: $\min_{\Delta\theta, \Delta U} \frac{1}{2} ||\Delta\theta||^{2} + \frac{1}{2} ||\Delta U||^{2} + C\xi_{i}$
Efficient parameter update via closed-form solution

Experiment Setup

Datasets

• 14 languages in CoNLL 2006 & 2008 shared tasks

Features

- Only 16 atomic word features for tensor
- Combine with 1st-order (single arc) and up to 3rd-order (three arcs) features used in MST/Turbo parsers

Unigram features:		
form	form-p	form-n
lemma	lemma-p	lemma-n
pos	pos-p	pos-n
morph	bias	
Bigram features:		
pos-p, pos		
pos, pos-n		
pos, lemma		
morph, lemma		
Trigram features:		
pos-p, pos, pos-n		

Experiment Setup

Datasets

• 14 languages in CoNLL 2006 & 2008 shared tasks

Features

- Only 16 atomic word features for tensor
- Combine with 1st-order (single arc) and up to 3rd-order (three arcs) features used in MST/Turbo parsers

Implementation

- By default, rank of the tensor r=50
- 3-way tensor captures only 1st-order arc-based features
- Train 10 iterations for all 14 languages

Baselines and Evaluation Measure

MST and Turbo Parsers

representative graph-based parsers; use similar set of features

NT-1st and NT-3rd

variants of our model by removing the tensor component; reimplementation of MST and Turbo Parser features

Unlabeled Attachment Score (UAS) evaluated without punctuations

Overall 1st-order Results

- > 0.7% average improvement
- Outperforms on 11 out of 14 languages

Impact of Tensor Component

Impact of Tensor Component

• Tensor component achieves better generalization on test data

Impact of Tensor Component

- Tensor component achieves better generalization on test data
- Combined scoring outperforms single components

Overall 3rd-order Results

 Our traditional scoring component is just as good as the state-of-the-art system

Overall 3rd-order Results

- The 1st-order tensor component remains useful on high-order parsing
- Outperforms state-of-the-art single system
- Achieves best published results on 5 languages

Leveraging Auxiliary Features

Unsupervised word embeddings publicly available*

English, German and Swedish have word embeddings in this dataset

• Append the embeddings of <u>current</u>, <u>previous</u> and <u>next</u> words into ϕ_h , ϕ_m

 $\phi_h \otimes \phi_m$ involves more than $(50 \times 3)^2$ values for 50-dimensional embeddings!

Conclusion

- Modeling: we introduced a low-rank tensor factorization model for scoring dependency arcs
- Learning: we proposed an online learning method that directly optimizes the low-rank factorization for parsing performance, achieving state-of-the-art results
- Opportunities & Challenges: we hope to apply this idea to other structures and NLP problems.

Source code available at: https://github.com/taolei87/RBGParser

Rank of the Tensor

Choices of Gamma

