
Low-Rank Tensors for Scoring Dependency
Structures

Tao Lei

Yu Xin, Yuan Zhang, Regina Barzilay, Tommi Jaakkola

CSAIL, MIT

1

Our Goal

Dependency Parsing

• Dependency parsing as maximization problem:𝑦∗ = argmaxy∈𝑇(𝑥) 𝑆 𝑥, 𝑦; 𝜃
• Key aspects of a parsing system:

1. Accurate scoring function 𝑆(𝑥, 𝑦; 𝜃)
2. Efficient decoding procedure argmax

I ate cake with a fork today

PRON VB NN IN DT NN NN

ROOT

2

Finding Expressive Feature Set

requires a rich, expressive set of manually-crafted feature templates

3

1 0 1 1 0 0 0 0

Traditional view:

High-dim. sparse vector 𝜙 𝑥, 𝑦 ∈ ℝ𝐿
I ate cake with a fork today

PRON VB NN IN DT NN NN

ROOT

… …

Feature Template:

head POS, modifier POS and length

Feature Example:

“VB⨁NN⨁2”

Finding Expressive Feature Set

requires a rich, expressive set of manually-crafted feature templates

4

1 0 1 1 0 0 0 0

Traditional view:

High-dim. sparse vector 𝜙 𝑥, 𝑦 ∈ ℝ𝐿
I ate cake with a fork today

PRON VB NN IN DT NN NN

ROOT

… …

Feature Template:

head word and modifier word

Feature Example:

“ate⨁cake”

Finding Expressive Feature Set

requires a rich, expressive set of manually-crafted feature templates

1 0 2 1 2 0 0 0

Traditional view:

High-dim. sparse vector 𝜙 𝑥, 𝑦 ∈ ℝ𝐿
I ate cake with a fork today

PRON VB NN IN DT NN NN

ROOT

0.1 0.3 2.2 1.1 0 0.1 0.9 0

Parameter vector 𝜃 ∈ ℝ𝐿 ⋅
𝑆𝜃 𝑥, 𝑦 = 𝜃, 𝜙 𝑥, 𝑦

… …

… …

5

Traditional Scoring Revisited

Head

ate

VB

VB+ate

PRON

NN

⨁
Modifier

cake

NN

NN+cake

VB

IN

Word:

POS:

POS+Word:

Left POS:

Right POS:

Attach

Length?

Yes

No

⨁ HW_MW_LEN: ate⨁cake⨁2

Arc Features:

6

• Features and templates are manually-selected concatenations of atomic
features, in traditional vector-based scoring:

I ate cake with a fork today

PRON VB NN IN DT NN NN

ROOT

Traditional Scoring Revisited

Head

ate

VB

VB+ate

PRON

NN

⨁
Modifier

cake

NN

NN+cake

VB

IN

Word:

POS:

POS+Word:

Left POS:

Right POS:

Attach

Length?

Yes

No

⨁ HW_MW_LEN: ate⨁cake⨁2

HW_MW: ate⨁cake

Arc Features:

7

I ate cake with a fork today

PRON VB NN IN DT NN NN

ROOT

• Features and templates are manually-selected concatenations of atomic
features, in traditional vector-based scoring:

Traditional Scoring Revisited

Head

ate

VB

VB+ate

PRON

NN

⨁
Modifier

cake

NN

NN+cake

VB

IN

Word:

POS:

POS+Word:

Left POS:

Right POS:

Attach

Length?

Yes

No

⨁ HW_MW_LEN: ate⨁cake⨁2

HW_MW: ate⨁cake

HP_MP_LEN: VB⨁NN⨁2

HP_MP: VB⨁NN

… …

Arc Features:

8

I ate cake with a fork today

PRON VB NN IN DT NN NN

ROOT

• Features and templates are manually-selected concatenations of atomic
features, in traditional vector-based scoring:

Traditional Scoring Revisited

9

• Problem: very difficult to pick the best subset of concatenations

Too few templates Lose performance

Too many templates Too many parameters to estimate

Searching the best set?
Features are correlated

Choices are exponential

• Our approach: use low-rank tensor (i.e. multi-way array)

 Capture a whole range of feature combinations

 Keep the parameter estimation problem in control

Low-Rank Tensor Scoring: Formulation

• Formulate ALL possible concatenations as a rank-1 tensor

Head

ate

VB

VB+ate

PRON

NN

Modifier

cake

NN

NN+cake

VB

IN

Attach

Length?

Yes

No

𝜙ℎ 𝜙𝑚 𝜙ℎ,𝑚
atomic head

feature vector

atomic modifier

feature vector

atomic arc

feature vector

10

Low-Rank Tensor Scoring: Formulation

• Formulate ALL possible concatenations as a rank-1 tensor𝜙ℎ 𝜙𝑚 𝜙ℎ,𝑚⊗ ⊗
atomic head

feature vector

atomic modifier

feature vector

atomic arc

feature vector

∈ ℝ𝑛×𝑛×𝑑

𝑥⨂𝑦⨂𝑧 𝑖𝑗𝑘 = 𝑥𝑖𝑦𝑗𝑧𝑘
tensor product

Each entry indicates

the occurrence of one

feature concatenation

11

Low-Rank Tensor Scoring: Formulation

• Formulate ALL possible concatenations as a rank-1 tensor

• Formulate the parameters as a tensor as well

(vector-based)𝑆𝜃 ℎ → 𝑚 = 𝜃, 𝜙ℎ→𝑚
(tensor-based)𝑆𝑡𝑒𝑛𝑠𝑜𝑟 ℎ → 𝑚 = 𝐴, 𝜙ℎ ⊗𝜙𝑚 ⊗𝜙ℎ,𝑚

𝜃 ∈ ℝ𝐿:
𝐴 ∈ ℝ𝑛×𝑛×𝑑:

𝜙ℎ 𝜙𝑚⊗ ⊗
atomic head

feature vector

atomic modifier

feature vector

∈ ℝ𝑛×𝑛×𝑑

12

𝜙ℎ,𝑚
atomic arc

feature vector

Can be huge. On English:𝑛 × 𝑛 × 𝑑 ≈ 1011
Involves features not in 𝜃

• Formulate the parameters as a low-rank tensor

Low-Rank Tensor Scoring: Formulation

• Formulate ALL possible concatenations as a rank-1 tensor

(vector-based)𝑆𝜃 ℎ → 𝑚 = 𝜃, 𝜙ℎ→𝑚
(tensor-based)𝑆𝑡𝑒𝑛𝑠𝑜𝑟 ℎ → 𝑚 = 𝐴, 𝜙ℎ ⊗𝜙𝑚 ⊗𝜙ℎ,𝑚

𝜃 ∈ ℝ𝐿:
𝐴 ∈ ℝ𝑛×𝑛×𝑑:

𝜙ℎ 𝜙𝑚⊗ ⊗
atomic head

feature vector

atomic modifier

feature vector

∈ ℝ𝑛×𝑛×𝑑

𝐴 = 𝑈 𝑖 ⨂𝑉 𝑖 ⨂𝑊(𝑖)
Low-rank tensor

𝑈, 𝑉 ∈ ℝ𝑟×𝑛,𝑊 ∈ ℝ𝑟×𝑑:
13

𝜙ℎ,𝑚
atomic arc

feature vector

r rank-1 tensors

Low-Rank Tensor Scoring: Formulation

𝐴 = 𝑈 𝑖 ⨂𝑉 𝑖 ⨂𝑊(𝑖)

14

𝑆𝑡𝑒𝑛𝑠𝑜𝑟 ℎ → 𝑚 𝐴,𝜙ℎ⨂𝜙𝑚⨂𝜙ℎ,𝑚 𝑖=1𝑟 𝑈𝜙ℎ 𝑖 𝑉𝜙𝑚 𝑖 𝑊𝜙ℎ,𝑚 𝑖
==

Dense low-dim representations: 𝑖=1𝑟 𝑈𝜙ℎ 𝑖 𝑉𝜙𝑚 𝑖 𝑊𝜙ℎ,𝑚 𝑖 ∈ ℝ𝑟
⟹

= ×
dense dense sparse

Low-Rank Tensor Scoring: Formulation

15

𝑆𝑡𝑒𝑛𝑠𝑜𝑟 ℎ → 𝑚 𝐴,𝜙ℎ⨂𝜙𝑚⨂𝜙ℎ,𝑚 𝑖=1𝑟 𝑈𝜙ℎ 𝑖 𝑉𝜙𝑚 𝑖 𝑊𝜙ℎ,𝑚 𝑖
==

Dense low-dim representations: 𝑖=1𝑟 𝑈𝜙ℎ 𝑖 𝑉𝜙𝑚 𝑖 𝑊𝜙ℎ,𝑚 𝑖 ∈ ℝ𝑟
⟹

Element-wise products: 𝑖=1𝑟 𝑈𝜙ℎ 𝑖 𝑉𝜙𝑚 𝑖 𝑊𝜙ℎ 𝑚 𝑖,
Sum over these products: 𝑖=1𝑟 𝑈𝜙ℎ 𝑖 𝑉𝜙𝑚 𝑖 𝑊𝜙ℎ 𝑚 𝑖,

𝐴 = 𝑈 𝑖 ⨂𝑉 𝑖 ⨂𝑊(𝑖)

Intuition and Explanations

Example: Collaborative Filtering Approximate user-ratings via low-rank

user-rating sparse matrix A

??

 Ratings not completely independent

16

“price”
“quality” 𝑉2×𝑚: properties

“price”
“quality” 𝑈2×𝑛: preferences

 Users have hidden preferences over properties

 Items share hidden properties (“price” and “quality”)

Intuition and Explanations

Example: Collaborative Filtering Approximate user-ratings via low-rank

≈
V(1)

U(1)

+ ⋯ +
V(r)

U(r)

Intuition: Data and parameters can be approximately

characterized by a small number of hidden factors

“price” “quality”

17

𝐴 = 𝑈T𝑉 = ∑𝑈 𝑖 ⊗ 𝑉(𝑖)
user-rating sparse matrix A

??

of parameters: 𝑛 × 𝑚 𝑛 + 𝑚 𝑟

Intuition and Explanations

18

 Hidden properties associated with each word

Our Case: Approximate parameters (feature weights) via low-rank

≈ + ⋯ +
... 2 ?? … 4

… 0 0 … …

… 0 0 …

… 1 0.9 … 5

… 0.1 0.1 … …

... 2 ?? … 4

… 0 0 … …

… 0 0 …

… 1 0.9 … 5

… 0.1 0.1 … …

... 2 ?? … 4

… 0 0 … …

… 0 0 …

… 1 0.9 … 5

… 0.1 0.1 … …
similar values because

“apple” and “banana” have
similar syntactic behavior

 Share parameter values via the hidden properties

𝐴 = ∑𝑈 𝑖 ⊗ 𝑉 𝑖 ⊗𝑊 𝑖

parameter tensor A

Low-Rank Tensor Scoring: Summary

• Easily add and utilize new, auxiliary features

• Naturally captures full feature expansion (concatenations)

-- Without mannually specifying a bunch of feature templates

-- Simply append them as atomic features

Head Atomic

ate

VB

VB+ate

PRON

NN

person:I

number:singular

Emb[1]: -0.0128

Emb[2]: 0.5392

• Controlled feature expansion by low-rank (small r)

-- better feature tuning and optimization

19

Combined Scoring

• Combining traditional and tensor scoring in 𝑆𝛾(𝑥, 𝑦):𝛾 ⋅ 𝑆𝜃 𝑥, 𝑦 + 1 − 𝛾 ⋅ 𝑆𝑡𝑒𝑛𝑠𝑜𝑟 𝑥, 𝑦
Set of manual

selected features

Full feature expansion

controlled by low-rank

Similar “sparse+low-rank” idea for matrix decomposition:

Tao and Yuan, 2011; Zhou and Tao, 2011;

Waters et al., 2011; Chandrasekaran et al., 2011

• Final maximization problem given parameters 𝜃, 𝑈, 𝑉,𝑊:𝑦∗ = argmaxy∈𝑇(𝑥) 𝑆𝛾 𝑥, 𝑦; 𝜃, 𝑈, 𝑉,𝑊

𝛾 ∈ [0,1]

20

Learning Problem

• Given training set D = 𝑥𝑖 , 𝑦𝑖 𝑖=1𝑁
• Search for parameter values that score the gold trees higher than others:

• The training objective:

∀𝑦 ∈ 𝐓𝐫𝐞𝐞 𝑥𝑖 : 𝑆 𝑥𝑖 , 𝑦𝑖 ≥ 𝑆 𝑥𝑖 , 𝑦 + 𝑦𝑖 − 𝑦 − 𝜉𝑖
unsatisfied constraints

are penalized against

Non-negative loss

min𝜃,𝑈,𝑉,𝑊,𝜉𝑖≥0 𝐶 𝑖 𝜉𝑖 + 𝑈 2 + 𝑉 2 + 𝑊 2 + 𝜃 2
Training loss Regularization

Calculating the loss requires to solve the expensive maximization problem;

Following common practices, adopt online learning framework.

21

∑𝑖=1𝑟 𝑈𝜙ℎ 𝑖 𝑉𝜙𝑚 𝑖 𝑊𝜙ℎ,𝑚 𝑖
is not linear nor convex

22

(ii) choose to update a pair of sets 𝜃, 𝑈 , 𝜃, 𝑉 or 𝜃,𝑊 :

min∆𝜃,∆𝑈 12 ∆𝜃 2 + 12 ∆𝑈 2 + 𝐶𝜉𝑖
𝜃(𝑡+1) = 𝜃(𝑡) + ∆𝜃, 𝑈(𝑡+1) = 𝑈(𝑡) + ∆𝑈Increments:

Sub-problem:

Online Learning

• Use passive-aggressive algorithm (Crammer et al. 2006) tailored to our tensor

setting

⋯ 𝑥𝑖 , 𝑦𝑖 ⋯ 𝑥1, 𝑦1 𝑥𝑁, 𝑦𝑁
(i) Iterate over training samples successively:⋯

revise parameter values

for i-th training sample

Efficient parameter update via closed-form solution

Experiment Setup

23

Datasets

 14 languages in CoNLL 2006 & 2008 shared tasks

Features

 Only 16 atomic word features for tensor

 Combine with 1st-order (single arc) and up to 3rd-order

(three arcs) features used in MST/Turbo parsers

h m

h m s

g h m

g h m s

h m s t
… …

Experiment Setup

24

 By default, rank of the tensor r=50

Implementation

 Train 10 iterations for all 14 languages

 3-way tensor captures only 1st-order arc-based features

Datasets

 14 languages in CoNLL 2006 & 2008 shared tasks

Features

 Only 16 atomic word features for tensor

 Combine with 1st-order (single arc) and up to 3rd-order

(three arcs) features used in MST/Turbo parsers

Baselines and Evaluation Measure

MST and Turbo Parsers

representative graph-based parsers;
use similar set of features

NT-1st and NT-3rd

variants of our model by removing the tensor component;
reimplementation of MST and Turbo Parser features

Unlabeled Attachment Score (UAS) evaluated without punctuations

25

Overall 1st-order Results

• > 0.7% average improvement

• Outperforms on 11 out of 14 languages

87.76%

87.05%

86.50%

86.83%

85.5% 86.0% 86.5% 87.0% 87.5% 88.0%

Our Model

NT-1st

MST

Turbo

26

Impact of Tensor Component

84.0%

84.5%

85.0%

85.5%

86.0%

86.5%

87.0%

87.5%

88.0%

1 2 3 4 5 6 7 8 9 10

• No tensor (γ = 1)

27

Iterations

Impact of Tensor Component

• Tensor component achieves better generalization on test data

84.0%

84.5%

85.0%

85.5%

86.0%

86.5%

87.0%

87.5%

88.0%

1 2 3 4 5 6 7 8 9 10

• No tensor (γ = 1)

• Tensor only (γ = 0)

28

Iterations

Impact of Tensor Component

• Tensor component achieves better generalization on test data

84.0%

84.5%

85.0%

85.5%

86.0%

86.5%

87.0%

87.5%

88.0%

1 2 3 4 5 6 7 8 9 10

• No tensor (γ = 1)

• Tensor only (γ = 0)

• Combined (γ = 0.3)

• Combined scoring outperforms single components

29

Iterations

Overall 3rd-order Results

89.08%

88.73%

88.66%

88.2% 88.5% 88.8% 89.1% 89.4%

Our Model

Turbo

NT-3rd

30

• Our traditional scoring component is just as good as the state-of-the-art
system

Overall 3rd-order Results

• The 1st-order tensor component remains useful on high-order parsing

• Outperforms state-of-the-art single system

• Achieves best published results on 5 languages

89.08%

88.73%

88.66%

88.2% 88.5% 88.8% 89.1% 89.4%

Our Model

Turbo

NT-3rd

31

Leveraging Auxiliary Features

• Unsupervised word embeddings publicly available*

• Append the embeddings of current, previous and next words into 𝜙ℎ, 𝜙𝑚English, German and Swedish have word embeddings in this dataset

𝜙ℎ ⊗𝜙𝑚 involves more than 50 × 3 2 values for 50-dimensional embeddings!

0

0.1

0.2

0.3

0.4

0.5

0.6

1st-order 3rd-order

Swedish German English

Abs. UAS improvement by adding embeddings

32* https://github.com/wolet/sprml13-word-embeddings

https://github.com/wolet/sprml13-word-embeddings

Conclusion

• Modeling: we introduced a low-rank tensor factorization
model for scoring dependency arcs

• Learning: we proposed an online learning method that
directly optimizes the low-rank factorization for parsing
performance, achieving state-of-the-art results

• Opportunities & Challenges: we hope to apply this idea to
other structures and NLP problems.

Source code available at:

https://github.com/taolei87/RBGParser

33

34

Rank of the Tensor

35

80.0

83.0

86.0

89.0

92.0

95.0

0 10 20 30 40 50 60 70

Japanese English Chinese Slovene

Choices of Gamma

36

