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Abstract

We propose two randomized algorithms for low-rank Tucker decomposition of
tensors. The algorithms, which incorporate sketching, only require a single pass
of the input tensor and can handle tensors whose elements are streamed in any
order. To the best of our knowledge, ours are the only algorithms which can do
this. We test our algorithms on sparse synthetic data and compare them to multiple
other methods. We also apply one of our algorithms to a real dense 38 GB tensor
representing a video and use the resulting decomposition to correctly classify
frames containing disturbances.

1 Introduction

Many real datasets have more than two dimensions and are therefore better represented using tensors,
or multi-way arrays, rather than matrices. In the same way that methods such as the singular value
decomposition (SVD) can help in the analysis of data in matrix form, tensor decompositions are
important tools when working with tensor data. As multidimensional datasets grow larger and larger,
there is an increasing need for methods that can handle them, even on modest hardware. One approach
to the challenge of handling big data, which has proven to be very fruitful in the past, is the use of
randomization. In this paper, we present two algorithms for computing the Tucker decomposition of a
tensor which incorporate random sketching. A key challenge to incorporating sketching in the Tucker
decomposition is that the relevant design matrices are Kronecker products of the factor matrices. This
makes them too large to form and store in RAM, which prohibits the application of standard sketching
techniques. Recent work [26, 27, 2, 10] has led to a new technique called TENSORSKETCH which is
ideally suited for sketching Kronecker products. It is based on this technique that we develop our
algorithms. Our algorithms, which are single pass and can handle streamed data, are suitable when
the decomposition we seek is of low-rank. When we say that our algorithms can handle streamed
data, we mean that they can decompose a tensor whose elements are revealed one at a time and then
discarded, no matter which order this is done in. These streaming properties of our methods follow
directly from the streaming properties of TENSORSKETCH.

In some applications, such as the compression of scientific data produced by high-fidelity simulations,
the data tensors can be very large (see e.g. the recent work [1]). Since such data frequently is produced
incrementally, e.g. by stepping forward in time, a compression algorithm which is one-pass and can
handle the tensor elements being streamed would make it possible to compress the data without ever
having to store it in full. Our algorithms have these properties.

In summary, our paper makes the following algorithmic contributions:

• We propose two algorithms for Tucker decomposition which incorporate TENSORSKETCH.
They are intended to be used for low-rank decompositions.
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• We propose an idea for defining the sketch operators upfront. In addition to increasing
accuracy and reducing run time, it allows us to make several other improvements. These
include only requiring a single pass of the data, and being able to handle tensors whose
elements are streamed. To the best of our knowledge, ours are the only algorithms which
can do this.

1.1 A brief introduction to tensors and the Tucker decomposition

We use the same notations and definitions as in the review paper by Kolda and Bader [18]. Due
to limited space, we only explain our notation here, with definitions given in Section S1 of the
supplementary material. A tensor X ∈ R

I1×I2×···×IN is an array of dimension N , also called an N -
way tensor. Boldface Euler script letters, e.g. X, denote tensors of dimension 3 or greater; bold capital
letters, e.g. X, denote matrices; bold lowercase letters, e.g. x, denote vectors; and lowercase letters,
e.g. x, denote scalars. For scalars indicating dimension size, uppercase letters, e.g. I , will be used. “⊗”
and “⊙” denote the Kronecker and Khatri-Rao products, respectively. The mode-n matricization of

a tensor X ∈ R
I1×I2×···×IN is denoted by X(n) ∈ R

In×
∏

i 6=n
In . Similarly, x(:) ∈ R

∏
n
In denotes

the vectorization of X into a column vector. The n-mode tensor-times-matrix (TTM) product of X
and a matrix A ∈ R

J×In is denoted by X×n A ∈ R
I1×···×In−1×J×In+1×···×IN . The norm of X is

defined as ‖X‖ = ‖x(:)‖2. For a positive integer n, we use the notation [n] := {1, 2, . . . , n}.

There are multiple tensor decompositions. In this paper, we consider the Tucker decomposition. A
Tucker decomposition of a tensor X ∈ R

I1×I2×···×IN is

X = G×1 A
(1) ×2 A

(2) · · · ×N A(N) =: JG;A(1),A(2), . . . ,A(N)K, (1)

where G ∈ R
R1×R2×···×RN is called the core tensor and each A(n) ∈ RIn×Rn is called a factor

matrix. Without loss of generality, the factor matrices can be assumed to have orthonormal columns,
which we will assume as well. We say that X in (1) is a rank-(R1, R2, . . . , RN ) tensor.

The Tucker decomposition problem of decomposing a data tensor Y ∈ R
I1×I2×···×IN can be

formulated as

argmin
G,A(1),...,A(N)

{∥∥∥Y− JG;A(1), . . . ,A(N)K
∥∥∥ : G ∈ R

R1×···×RN ,A(n) ∈ R
In×Rn for n ∈ [N ]

}
.

(2)
The standard approach to this problem is to use alternating least-squares (ALS). By rewriting the
objective function appropriately (use e.g. Proposition 3.7 in [17]), we get the following steps, which
are repeated until convergence:

1. For n = 1, . . . , N , update A(n) = argmin
A∈RIn×Rn

∥∥∥∥
(⊗1

i=N
i 6=n

A(i)

)
G⊤

(n)A
⊤ −Y⊤

(n)

∥∥∥∥
2

F

. (3)

2. Update G = argmin
Z∈R

R1×···×RN

∥∥∥∥
(⊗1

i=N
A(i)

)
z(:) − y(:)

∥∥∥∥
2

2

. (4)

One can show that the solution for the nth factor matrix A(n) in (3) is given by the Rn leading left

singular vectors of the mode-n matricization of Y×1A
(1)⊤ · · ·×n−1A

(n−1)⊤×n+1A
(n+1)⊤ · · ·×N

A(N)⊤. Since each A(i) has orthogonal columns, it turns out that the solution to (4) is given by

G = Y×1 A
(1)⊤ ×2 A

(2)⊤ · · · ×N A(N)⊤. These insights lead to Algorithm 1, which we will refer
to as TUCKER-ALS. It is also frequently called higher-order orthogonal iteration (HOOI), and is
more accurate than higher-order SVD (HOSVD) which is another standard algorithm for Tucker
decomposition. More details can be found in [18].

1.2 A brief introduction to TensorSketch

In this paper, we apply TENSORSKETCH to approximate the solution to large overdetermined
least-squares problems, and to approximate chains of TTM products similar to those in (1). TEN-
SORSKETCH is a randomized method which allows us to reduce the cost and memory usage of these
computations in exchange for somewhat reduced accuracy. It can be seen as a specialized version of
another sketching method called COUNTSKETCH, which was introduced in [7] and further analyzed
in [8]. One way to define a COUNTSKETCH operator S : RI → R

J is as S = PD, where
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Algorithm 1: TUCKER-ALS (aka HOOI)

input :Y, target rank (R1, R2, . . . , RN )
output :Rank-(R1, R2, . . . , RN ) Tucker decomposition JG;A(1), . . . ,A(N)K of Y

1 Initialize A(2),A(3), . . . ,A(N)

2 repeat
3 for n = 1, . . . , N do

4 Z = Y×1 A
(1)⊤ · · · ×n−1 A

(n−1)⊤ ×n+1 A
(n+1)⊤ · · · ×N A(N)⊤

5 A(n) = Rn leading left singular vectors of Z(n) ✴✯ ❙♦❧✈❡s ❊q✳ (3) ✯✴

6 end

7 until termination criteria met

8 G = Y×1 A
(1)⊤ ×2 A

(2)⊤ · · · ×N A(N)⊤ ✴✯ ❙♦❧✈❡s ❊q✳ (4) ✯✴

9 return G, A(1), . . . ,A(N)

• P ∈ R
J×I is a matrix with ph(i),i = 1, and all other entries equal to 0;

• h : [I] → [J ] is a random map such that (∀i ∈ [I])(∀j ∈ [J ]) P(h(i) = j) = 1/J ; and

• D ∈ R
I×I is a diagonal matrix, with each diagonal entry equal to +1 or −1 with equal

probability.

Due to the special structure of S, it is inefficient to store it as a full matrix. When applying S to a
matrix A, it is better to do this implicitly, which costs only O(nnz(A)) and avoids storing S as a full
matrix. Here, nnz(A) denotes the number of nonzero elements of A.

TENSORSKETCH was first introduced in 2013 in [26] where it is applied to compressed matrix
multiplication. In [27], it is used for approximating support vector machine polynomial kernels
efficiently. Avron et al. [2] show that TENSORSKETCH provides an oblivious subspace embedding.
Diao et al. [10] provide theoretical guarantees which we will rely on in this paper. Below is an
informal summary of those results we will use; for further details, see the paper by Diao et al.,
especially Theorem 3.1 and Lemma B.1. Let A ∈ R

L×M be a matrix, where L ≫ M . Like other
classes of sketches, an instantiation of TENSORSKETCH is a linear map T : RL → R

J , where J ≪ L,

such that, if y ∈ R
L and x̃

def
= argminx ‖TAx−Ty‖2, then for J sufficiently large (depending on

ε > 0), with high probability ‖Ax̃− y‖2 ≤ (1 + ε)minx ‖Ax− y‖2.

The distinguishing feature of TENSORSKETCH is that if the matrix A is of the form A = A(N) ⊗
A(N−1) ⊗ · · · ⊗A(1), where each A(n) ∈ R

I×R, I ≫ R, then the cost of computing TA can be
shown to be O(NIR + JRN ), excluding log factors, whereas naïve matrix multiplication would
cost O(JINRN ). Moreover, TA can be computed without ever forming the full matrix A. One can

show that this is achievable by first applying an independent COUNTSKETCH operator S(n) ∈ R
J×I

to each factor matrix A(n) and then computing the full TENSORSKETCH using the fast Fourier
transform (FFT). The formula for this is

TA = T

1⊗

i=N

A(i) = FFT−1



(

1⊙

i=N

(
FFT

(
S(i)A(i)

))⊤
)⊤

 . (5)

These results generalize to the case when the factor matrices are of different sizes. In Section S2
of the supplementary material, we provide a more thorough introduction to COUNTSKETCH and
TENSORSKETCH, including how to arrive at the formula (5).

2 Related work

Randomized algorithms have been applied to tensor decompositions before. Wang et al. [31] and
Battaglino et al. [5] apply sketching techniques to the CANDECOMP/PARAFAC (CP) decomposition.
Drineas and Mahoney [11], Zhou and Cichocki [32], Da Costa et al. [9] and Tsourakakis [30] propose
different randomized methods for computing HOSVD. The method in [30], which is called MACH,
is also extended to computing HOOI. Mahoney et al. [23] and Caiafa and Cichocki [6] present results
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that extend the CUR factorization for matrices to tensors. Other decomposition methods that only
consider a small number of the tensor entries include those by Oseledets et al. [25] and Friedland et
al. [13].

Another approach to decomposing large tensors is to use memory efficient and distributed methods.
Kolda and Sun [19] introduce the Memory Efficient Tucker (MET) decomposition for sparse tensors
as a solution to the so called intermediate blow-up problem which occurs when computing the chain
of TTM products in HOOI. Other papers that use memory efficient and distributed methods include
[4, 20, 21, 22, 28, 15, 1, 16, 24].

Other research focuses on handling streamed tensor data. Sun et al. [29] introduce a framework for
incremental tensor analysis. The basic idea of their method is to find one set of factor matrices which
works well for decomposing a sequence of tensors that arrive over time. Fanaee-T and Gama [12]
introduce multi-aspect-streaming tensor analysis which is based on the histogram approximation
concept rather than linear algebra techniques. Neither of these methods correspond to Tucker
decomposition of a tensor whose elements are streamed. Gujral et al. [14] present a method for
incremental CP decomposition.

We compare our algorithms to TUCKER-ALS and MET in Tensor Toolbox version 2.6 [3, 19],
FSTD1 with adaptive index selection from [6], as well as the HOOI version of the MACH algorithm
in [30].1 TUCKER-ALS and MET, which are mathematically equivalent, provide good accuracy, but
run out of memory as the tensor size increases. MACH scales somewhat better, but also runs out of
memory for larger tensors. Its accuracy is also lower than that of TUCKER-ALS/MET. None of these
algorithms are one-pass. FSTD1 scales well, but has accuracy issues on very sparse tensors. FSTD1
does not need to access all elements of the tensor and is one-pass, but since the entire tensor needs to
be accessible the method cannot handle streamed data.

3 Tucker decomposition using TensorSketch

We now present our proposed algorithms. More detailed versions of them can be found in Section S3
of the supplement. A Matlab implementation of our algorithms can be found at ❤tt♣s✿✴✴❣✐t❤✉❜✳
❝♦♠✴❖s♠❛♥▼❛❧✐❦✴t✉❝❦❡r✲t❡♥s♦rs❦❡t❝❤.

3.1 First proposed algorithm: TUCKER-TS

For our first algorithm, we TENSORSKETCH both the least-squares problems in (3) and (4), and then
solve the smaller resulting problems. We give an algorithm for this approach in Algorithm 2. We
call it TUCKER-TS, where “TS” stands for TENSORSKETCH. The core tensor and factor matrices
in line 1 are initialized randomly with each element i.i.d. Uniform(−1, 1). The factor matrices
are subsequently orthogonalized. On line 2 we define TENSORSKETCH operators of appropriate

size. This is done by first defining COUNTSKETCH operators S
(n)
1 ∈ R

J1×In and S
(n)
2 ∈ R

J2×In

for n ∈ [N ], as explained in Section 1.2. Then each operator T(n), for n ∈ [N ], is defined as

in (5) but based on {S
(n)
1 }n∈[N ] and with the nth term excluded in the Kronecker and Khatri-Rao

products. T(N+1) is defined similarly, but based on {S
(n)
2 }n∈[N ] and without excluding any terms

in the Kronecker and Khatri-Rao products. The reason we use two different sets {S
(n)
1 }n∈[N ]

and {S
(n)
2 }n∈[N ] of COUNTSKETCH operators with different target sketch dimensions J1 and J2,

respectively, is that the design matrix in (4) has more rows than that in (3). In practice, this means
that we choose J2 > J1. In Section 4 we provide some guidance on how to choose J1 and J2.
We also want to point out that none of the sketch operators are stored explicitly as matrices in our
implementation. Instead, we only generate and store the function h and the diagonal of D, which
were defined in Section 1.2, for each COUNTSKETCH operator. We then use the formula in (5) when
applying one of the TENSORSKETCH operators to a Kronecker product matrix. The computations

1For FSTD1, we use the Matlab code from the website of one of the authors (❤tt♣✿✴✴❝❝❛✐❛❢❛✳
✇✐①s✐t❡✳❝♦♠✴❝❡s❛r). For MACH, we adapted the Python code provided on the author’s website (❤tt♣s✿
✴✴ts♦✉r❛❦❛❦✐s✳❝♦♠✴♠✐♥✐♥❣✲t❡♥s♦rs✴) to Matlab. MACH requires an algorithm for computing the HOOI
decomposition of the sparsified tensor. For this, we use TUCKER-ALS and then switch to higher orders of MET
as necessary when we run out of memory. As recommended in [30], we keep each nonzero entry in the original
tensor with probability 0.1 when using MACH.
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T(n)Y⊤
(n) and T(N+1)y(:) on lines 5 and 7 cannot be done using the formula in (5), but are still

computed implicitly without forming any full sketching matrices.

Since all sketch operators used on line 5 are defined in terms of the same set {S
(n)
1 }n∈[N ], the

least-squares problem on all iterations of that line except the first will depend in some way on the

sketch operator T(n) being applied. A similar dependence will exist between the least-squares

problem on line 7 and T(N+1) beyond the first iteration. It is important to note that the guarantees
for TENSORSKETCHED least-squares in [10] hold when the random sketch is independent of the
least-squares problem it is applied to. For these guarantees to hold, we would need to define a new
TENSORSKETCH operator each time a least-squares problem is solved in Algorithm 2. In all of our
experiments, we observe that our approach of instead defining the sketch operators upfront leads to a
substantial reduction in the error for the algorithm as a whole (see Figure 1). We have not yet been
able to provide theoretical justification for why this is.

The following proposition shows that the normal equations formulation of the least-squares problem
on line 7 in Algorithm 2 is well-conditioned with high probability if J2 is sufficiently large, and
therefore can be efficiently solved using conjugate gradient (CG). This is true because the factor
matrices are orthogonal, and does not hold for the smaller system on line 5, so this system we
solve via direct methods. In our experiments, for an accuracy of 1e-6, CG takes about 15 iterations
regardless of I . A proof of Proposition 3.1 is provided in Section S4 of the supplementary material.

Proposition 3.1. Assume T(N+1) is defined as in line 2 in Algorithm 2. Let M
def
=

(T(N+1)
⊗1

i=N A(i))⊤(T(N+1)
⊗1

i=N A(i)), where all A(n) have orthonormal columns, and sup-

pose ε, δ ∈ (0, 1). If J2 ≥ (
∏

n Rn)
2(2 + 3N )/(ε2δ), then the 2-norm condition number of M

satisfies κ(M) ≤ (1 + ε)2/(1− ε)2 with at least probability 1− δ.

Remark 3.2. Defining the sketching operators upfront allows us to make the following improvements:

(a) Since Y remains unchanged throughout the algorithm, the N + 1 sketches of Y only need
to be computed once, which we do upfront in a single pass over the data (using a careful
implementation). This can also be done if elements of Y are streamed.

(b) Since the same COUNTSKETCH is applied to each A(n) when sketching the Kronecker product

in the inner loop, we can compute the quantity Â
(n)
s1

def
= (FFT(S

(n)
1 A(n)))⊤ after updating A(n)

and reuse it when computing other factor matrices until A(n) is updated again.

(c) When In ≥ J1 + J2 for some n ∈ [N ], we can reduce the size of the least-squares problem on

line 5. Note that the full matrix A(n) is not needed until the return statement—only the sketches

S
(n)
1 A(n) and S

(n)
2 A(n) are necessary to compute the different TENSORSKETCHES. Replacing

T(n)Y⊤
(n) on line 5 with T(n)[Y⊤

(n)S
(n)⊤
1 , Y⊤

(n)S
(n)⊤
2 ], which also can be computed upfront,

we get a smaller least-squares problem which has the solution [S
(n)
1 A(n), S

(n)
2 A(n)]. Before the

return statement, we then compute the full factor matrix A(n). With this adjustment, we cannot
orthogonalize the factor matrices on each iteration, and therefore Proposition 3.1 does not apply.
In this case, we therefore use a dense method instead of CG when computing G in Algorithm 2.

3.2 Second proposed algorithm: TUCKER-TTMTS

We can rewrite the TTM product on line 4 of Algorithm 1 to Z(n) = Y(n)

⊗1
i=N
i 6=n

A(i). We

TENSORSKETCH this formulation as follows: Z̃(n) = (T(n)Y⊤
(n))

⊤T(n)
⊗1

i=N
i 6=n

A(i), n ∈ [N ],

where each T(n) ∈ R
J1×

∏
i 6=n

Ii is a TENSORSKETCH operator with target dimension J1. We
can similarly sketch the computation on line 8 in Algorithm 1 using a TENSORSKETCH operator

T(N+1) ∈ R
J2×

∏
i
Ii with target dimension J2. Replacing the computations on lines 4 and 8 in

Algorithm 1 with these sketched computations, we get our second algorithm which we call TUCKER-
TTMTS, where “TTMTS” stands for “TTM TENSORSKETCH.” The algorithm is given in Algorithm 3.
The initialization of the factor matrices on line 1a and the definition of the sketching operators on
line 1b are done in the same way as in Algorithm 2. Since the sketch operators are defined upfront
here as well, the same caveat applies here as for Algorithm 2. The main benefit of TUCKER-TTMTS
over TUCKER-TS is that it scales better with the target rank (see Section 3.4).
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Algorithm 2: TUCKER-TS (proposal)

input :Y, target rank (R1, R2, . . . , RN ), sketch dimensions (J1, J2)
output :Rank-(R1, R2, . . . , RN ) Tucker decomposition JG;A(1), . . . ,A(N)K of Y

1 Initialize G,A(2),A(3), . . . ,A(N)

2 Define TENSORSKETCH operators T(n) ∈ R
J1×

∏
i 6=n

Ii , for n ∈ [N ], and T(N+1) ∈ R
J2×

∏
i
Ii

3 repeat
4 for n = 1, . . . , N do

5 A(n) = argminA

∥∥∥
(
T(n)

⊗1
i=N,i6=n A

(i)
)
G⊤

(n)A
⊤ −T(n)Y⊤

(n)

∥∥∥
2

F

6 end

7 G = argminZ

∥∥∥
(
T(N+1)

⊗1
i=N A(i)

)
z(:) −T(N+1)y(:)

∥∥∥
2

2

8 Orthogonalize each A(i) and update G

9 until termination criteria met

10 return G, A(1), . . . ,A(N)

The following informal proposition shows that the error for each sketched computation in TUCKER-
TTMTS is additive rather than multiplicative as for TUCKER-TS. A formal statement and proof are
given in Section S5 of the supplementary material.

Proposition 3.3 (TUCKER-TTMTS (informal)). Assume each TENSORSKETCH operator is rede-

fined prior to being used. Let OBJ denote the objective function in (3), and let Ã(n) be the Rn

leading left singular vectors of Z(n) defined on line 4 in Algorithm 3. Under certain conditions, Ã(n)

satisfies OBJ(Ã(n)) ≤ minA OBJ(A) + εC with high probability if J1 is sufficiently large, where
C depends on Y, the target rank, and the other factor matrices. A similar result holds for the update
on line 8 and the objective function in (4).

Algorithm 3: TUCKER-TTMTS (proposal)

✴✯ ■❞❡♥t✐❝❛❧ t♦ ❆❧❣♦r✐t❤♠ ✶✱ ❡①❝❡♣t ❢♦r t❤❡ ❧✐♥❡s ❜❡❧♦✇ ✯✴

1a Initialize A(2),A(3), . . . ,A(N)

1b Define TENSORSKETCH operators T(n) ∈ R
J1×

∏
i 6=n

Ii , for n ∈ [N ], and T(N+1) ∈ R
J2×

∏
i
Ii

4 Z(n) =
(
T(n)Y⊤

(n)

)⊤ (
T(n)

⊗1
i=N,i6=n A

(i)
)

8 g(:) =
(
T(N+1)

⊗1
i=N A(i)

)⊤
T(N+1)y(:)

3.3 Stopping conditions and orthogonalization

Unless stated otherwise, we stop after 50 iterations or when the change in ‖G‖ is less than 1e-3.
The same type of convergence criteria are used in [19]. In Algorithm 2, we orthogonalize the
factor matrices and update G using the reduced QR factorization. If we use the improvement in
Remark 3.2 (c), we need to approximate G. This is discussed in Section S3.1 of the supplementary
material. In Algorithm 3, we compute an estimate of G using the same formula as in line 8, but using
the smaller sketch dimension J1 instead. Unlike in TUCKER-ALS, the objective is not guaranteed to
decrease on each iteration of our algorithms. Despite this, the only practical different between our
algorithms and TUCKER-ALS is that the tolerance may need to be set differently.

We would like to point out that we cannot provide global convergence guarantees for our algorithms.
Although a global analysis would be desirable, it is important to note that such an analysis is difficult
even for TUCKER-ALS. Indeed, TUCKER-ALS is not guaranteed to converge to the global optimum
or even a stationary point (see Section 4.2 in [18]).
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3.4 Complexity analysis

We compare the complexity of Algorithms 1–3, FSTD1 and MACH for the case N = 3. We assume
that In = I and Rn = R < I for all n ∈ [N ]. Furthermore, we assume that J1 = KRN−1 and
J2 = KRN for some constant K > 1, which is a choice that works well in practice. Table 1
shows the complexity when each of the variables I and R are assumed to be large. A more detailed
complexity analysis of the proposed algorithms is given in Section S3.2 of the supplementary material.

Variable assumed to be large

Algorithm I = size of fiber R = rank

T.-ALS (Alg. 1) (#iter + 1) ·RI
3 (#iter + 1) ·RI

3

FSTD1 [6] IR
4

R
5

MACH [30] (#iter + 1) ·RI
3 (#iter + 1) ·RI

3

T.-TS (proposal, Alg. 2) nnz(Y) + IR
4

R
3 +#iter ·R

6

T.-TTMTS (proposal, Alg. 3) nnz(Y) + IR
4 +#iter · IR

4
R

6 +#iter ·R
4

Table 1: Leading order computational complexity, ignoring log factors and assuming K = O(1),
where #iter is the number of main loop iterations. Y is the 3-way data tensor we decompose. The

main benefits of our proposed algorithms is reducing the O(IN ) complexity of Algorithm 1 to RO(N)

complexity due to the sketching, since typically R ≪ I . The complexity of MACH is the same as
that of TUCKER-ALS, but with a smaller constant factor.

4 Experiments

In this section we present results from experiments. Our Matlab implementation that we provided a
link to at the beginning of Section 3 comes with demo script files for running experiments similar to
those presented here. All synthetic results are averages over ten runs in an environment using four
cores of an Intel Xeon E5-2680 v3 @2.50GHz CPU and 21 GB of RAM. For Algorithms 2 and 3,
the sketch dimensions J1 and J2 must be chosen. We have found that the choice J1 = KRN−1 and
J2 = KRN , for a constant K > 4, works well in practice. Figure 1 shows examples of how the error
of TUCKER-TS and TUCKER-TTMTS, in relation to that of TUCKER-ALS, changes with K. It
also shows results for variants of each algorithm for which the TENSORSKETCH operator is redefined
each time it is used (called “multi-pass” in the figure). For both algorithms, defining TENSORSKETCH

operators upfront leads to higher accuracy than redefining them before each application. In subsequent
experiments, we always define the sketch operators upfront (i.e., as written in Algorithms 2 and 3)
and, unless stated otherwise, always use K = 10.
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(b) TUCKER-TTMTS: multi-pass vs. one-pass
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Figure 1: Errors of TUCKER-TS and TUCKER-TTMTS, relative to that of TUCKER-ALS, for
different values of the sketch dimension parameter K. For both plots, the tensor size is 500×500×500
with nnz(Y) ≈ 1e+6 and true rank (15, 15, 15). The algorithms use a target rank of (10, 10, 10).

4.1 Sparse synthetic data

In this subsection, we apply our algorithms to synthetic sparse tensors. For all synthetic data we
use In = I and Rn = R for all n ∈ [N ]. The sparse tensors are each created from a random dense
core tensor and random sparse factor matrices, where the sparsity of the factor matrices is chosen
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to achieve the desired sparsity of the tensor. We add i.i.d. normally distributed noise with standard
deviation 1e-3 to all nonzero tensor elements.

Figures 2 and 3 show how the algorithms scale with increased dimension size I . Figure 4 and
5 show how the algorithms scale with tensor density and algorithm target rank R, respectively.
TUCKER-ALS/MET and MACH run out of memory when I = 1e+5. FSTD1 is fast and scalable
but inaccurate for very sparse tensors. The algorithm repeatedly finds indices of Y by identifying
the element of maximum magnitude in fibers of the residual tensor. However, when Y is very
sparse, it frequently happens that whole fibers in the residual tensor are zero. In those cases, the
algorithm fails to find a good set of indices. This explains its poor accuracy in our experiments. We
see that TUCKER-TS performs very well when Y truly is low-rank and we use that same rank for
reconstruction. TUCKER-TTMTS in general has a larger error than TUCKER-TS, but scales better
with higher target rank. Moreover, when the true rank of the input tensor is greater than the target
rank (Figure 3), which is closer to what real data might look like, the error of TUCKER-TTMTS is
much closer to that of TUCKER-TS.
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Figure 2: Relative error and run time for random sparse 3-way tensors with varying dimension size I
and nnz(Y) ≈ 1e+6. Both the true and target ranks are (10, 10, 10).
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Figure 3: Relative error and run time for random sparse 3-way tensors with varying dimension size
I and nnz(Y) ≈ 1e+6. The true rank is (15, 15, 15) and target rank is (10, 10, 10). A convergence
tolerance of 1e-1 is used for these experiments.
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Figure 4: Relative error and run time for random sparse 3-way tensors with dimension size I = 1e+4
and varying number of nonzeros. Both the true and target ranks are (10, 10, 10).

4.2 Dense real-world data

In this section we apply TUCKER-TTMTS to a real dense tensor representing a grayscale video.
The video consists of 2,200 frames, each of size 1,080 by 1,980 pixels. The whole tensor, which
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Figure 5: Relative error and run time for random sparse 3-way tensors with dimension size I = 1e+4
and nnz(Y) ≈ 1e+7. The true and target ranks are (R,R,R), with R varying.

requires 38 GB of RAM, is too large to load at the same time. Instead, it is loaded in pieces which
are sketched and then added together. The video shows a natural scene, which is disturbed by a
person passing by the camera twice. Since the camera is in a fixed position, we can expect this
tensor to be compressible. We compute a rank (10, 10, 10) Tucker decomposition of the tensor using
TUCKER-TTMTS with the sketch dimension parameter set to K = 100 and a maximum of 30

iterations. We then apply k-means clustering to the factor matrix A(3) ∈ R
2200×10 corresponding to

the time dimension, classifying each frame using the corresponding row in A(3) as a feature vector.
We find that using three clusters works better than using two. We believe this is due to the fact that the
light intensity changes through the video due to clouds, which introduces a third time varying factor.
Figure 6 shows five sample frames with the corresponding assigned clusters. With few exceptions,
the frames which contain a disturbance are correctly grouped together into class 3 with the remaining
frames grouped into classes 1 and 2. The video experiment is online and a link to it is provided at
❤tt♣s✿✴✴❣✐t❤✉❜✳❝♦♠✴❖s♠❛♥▼❛❧✐❦✴t✉❝❦❡r✲t❡♥s♦rs❦❡t❝❤.
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Figure 6: Five sample frames with their assigned classes. The frames (b) and (d) contain a disturbance.

5 Conclusion

We have proposed two algorithms for low-rank Tucker decomposition which incorporate TENSORS-
KETCH and can handle streamed data. Experiments corroborate our complexity analysis which shows
that the algorithms scale well both with dimension size and density. TUCKER-TS, and to a lesser
extent TUCKER-TTMTS, scale poorly with target rank, so they are most useful when R ≪ I .
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