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Abstract—New breakthroughs in image coding possibly lie in
signal decomposition through nonseparable basis functions that
can efficiently capture edge characteristics, present in natural im-
ages. The work proposed in this paper provides an adaptive way
of representing images as a sum of two-dimensional features. It
presents a low bit-rate image coding method based on a matching
pursuit (MP) expansion, over a dictionary built on anisotropic re-
finement and rotation of contour-like atoms. This method is shown
to provide, at low bit rates, results comparable to the state of the art
in image compression, represented here by JPEG2000 and SPIHT,
with generally a better visual quality in the MP scheme. The coding
artifacts are less annoying than the ringing introduced by wavelets
at very low bit rate, due to the smoothing performed by the basis
functions used in the MP algorithm. In addition to good compres-
sion performances at low bit rates, the new coder has the advantage
of producing highly flexible streams. They can easily be decoded at
any spatial resolution, different from the original image, and the
bitstream can be truncated at any point to match diverse band-
width requirements. The spatial adaptivity is shown to be more
flexible and less complex than transcoding operations generally ap-
plied to state of the art codec bitstreams. Due to both its ability for
capturing the most important parts of multidimensional signals,
and a flexible stream structure, the image coder proposed in this
paper represents an interesting solution for low to medium rate
image coding in visual communication applications.

Index Terms—Adaptive coding, image compression, multi-
dimensional transform, nonlinear representation, redundant
expansions.

I. INTRODUCTION

C
OMPRESSION has undoubtedly reached important

milestones in the past few years, not far from attaining

the limits of algorithms based on orthogonal linear trans-

forms. Wavelet- or DCT-based schemes have achieved big

compression ratios due to the huge research work that has

been performed in efficiently coding the transform coefficients

and parameters. Nevertheless, it can be shown that orthogonal

wavelet implementations, for example, are not optimal for

multidimensional signals, where they fail to sparsely capture

regularities or contours. Therefore, breakthroughs in image and

multidimensional coding possibly rely on deep changes in the

signal representation, and respectively efficient compression

scheme of the transform parameters. Efficient expansions can
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be obtained by decomposition of the image in a sum of two-di-

mensional (2-D), nonseparable, functions. Anisotropy and

orientation of the basis functions, as well as their translation

all over the image, generate a (possibly redundant) basis that

composes the building blocks of the signal expansion. Recent

research works in image compression have investigated the

possibility of introducing rotation and/or anisotropy in the

coding scheme. One of these studies [1] is based on Curvelets,

which provide orientation and a fixed anisotropy ratio of ,

. Another interesting work achieves anisotropy and rotation

through a pruned quadtree algorithm [2]. Schemes based on

Bandelets [3] yet represent another method to take advantage

of the regularity of contours.

This paper proposes to use a matching pursuit (MP) algorithm

to generate image representations over a redundant dictionary,

which is specifically designed to capture 2-D features of natural

images. The dictionary is built by anisotropic refinement and

orientation of contour-like functions to capture edges, and

isotropic Gaussian functions to represent the low frequency

components. Among other candidates for the signal expansion

algorithm, MP presents the advantage of generating fully

progressive streams, whose energy bounds are computable.

The progressive nature of the stream is a key feature in the

design of adaptive visual communication applications, where

scalability in general is becoming an important requirement.

Interestingly, the structure of the proposed dictionary offers

intrinsic spatial adaptivity of the bitstreams, in addition to

the rate scalability provided by the progressive nature of the

MP representation. In other words, the novel image coder

described in this paper allows to reach good performance

in terms of sparsity of the signal representation, due to the

nonseparable, 2-D, basis functions in the dictionary. At the

same time, the particular implementation based on MP offers

an intrinsic flexibility, beneficial in adaptive applications. The

performance of the MP coder is shown to be comparable,

at low/medium bit-rates, with state of the art algorithms like

JPEG2000, both in terms of compression and adaptivity. The

visual quality is generally in favor of the MP encoder due to the

smoothing performed by the basis functions that avoid ringing

effects, and build, rather build a “sketchy” approximation of

the image. That advantage might also be explained, in a first

approximation, by the similarities of the basis functions of

the dictionary with the impulsional response of the V1 cells

of the human visual system[4],

This paper is organized as follows. Section II overviews

compression of multidimensional signals and the drawbacks of

current coding schemes, emphasizing the need for nonseparable

representations. Section III describes the image coder based
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on MP with a dictionary built on anisotropic refinement of 2-D

contour-like functions. Section IV presents the performance

of this coder in terms of compression, and compares it with

the state of the art. The interesting adaptivity features of the

bitstream are discussed in Section V. Conclusions given in

Section VI.

II. MULTIDIMENSIONAL IMAGE REPRESENTATIONS

A. Limits of Current Image Representation Methods

These last few years, image compression has been largely

dominated by the use of wavelet-based transform coding tech-

niques. Many popular compression algorithms use wavelets at

their core and the overall success of this methodology resulted

in the actual JPEG2000 standard for image compression [5]. On

the conceptual point of view, there are three main different rea-

sons for this success: 1) fast algorithms based on filter banks or

on the lifting scheme, 2) nice mathematical properties, and 3)

smart adaptive coding of the coefficients.

Efficient algorithms are, of course, of paramount importance

when putting a novel technique to practice, but the overall power

of wavelets for image compression really lies in the second

and third items. The mathematical properties of wavelets have

been well studied in the fields of computational harmonic

analysis (CHA) and nonlinear approximation theory. Generally,

the central question that both theories try to answer (at least

in connection with data compression) is: How many wavelet

coefficients do Ineed to represent a given signal up to a predefined

approximation error? There is a wealth of mathematical results

that precisely relate the decay of the approximation error when

coefficients are used, with the smoothness of the original

signal. By modeling a signal as a piecewise smooth function,

it can be shown that wavelets offer the best rate of nonlinear

approximation. By this, we mean that, when approximating

functions that are locally Hölder with discontinuities, by their

biggest wavelet coefficients, one obtains an approximation

error in the order of and that this is an optimal result

(see [6], [7], and references therein). The key to this result

is that wavelet bases yield very sparse representations of

such signals, mainly because their vanishing moments kill

polynomial parts, while their multiresolution behavior allow to

localize discontinuities with few nonnegligible elements. Now,

practically speaking, the real question should be formulated in

terms of bits: How many bits do I need to represent my data up

to a given distortion? The link between both questions is not

really trivial: It has to take into account both quantization and

coding strategies. But very efficient wavelet coding schemes

exist, and many of them actually use the distribution structure

of nonnegligible wavelet coefficients across subbands.

While this situation prevails in one dimension, it gets much

more problematic in two or more dimensions, mainly because of

the importance of geometry. Indeed, an image can still be mod-

eled as a piecewise smooth 2-D signal with singularities, but the

latter are not point like anymore. Multidimensional singularities

may be highly organized along embedded submanifolds and this

is exactly what happens at image contours, for example. Fig. 1

shows that wavelets are inefficient at representing contours be-

cause they cannot deal with their geometrical regularity. This

Fig. 1. Inadequacy of isotropic refinement for representing contours in
images. The number of wavelets intersecting the singularity is roughly doubled
when the resolution increases. (a) Six coefficients, (b) 15 coefficients, and
(c) 25 coefficients.

is mainly due to the isotropic refinement of wavelet bases: The

dyadic scaling factor is applied in all directions, while it rather

be fine along the direction of the local gradient and coarse in

the orthogonal direction in order to efficiently localize the sin-

gularity in a sparse way.

B. Anisotropic Refinement

In order to efficiently represent contours, beyond the per-

formance of wavelet decompositions, anisotropy is clearly

desirable in the coding scheme. Several authors have explored

the rate-distortion characteristics of anisotropic systems for

representing edge-dominated images [8], [9]. These prelimi-

nary studies show that for images that are smooth away from a

smooth edge (typically, a rectifiable curve), a - behavior

of the form

(1)

can be reached. Comparing this with the associated wavelet

- behavior, i.e., , one clearly sees how the

use of a geometry-adapted system of representation can boost

coding expectations. It is important to realize here that it is re-

ally the anisotropic scaling of the basis functions that allows for

such approximation performances. In particular, an anisotropic

basis with multiple orientations but a fixed isotropic scaling law

would not provide the same results [10] (though it may improve

visual quality for instance).

Candès and Donoho [11] have recently proposed a construc-

tion called the curvelet transform, which aims at solving the

lack of flexibility of wavelets in higher dimensions. Basically,

curvelets satisfy an anisotropic scaling law that is adapted to

representing smooth curves in images. Curvelet tight frames

have been shown to achieve a much better nonlinear approxi-

mation rate than wavelets for images that are smooth away from

a edge. Very interesting results have been reported for sta-

tistical estimation and denoising [12] and efficient filter bank

implementations have been designed [1]. On the coding side,

curvelets satisfy the localization properties that lead to (1), and

there is hope to find efficient compression schemes based on the

curvelet transform, even though such results have not yet been

reported.

C. Highly Nonlinear Approximations

Another way of achieving sparsity for low bit rate image

coding is to turn to nonlinear representations. In particular, we
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will focus in this paper on the use of highly nonlinear approxi-

mations in redundant dictionaries of functions.

Highly nonlinear approximation theory is mainly concerned

with the following: Given a collection of elements of norm

one in a Banach1 space , find an exact -term representation

of any signal (in the strong sense)

(2)

The equality in (2) may not need to be reached, in which case

a -term approximant is found

(3)

for some approximation error . Such an approximant is some-

times called -sparse.

The collection is often called a dictionary and its elements

are called atoms. There are no particular requirements con-

cerning the dictionary, except that it should span , and there

is no prescription on how to compute the s in (2).

The main advantage of this class of techniques is the complete

freedom one has in designing the dictionary, which can then be

efficiently tailored to match signal structures. An efficient dic-

tionary design is also important from the theoretical point of

view, since without restrictions on , computing (2) is an NP

hard combinatorial problem! It has to be stressed out, however,

that these results do not impair the possibility of finding very

good nonlinear approximations in particular classes of dictio-

naries, as we will see later.

There is a clear distinction between the general framework

of using redundant collections of primitives and the actual al-

gorithm used to compute the approximant in (3). Indeed, using

vastly redundant libraries can only improve the representation

(imagine concatenating several good orthonormal bases for ex-

ample). The algorithm, on the other hand, may fail to fully ex-

ploit this wealth, but, as discussed below, cases have been identi-

fied for which very well controlled algorithms do behave nicely.

Our ultimate goal would be to find the best, that is the

sparsest, possible representation of the signal. In other words,

we would like to solve the following problem:

where is the number of nonzero entries in the sequence

. If the dictionary is well adapted to the signal, there are

high hopes that this kind of representation exists, and would ac-

tually be sparser than a nonlinear wavelet-based approximation.

As previously stated, the problem of finding a sparse expansion

of a signal in a generic dictionary leads to a daunting NP hard

combinatorial optimization problem. This is, however, not true

anymore for particular classes of dictionaries. Recently, con-

structive results have been obtained by considering incoherent

dictionaries, i.e., collections of vectors that are not too far from

an orthogonal basis.

1A Banach space is a complete vector space B with a norm kvk.

Two classes of algorithms have been studied in this context:

basis pursuit (BP) optimization strategies [13] and various fla-

vors of greedy algorithms. Starting with a dictionary obtained

by merging two orthogonal bases, Donoho and Huo [14] first

showed that a sufficiently sparse solution is always unique and

can be exactly recovered using BP. Their findings were later re-

fined in [15] and extended to a broader class of incoherent dic-

tionaries by Gribonval and Nielsen [16]. These results impose

very tough constraints on the dictionary but yield a striking im-

provement: They allow to solve the original NP hard combina-

torial problem by linear programming. Turning to the problem

of finding sufficiently good -term approximants instead of

exact solutions, greedy heuristics offer similar advantages, as

discussed in the next section.

D. Greedy Algorithms: Matching Pursuit

Greedy algorithms iteratively construct an approximant by

selecting the element of the dictionary that best matches the

signal at each iteration. The pure greedy algorithm is known as

matching pursuit [17]. Assuming that all atoms in have norm

one, we initialize the algorithm by setting , and we first

decompose the signal as

Clearly, is orthogonal to and we have

If we want to minimize the energy of the residual we must

maximize the projection . At the next step, we simply

apply the same procedure to , which yields

where maximizes . Iterating this procedure, we,

thus, obtain an approximant after steps

where the norm of the residual (approximation error) satisfies

Some variations around this algorithm are possible. An example

is given by the weak greedy algorithm [18], which consists

in modifying the atom selection rule by allowing to choose a

slightly suboptimal candidate

One can easily show that MP converges [19] and even con-

verges exponentially in the strong topology in finite dimension

(see [17] for a proof). Unfortunately, this is not true in general

in infinite dimension, even though this property still holds for

particular dictionaries [20]. DeVore and Temlyakov [18] con-

structed a dictionary for which even a good signal, i.e., a sum of

two dictionary elements, has a very bad rate of approximation:

. In this case, a very sparse representa-

tion of the signal exists, but the algorithm dramatically fails to
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Fig. 2. Block diagram of the MP image coder.

recover it! Notice, however, that this does in no way rule out the

existence of particular classes of very good dictionaries, even

in infinite dimension, as already stated before.

A clear drawback of the pure greedy algorithm is that the ex-

pansion of on the linear span of the selected atoms is not nec-

essarily the sparsest one, since it is not an orthogonal projection.

Orthogonal MP [21], [22] solves this problem by recursively or-

thogonalizing the set of selected atoms using a Gram–Schmidt

procedure. The best -term approximation on the set of se-

lected atoms is computed, and the algorithm can be shown to

converge in a finite number of steps, but at the expense of a much

bigger computational complexity.

Greedy algorithms offer constructive procedures for com-

puting highly nonlinear -term approximations. Although

the mathematical analysis of their approximation properties

is complicated by their nonlinear nature, interesting results

are emerging (see, for example, [23] and [24]). Recently, it

has been shown that even the pure greedy MP algorithm can

exactly recover components of a (near) optimal sparse approx-

imation of a signal [25]. The choice of a particular algorithm

generally consists in trading off complexity and optimality, or

more generally efficiency. The new image compression scheme

presented in this paper proposes to use MP as a suboptimal

algorithm to obtain a sparse signal expansion, yet an efficient

way to produce a progressive low bit-rate image representation

with a controlled complexity. MP, as already stressed before,

iteratively chooses the best matching terms in a dictionary.

Despite its possible numerical complexity due to repetitive

operations, MP is very easy to implement. Moreover, since

there is almost no constraint on the dictionary itself, MP clearly

stands as a natural candidate to implement an efficient coding

scheme based on anisotropic refinement. This construction is

detailed in the next section.

III. MATCHING PURSUIT IMAGE CODER

A. Overview

The compression scheme proposed in this paper is repre-

sented in Fig. 2. The image is first recursively decomposed, by

MP, in a series of atoms chosen from a redundant dictionary.

Their respective coefficients are then quantized by means of an

exponentially bounded uniform quantization method adapted to

progressive MP stream characteristics (see Section III-C for a

brief description). Coefficients and atom indexes are finally en-

tropy coded with a context adaptive arithmetic coder. Quantiza-

tion and coding are performed a posteriori, after the MP expan-

sion. This choice is justified by the fact that the MP algorithm

clearly represents the most computationally expensive part of

the encoder. If the quantization is performed a priori (i.e., in the

MP loop), the generated expansion is specifically destined to a

target bit rate. A posteriori quantization and coding allow for

one single expansion to be encoded at different target rates. The

image is finally reconstructed by performing the reverse opera-

tions at the decoder.

One of the first papers that proposed to use MP for repre-

senting images is [26]. However, it has not proposed a coder im-

plementation, based on the MP expansion. Also, it does not use

anisotropic refinement, which really provides a large benefit in

representing edges and contours, as discussed in Section II. MP

has been used for coding the motion estimation error in a video

sequence [27], in a block-based implementation. This coder,

contrarily to ours, makes use of subblocks, which, in a sense,

limits the efficiency of the expansion. In the same time, it has

been designed to code the residual error of motion estimation,

which presents very different characteristics than edge-domi-

nated natural images, targeted by the novel coder presented here.

One of the well-known drawbacks of MP is the computational

complexity of the search algorithm, which has to be repeated at

each iteration. The problem can be alleviated by sup-optimal im-

plementations, based for example on Genetic Algorithms [28],

and by heuristics linked to the dictionary. Such methods greatly

speed up the search, but often sacrifice in the quality of the

approximation. They sometimes get trapped in local minima,

and choose atoms which do not always maximize the projection

coefficient . Other solutions can be found in efficient

implementations of the MP algorithm, taking benefit from the

structure of the signal and the dictionary, which might for ex-

ample be decomposed in incoherent blocks. The actual imple-

mentation of the proposed encoder performs a full search over

the complete dictionary, and computes all the projections in the

Fourier domain [29]. This tremendously reduces the number

of computations in the particular case of our dictionary built

on anisotropic refinement of rotated atoms, as described here-

below. The number of multiplications in this case only depends

on the number of scales and rotations.

B. Anisotropic Refinement Using Matching Pursuit

1) Generating Functions: The dictionary used in this paper

is built by varying the parameters of a basis function, in such a

way that it generates an overcomplete set of functions spanning

the input image space. The choice of the generating function is

driven by the idea of efficiently approximating contour-like sin-

gularities in 2-D. To achieve this goal, the atom is a smooth low

resolution function in the direction of the contour, and behaves

like a wavelet in the orthogonal (singular) direction. In other

words, the dictionary is composed of atoms that are built on
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Gaussian functions along one direction, and on second deriva-

tive of Gaussian functions in the orthogonal direction. The gen-

erating function reads

(4)

where is the vector of discrete image coordinates,

and . The choice of the Gaussian envelope is motivated

by the optimal joint spatial and frequency localization of this

kernel. The second derivative occurring in the oscillatory com-

ponent is a trade-off between the number of vanishing moments

used to filter out smooth polynomial parts and ringing-like ar-

tifacts that may occur after strong quantization. It is also moti-

vated by the presence of second derivative-like filtering in the

early stages of the human visual system [30].

The generating functions described above are, however, not

able to efficiently represent the low frequency characteristics of

images at low rate. There are two main options to capture these

features: 1) to perform a low-pass filter of the image and send

a quantized and downsampled image as side information or 2)

to use an additional dictionary capable of representing the low

frequency components. In order to keep the adaptivity proper-

ties, it is more appropriate to include low-pass functions in the

dictionary design. This second approach has also the advantage

of introducing more natural artifacts at very low bit rate, since

it tends to naturally distribute the available bits between the low

and high-frequency components of images. A second subpart of

the proposed dictionary is, therefore, formed by Gaussian func-

tions, in order to keep the optimal joint space-frequency local-

ization. The second generating function of our dictionary can be

written as

(5)

where the Gaussian has been multiplied by a constant in order

to have . It can finally be noted that another sub-dic-

tionary could also be used for efficient texture coding. This is,

however, outside the scope of this paper, which mostly concen-

trates on low rate coding.

2) Anisotropy and Orientation: Anisotropic refinement

and orientation is obtained by applying meaningful geometric

transformations the generating functions of unit norm,

described before. These transformations can be represented by

a family of unitary operators , and the dictionary is, thus,

expressed as

(6)

for a given set of indexes . Basically, this set must contain three

types of operations:

• translations , to move the atom all over the image;

• rotations , to locally orient the atom along contours;

• anisotropic scaling , to adapt to contour

smoothness.

A possible action of on the generating atom is, thus,

given by

(7)

where is a representation of the Euclidean group

(8)

is a rotation matrix, and acts as an anisotropic dilation

operator

(9)

It is easy to prove that such a dictionary is overcomplete using

the fact that, under the restrictive condition , one gets

2-D continuous wavelets as defined in [10]. It is also worth

stressing that, avoiding rotations, the parameter space is a group

studied by Bernier and Taylor [31]. The advantage of such a

parametrization is that the full dictionary is invariant under

translation and rotation. Most importantly, it is also invariant

under isotropic scaling, i.e., . These properties will be

exploited for spatial adaptivity in the next sections.

3) Dictionary: Since the structured dictionary is built by ap-

plying geometric transformations to a generating mother func-

tion , the atoms are, therefore, indexed by a string composed

of five parameters: translation , anisotropic scaling and rota-

tion . Any atom in our dictionary can finally be expressed in

the following form:

(10)

with

(11)

and

(12)

For practical implementations, all parameters in the dictionary

mustbediscretized.Fortheanisotropicrefinementatomssub-dic-

tionary (AR), the translation parameters can take any positive in-

teger value smaller than the image dimensions. The rotation pa-

rameter varies by increments of , to ensure the overcom-

pleteness of the dictionary. The scaling parameters are uniformly

distributed on a logarithmic scale from one up to an eighth of the

size of the image, with a resolution of one third of octave. The

maximum scale has been chosen so that at least 99% of the atom

energylieswithinthesignalspacewhenit iscenteredintheimage.

Experimentally, it has been found that this scale and rotation dis-

cretizationchoicerepresentsagoodcompromisebetweenthesize

of the dictionary, and the efficiency of the representation. One can

choose a finer resolution for scale and rotation, getting generally

more accuracy in the initial steps. There is, however, a price to

pay in terms of atom coding and search complexity. Finally, to

further constrain the dictionary size, the atoms are always smaller

along the second derivative of the Gaussian function than along

the Gaussian itself, thus maximizing the similarity of the dictio-

nary elements with edges in images.

For the Gaussian (low frequency) sub-dictionary, the

translation parameters vary exactly in the same way as for

the AR atoms, but the scaling is isotropic and varies from

to on a logarithmic scale with a

resolution of one third of octave ( and are image width
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Fig. 3. (a) Sample anisotropic atom with a rotation of 5 � pi=18 radians and
scales of 4 and 8, (b) sample Gaussian function, and (c), (d) their respective
transforms.

and height, respectively). The minimum scale of these atoms

has been chosen to have a controlled overlap with the AR

functions, i.e., large enough to ensure a good coverage of the

signal space, but small enough to avoid destructive interac-

tions between the low-pass and the band-pass dictionary. This

overlap has been designed so that less than 50% of the energy

of the Gaussians lies in the frequency band taken by the AR

fuctions. The biggest scale for these Gaussian atoms has been

chosen so that at least 50% of the atom energy lies within the

signal space when centered in the image. Last, due to isotropy,

rotations are obviously useless for this kind of atoms. Sample

atoms are shown in Fig. 3.

Note that the dictionary used is a continuous dictionary, and

this is the reason why the image can be reconstructed at any res-

olution at the decoder. In order to code 2-D discrete signals like

images, the basis functions are sampled on the grip represented

by discrete pixel positions .

C. Coding Scheme

1) Coefficient Quantization: The coefficients resulting from

running MP with the previously described dictionary can take a

priori any real value. A quantization step is clearly necessary to

limit the size of the bitstream. The proposed coder uses an a pos-

teriori rate optimized exponential quantization. It takes benefit

from the fact that the MP coefficient energy is upper-bounded

by an exponential curve, decaying with the coefficient order.

The quantization strongly relies on this property: the exponen-

tial upper-bound directly determines the quantization range of

the coefficient magnitude, while the coefficient sign is reported

on a separate bit. The number of quantization steps is then com-

puted as the solution of a rate-distortion optimization problem.

This quantization scheme has been described in details in [32].

It is briefly presented here for the sake of completeness.

Let the coefficient represent the scalar product

. It can be shown that its norm is upper-bounded by

an exponential function [33], which can be written as

(13)

where is the energy of the signal to code, is a constant

depending on the construction of the dictionary, and is a sub-

optimality factor depending on the MP implementation (for a

full search algorithm as the one used in this paper, ). The

coefficient upper-bound, thus, depends on both the energy of

the input function and the construction of the dictionary. Since

the coefficients can obviously not bring more energy than the

residual function , the norm of the coefficient is strongly

related to the residual energy decay curve.

Choosing the exponential upper-bound from (13) as the limit

of the quantization range, it remains to determine the number

of bits to be spent on each coefficient. The rate-distortion opti-

mization problem shows that the number of quantization levels

have also to follow a decaying exponential law, given by

(14)

where is the number of quantization levels for coefficient ,

is the dictionary redundancy factor, and is the

Lagrangian multiplier that drives the size of the bitstream [32].

In practice, the exponential upper-bound and the optimal bit

distribution given by (14) are often difficult to compute, partic-

ularly in the practical case of large dictionaries. To overcome

these limitations, we use a suboptimal but very efficient algo-

rithm based on the previous optimal results. The key idea lies

in a dynamic computation of the redundancy factor from the

quantized data. Since this information is also available at the de-

coder, it will be able to perform the inverse quantization without

any additional side information.

The adaptive quantization scheme performs as follows. The

MP coefficients are first re-ordered, and sorted in the decreasing

order of their magnitude (this operation might be necessary

since the MP algorithm does not guarantee a strict decay of

the coefficient energy). Let , denote the

quantized counterparts of the first coefficients. Due to the

rapid decay of the magnitude, coefficient is very likely to be

smaller than . It can, thus, be quantized in the range

. The number of quantization levels at step is

theoretically driven by the redundancy factor as given by (14).

The adaptive quantization uses an estimate of the redundancy

factor to compute the number of quantization levels as

(15)

The estimate of the redundancy factor is recursively updated,

replacing the quantization range, previously given by the expo-

nential upper-bound in the optimal quantization scheme, with

the quantized coefficient as

(16)

Finally, the quantization process is fully determined by the

choice of , the number of bits for the first coefficient, and a

positive value of , the number of atoms in the signal expan-

sion.

2) Rate Control: When the bitstream has to conform to a

given bit budget, the quantization scheme parameters and

are computed as follows. First, is estimated with (16) by

training the dictionary on a large set of signals (e.g., images), en-

coded with the adaptive quantization algorithm. It can be shown

empirically that the estimation quite rapidly tends to the asymp-

totic value of the redundancy factor. The estimation of is then

used to compute as a function of the given bit budget which

has to satisfy

(17)
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where represents the number of bits necessary to code the pa-

rameters of atom (i.e., positions, scales and rotation indexes),

and represents the average index size. From (14), the

value of indeed determines the number of bits of the first coef-

ficient , and, subsequently, the number of atoms to be coded,

. Under the condition that atoms whose coefficients are not

quantized (i.e., ) are not coded, has to be at

least equal to 2.

The rate control completely determines the adaptive quanti-

zation parameters, and generally yields bit rates very close to

the bit budget. For high bit-rates, it sometimes underestimates

the quantizer efficiency, due to the fact that the quantization

range estimated from the quantized coefficient values is more

accurate than the one obtained from the theoretical exponential

upper-bound. In this case, the actual bit rate becomes smaller

than the bit budget, which can, however, easily be met by coding

additional coefficients.

Notice that a loose estimation of or does not significantly

affect the efficiency of the quantization algorithm, but rather

displaces the resulting encoding on the working rate-distortion

curve. Finally, several coefficients could be used for the com-

putation of in (16). Such a modification will improve the ac-

curacy of the estimation of quantization parameters, and avoid

potential oscillatory effects.

3) Coding: The image coder proposed in this paper imple-

ments an arithmetic adaptive entropy coder. The core of this

coder is based on [34], with the probability update method from

[35]. As the distribution of the atom parameters (e.g., positions

or scales) is dependent on the image to be coded, the entropy

coder initializes the symbol probabilities to a uniform distri-

bution. The atom parameters (projection coefficients, positions,

scales, etc.) are coded using independent context. In order to

keep the intrinsic scalability features of the bitstream, the pa-

rameters are sent in their natural order, along the decreasing

order of the coefficient magnitudes. The bitstream is simply con-

structed by concatenating together coded coefficients and atom

parameters. This method results in a progressive stream, which

can be cut at any point to generate rate scalable streams (see Sec-

tion V). Scalability is the main motivation for choosing this kind

of arithmetic coder, rather than more efficient coders that previ-

ously estimate the parameters distribution in order to optimally

distribute the bits. Grouping atoms according to their position

parameters, for example, would also increase the compression

ratio. However, the stream would not be progressive, since the

atoms would not anymore be ordered according to their relative

importance.

IV. CODING PERFORMANCE

A. Benefits of Anisotropy

Since MP has already been presented as a valid alternative to

wavelets or DCT in low bit rate coding schemes [27], it becomes

important to show the real benefits of using an anisotropically

refined dictionary to represent natural images. Anisotropy and

rotation represent the core of the design of our coder, and, hence,

clearly differentiate it from the previously proposed MP imple-

mentations. To show the benefits of anisotropic refinement, our

dictionary has been compared to four different dictionaries, in

terms of the quality of the MP expansion. The first dictionary

uses the real part of oriented Gabor atoms generated by trans-

lation ( ), rotation ( ) and isotropic scaling ( ) of a modulated

Gaussian function , similarly to the one used in [26]

(18)

with

(19)

The next dictionary is an affine Weyl–Heisenberg dictionary

built by translation, dilation and modulation of the Gabor gen-

erating atom of (19), as presented in [36]

(20)

where only the real part is used. The other two dictionaries are

simply built on orthogonal wavelet bases. Fig. 4(a) shows the

reconstructed PSNR as a function of the number of iterations in

the MP expansion using different types of dictionaries. In this

figure, the comparison is performed with respect to the number

of terms in the expansion, in order to emphasize the approxi-

mation properties (the behavior of the coding rate is discussed

below). Clearly, overcompleteness and anisotropic refinement

allow to outperform the other dictionaries, in terms of approx-

imation rate, which corresponds to the results presented in [8],

[9]. As expected, the orthogonal bases offer the lowest approxi-

mation rates due to the fact that these kinds of bases cannot deal

with the smoothness of edges. We can, thus, deduce that redun-

dancy in a carefully designed dictionary provides sparser signal

representations. This comparison shows, as well, that the use of

rotation is also of interest since the oriented Gabor dictionary

gives better results than the modulated one. It is worth noticing

that rotation and anisotropic scaling are true 2-D transforma-

tions: the use of nonseparable dictionaries is clearly beneficial

to efficiently approximate 2-D objects. Separable transforms, al-

though they may enable faster implementations, are unable to

cope with the geometry of edges.

It is interesting now to analyze the penalty of anisotropy on

the coding rate. In our coder, the addition of anisotropy in-

duces the cost of coding an additional scaling parameter for

each atom. To highlight the coding penalty due to anisotropic

refinement, the image has also been coded with the same dic-

tionary, built on isotropic atoms, all other parameters staying

identical to the proposed scheme. Fig. 4(b) illustrates the quality

of the MP encoding of Lena, as a function of the coding rate,

with both dictionaries. To perform the comparison, the isotropic

and the anisotropic dictionaries are built with the same gener-

ating function and with the same discretization of the parameters

(three scales per octave and an angle resolution of ). The

anisotropy, however, implies the coding of one additional scale

parameter. It is shown that the dictionary based on anisotropic

refinement provides superior coding performance, even with

longer atom indexes. The penalty due to the coding cost of one

additional scale parameter, is largely compensated by a better

approximation rate. Anisotropic refinement is, therefore, clearly

an advantage in MP image coding.
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Fig. 4. Comparison of (a) the quality of MP approximation of Lena (128� 128 pixels), using five different dictionaries (anisotropic refinement and oriented
functions, oriented Gabor wavelets, nonoriented Gabor wavelets or Weyl-Heisenberg dictionary, an orthogonal Haar wavelet basis and a biorthogonal Daubechies
9/7 basis, with five levels of decomposition) and (b) characteristic of anisotropic refinement in the dictionary. In (b), the basis functions used are the same for
isotropic and anisotropic functions, with the same parameter discretization, showing the improvements of adding anisotropy to the dictionary.

Fig. 5. Distortion-rate performance for JPEG2000, SPIHT and the proposed MP coder, for several test images. (a) Cameraman, 256� 256. (b) Barbara,
256� 256. (c) Lena, 256� 256. (d) Lena, 512� 512.

B. Rate-Distortion Performance

Now that the benefit of anisotropic refinement has been

highlighted, the compressionperformance of theproposed image

coder is compared to the state-of-the-art JPEG2000 standard,2

and with the SPIHT encoder [37]. Fig. 5 shows the rate-distortion

performance of the three coders for common test images, at low

to medium bit rates. It can be seen that MP provides better PSNR

rating than JPEG2000 at low coding rates. However, the gap

between both coding schemes rapidly decreases when the bit

2All results have been generated with the Java implementation available
at http://jj2000.epfl.ch/, with default settings (Daubechies 9/7 wavelets and
five decomposition levels).

rate increases, as expected. MP and overcomplete expansions

are especially efficient for low bit rate coding. They very

rapidly capture the most important components of the image,

but MP then suffers from its greedy characteristic when the rate

increases. Also, the dictionaries have not been designed for

texture coding, but rather to code geometry. It has to be noted as

well that the bitstream header penalizes JPEG2000 compared

to MP, where the syntactic information is truly minimal (at

most a few bits). This penalty becomes particularly important

at very low bit rate.

The performance of the proposed coder is also compared to

the SPIHT encoder, which introduces a minimal syntactic over-

head. SPIHT almost always outperforms the proposed coder on
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Fig. 6. Lena (256� 256) encoded at 0.35 bpp. (a) Original. (b) MP,
30.3626 dB. (c) JPEG2000, 30.7940 dB. (d) SPIHT, 31.3471 dB.

the complete range of coding rate, and tends to perform similarly

to JPEG2000 for high rates. However, the stream generated by

the SPIHT encoder is in general not easily spatially scalable,

while MP and JPEG2000 offer increased flexibility for stream

adaptation.

Interestingly, all coders give equivalently poor results for

highly textured images like Barbara. None of them is really

optimized for texture coding, and the dictionary used in the pro-

posed MP encoder is primarily designed to capture geometry in

images. Altogether, the proposed encoder performs reasonably

well in terms of rate-distortion performance, especially at low

rates. When the rate increases, the saturation of the quality can

be explained by the limitations of redundant transforms for

high rate coding, and by the dictionary design choices. Hybrid

coding schemes could provide helpful solutions at high rate.

C. Visual Comparisons

This section provides visual comparisons of images encoded

with the proposed MP encoder, JPEG2000, and SPIHT. Even if

the three coding schemes perform similarly in terms of PSNR,

as shown in the previous section, the coding artifacts are in gen-

eral visually less annoying in the MP coding algorithm. Fig. 6

compares the encoding results for the Lena image, at low bit

rate. The decoded images are quite similar in terms of PSNR,

but visual comparisons generally seem to favor the MP encoder.

The artifacts introduced by MP (basically a simplification of the

images) are indeed less annoying than the ringing introduced by

the wavelets in JPEG2000 and in SPIHT.

Fig. 7 presents a similar comparison between MP and

JPEG2000, but for a larger image. In this case, the PSNR rating

is clearly in favor of JPEG2000. However, the image encoded

with MP is visually more pleasant than the JPEG2000 version.

The detailed view of the hat, as illustrated in Fig. 8, clearly

confirms this impression. The JPEG2000 encoder introduces

quite a lot of ringing, while the MP encoder concentrates its

effort on providing a good approximation of the geometrical

patterns. JPEG2000 has difficulties to approximate the 2-D

oriented contours, which are the predominant components of

natural images. Fig. 9 further confirms the different behaviors

of MP and JPEG2000. It can be seen that MP concentrates on

edges, and, thus, rapidly provides a “sketchy” representation of

the image. At the same rate, JPEG2000 already spends some

bits in coding textures, while ringing artifacts are still visible.

Finally, Fig. 10 proposes a comparison of the encoding of

a highly textured image (Barbara), at a quite low bit rate. As

already discussed in the previous section, it can be seen that the

three encoders perform quite poorly in this scenario. The type of

artifacts introduced by the encoders is, however, very different.

In the wavelet schemes, the low resolution subbands provide a

low resolution version of the image, but a lot of disturbing noise

is present in textured regions. MP first concentrates on well-

defined contours, but might fail in coding important semantic

parts, like the eyes. Due to the flexibility of MP, one might,

however, propose a modified coding strategy that ensures with

priority a low resolution coding of all regions of interest, even

if they do not necessarily represent the most energetic features.

D. Discussion

As shown by the results presented in this section, expan-

sions over dictionaries built on nonseparable functions are

possibly the core of new breakthroughs in image compression.

Anisotropic refinement and orientation allow to efficiently

capture 2-D objects in images, and provide very good per-

formances at low bit rate. In addition to rapidly capturing

the most important features of the images, multidimensional

representations generate less annoying artifacts than wavelet

decompositions, which introduce some ringing at low rate.

MP is, however, just one method of signal approximation,

which shows some limitations at high rate due to its greedy na-

ture. It, however, allows for quite good signal representations,

and presents the advantage of requiring a very low complexity

decoding structure. The encoding, however, still requires quite

a lot of computations, and is definitely much more complex

than a representation over an orthogonal wavelet basis. A lot

of progress have already been made in decreasing the computa-

tional complexity of the MP implementation. Schemes based on

the division of the dictionary in incoherent blocks for example,

already permit to encode images in a few seconds. MP also

has the advantage of generating inherently progressive streams,

which is a very interesting property for visual communication

applications, as discussed in the next section.

The coding scheme used in this paper can also surely be im-

proved, by taking into account the proper characteristics of the

image expansion. The implementation proposed in this paper

has been specifically driven by the objective of building highly

adaptive bitstreams, but the coding efficiency can certainly be

improved when this constraint is relaxed. The PSNR ratings pre-

sented in this section are generally better for JPEG2000 than for

MP. At the same time, the approximation rate in terms of number

of coefficients in the expansion can be shown to be largely in

favor of the MP scheme [38]. This is partly due to the fact that
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Fig. 7. Lena (512� 512) encoded at 0.16 bpp. (a) MP, 31.0610 dB. (b) JPEG2000, 31.9285 dB.

Fig. 8. Detail view, Lena (512� 512) encoded at 0.16 bpp. (a) MP.
(b) JPEG2000.

Fig. 9. Goldhill 256� 256 encoded at 0.23 bpp. (a) MP, 27.49 dB.
(b) JPEG2000, 28.18 dB.

the current coding scheme of the MP coefficients is not optimal,

contrarily to the very efficient coding of wavelet coefficients in

JPEG2000. The advantage of the multidimensional decomposi-

tion in terms of approximation rate, is significantly reduced in

the rate-distortion curves. A better coding scheme, adapted to

the characteristics of the MP representation, is, however, under

investigation.

V. HIGH ADAPTIVITY

A. Importance of Adaptivity

As outlined in the previous section, one of the main advan-

tages of the MP coder is to provide highly flexible streams at

no additional cost. This is very interesting in nowadays visual

applications involving transmission and storage, like database

Fig. 10. Barbara (256� 256) encoded at 0.12 bpp. (a) Original.
(b) MP, 21.35 dB. (c) JPEG2000, 21.23 dB. (d) SPIHT, 21.29 dB.

browsing or pervasive image and video communications. We

call adaptivity the possibility for partial decoding of a stream, to

fulfill decoding constraints given in terms of rate, spatial resolu-

tion or complexity. The challenge in scalable coding is to build

a stream decodable at different resolutions without any signif-

icant loss in quality by comparison to nonadaptive streams. In

other words, adaptive coding is efficient if the stream does not

contain data redundant to any of the target resolutions.

In image coding, adaptivity generally comprises rate (or

SNR) adaptivity and spatial adaptivity. First, the most effi-

cient rate adaptivity is attained with progressive or embedded

bitstreams, which ensure that the most important part of the

information is available, independently of the number of bits

used by the decoder [39], [40]. In order to enable easy rate adap-

tation, the most important components of the signals should

be placed near the beginning of the stream. The encoding

format has also to guarantee that the bitstream can be decoded,
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even when truncated. Second, schemes that implement spatial

adaptivity, like JPEG2000 or the coder proposed in [41], are

generally based on subband decompositions, which provide

intrinsic multiresolution representations. However, spatial

adaptivity is generally limited to octave-based representations,

and different resolutions can only be obtained after nontrivial

transcoding operations.

Multidimensional and geometry-based coding methods can

advantageously provide high flexibility in the stream represen-

tation and manipulation. In this section, we will emphasize the

intrinsic spatial and rate adaptivity of the bitstreams created with

our MP image coder. First, due to the geometrical structure of

the proposed dictionary, the stream can easily and efficiently be

decoded at any spatial resolution. Second, the embedded bit-

stream generated by the MP coder can be adapted to any rate

constraints, while the decoder is guaranteed to always receive

the most energetic components of the MP representation. Most

importantly, MP streams offer the advantage of decoupling spa-

tial and rate adaptivity, which can be achieved independently.

Adaptive decoding is now discussed in more details in the re-

mainder of the section.

B. Spatial Adaptivity

Due to the structured nature of our dictionary, the MP stream

provides inherent spatial adaptivity. The group law of the simil-

itude group of indeed applies [10] and allows for invariance

with respect to isotropic scaling of , rotation of and trans-

lation of . Therefore, when the compressed image is sub-

mitted to any combination of these transforms (denoted here by

the group element ), the indexes of the MP stream can simply

be transformed with help of the group law

(21)

In the above expression, represents the pa-

rameter strings of the atom encoded at iteration , with scaling

, rotation and translation , and repre-

sents the geometric transformation that is applied to the set of

atoms. The decoder can apply the transformations to the en-

coded bitstream simply by modifying the parameter strings of

the unit-norm atoms, according to the group law of similitude,

where

(22)

In other words, if denotes the isotropic scaling

by a factor , the bitstream of an image of size , after en-

tropy decoding, can be used to build an image at any resolution

simply by multiplying positions and scales by the

scaling factor (from (22) and (7)). The coefficients have also

to be scaled with the same factor to preserve the energy of the

different components. The quantization error on the coefficient

will, therefore, also vary proportionally to the scaling factor, but

the absolute error on pixel values will remain almost unchanged,

since the atom support also varies. Finally, the scaled image is

obtained by

(23)

The modified atoms are simply given by (10) to (12),

where and are, respectively, replaced by and . It is

worth noting that the scaling factor can take any positive real

value, as long as the scaling is isotropic. Atoms that become

too small after transcoding are discarded. This allows for fur-

ther bit rate reduction, and avoids aliasing effects when .

The smallest atoms generally represent high frequency details

in the image, and are located toward the end of the stream. The

MP encoder initially sorts atoms along their decreasing order of

magnitude, and scaling does not change this original arrange-

ment.

Finally, scaling operations are quite close to image editing

applications. The main difference is in the use of the scaling

property. Scaling will be used at a server, within intermediate

network nodes, or directly at the client in transcoding opera-

tions, while it could be used in the authoring tool for editing.

Even in editing, the geometry-based expansion provides an

important advantage over conventional downsampling or in-

terpolation functions, since there is no need for designing

efficient filters. Other image editing manipulations, such as

rotation of the image, or zoom in a region of interest, can easily

be implemented following the same principles. The simple

spatial adaptation procedure is illustrated in Fig. 11, where

the encoded image of size 256 256 has been re-scaled with

irrational factors and . The smallest atoms have

been discarded in the down-scaled image, without impairing

the reconstruction quality. The up-scaled image provides a

quite good quality, even if very high-frequency characteristics

are obviously missing since they are absent from the initial

(compressed) bitstream.

Table I shows rate-distortion performance for spatial resizing

of the 256 256 Lena image compressed at 0.3 bpp, with the

proposed MP coder, and JPEG2000 respectively. It presents

the PSNR values of the resized image, as well as the actual

bit rate after transcoding. It also shows the PSNR values for

encoding directly at the target spatial resolutions, for equivalent

rates. The reference images in Table I have been obtained by

resizing the original 512 512 pixel Lena image to 256 256

and to 128 128 with a standard image processing appli-

cation (Gimp). The reference image 128 DF is an image of

size 128 128, obtained by taking the output of the wavelet

Daubechies 9/7 filter bank at this resolution (128 128) when

giving as input signal the 256 256 Lena reference image.

It can be seen that our scheme offers results competitive

with respect to state-of-the-art coders like JPEG2000 for

octave-based downsizing. The quality of the down-scaled

images is slightly inferior for the MP coder, but the JPEG2000

transcoded image rate is largely superior to the MP stream one.

However, MP allows for nondyadic spatial resizing, as well as

easy up-scaling. The scaling operation does not significantly

affect the quality of the image reconstruction from MP streams.

Even in the up-scaling scenario, the transcoded image provides

a very good approximation of the encoding at the target (higher)
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Fig. 11. Lena image of size 256� 256 encoded with MP at (center) 0.3 bpp, and decoded with scaling factors of (left) 1=2 and (right)
p
2.

TABLE I
COMPARISON OF SPATIAL ADAPTIVITY OF THE MP ENCODER AND JPEG2000.

PSNR VALUES ARE COMPARED TO QUALITY OBTAINED WITHOUT

TRANSCODING (W/O TR.). 128 DF IS THE 128� 128 IMAGE

OBTAINED WITH THE JPEG2000 WAVELET FILTER

resolution. Next, results are also reported for a 128 128 ref-

erence image obtained from the output of the Daubechies 9/7

filter bank, that is used in the JPEG2000 encoder. We can note

that the PSNR after transcoding is obviously improved for

JPEG2000 in that case, and that the PSNR value for MP is de-

creased. We could expect the reverse behavior with a reference

image obtained with Gaussian filtering: this illustrates the im-

portance of the reference image in spatial resizing performance

evaluation. It is finally interesting to note that MP incurs a loss

of almost 1.5 dB when coding that particular reference image,

mostly due to the aliasing present in this low frequency image3

that the proposed dictionary cannot efficiently capture.

C. Rate Scalability

MP also offers an intrinsic multiresolution advantage, which

can be efficiently exploited for rate adaptivity. The coefficients

are by nature exponentially decreasing so that the stream can

simply be truncated at any point to provide a SNR-adaptive bit-

stream, while ensuring that the most energetic atoms are kept.

The simplest possible rate adaption algorithm that uses the pro-

gressive nature of the MP stream works as follows. Assume an

image has been encoded at a high target bit-rate , using the

rate controller described in Section III. The encoded stream is

then restricted to lower bit budgets , by simply

dropping the bits to . This simple rate adaptation, or

filtering operation is equivalent to dropping the last iterations in

the MP expansion, focusing on the highest energy atoms.

3The Daubechies 9/7 filter gives aliasing when reconstructing at a smaller
resolution, aliasing which is compensated for the reconstruction of the original
size image by information contained in the higher frequency bands.

Fig. 12. Rate-distortion characteristics for MP encoding of the 256� 256
Barbara and Cameraman images at 0.17 bpp, and truncation/decoding at
different (smaller) bit rates.

Fig. 12 illustrates the rate adaptivity performance of the

MP encoder. Images have been encoded with MP at a rate of

0.17 bpp and truncated to lower rates . For comparison, the

bitstream has also been encoded directly at the different target

rates , as described in Section III. It can be seen that there

is a very small loss in PSNR with respect to the optimal MP

stream at the same rate. This loss is due to the fact that the

rate truncation simply results in dropping iterations, without

using the optimal quantizer settings imposed by rates as

proposed in Section III-C. The quantization parameters are

not optimal anymore with respect to the truncation rate, but

the penalty is quite low away from very low coding rates. The

loss in performance is larger for images that are easier to code,

since the decay of the coefficients is faster. Nevertheless, both

optimal and truncated rate-distortion curves are quite close,

which shows that a simple rate adaptation method, though quite

basic, is very efficient.

VI. CONCLUSION

In this paper, we have presented an image coder based on

a new generation of multidimensional signal representation

methods. The need for image expansion as series of nonsepa-

rable, 2-D functions has been emphasized, as a key to overstep

limitations of classical representation techniques. The proposed

image coder performs a MP decomposition of the image, with a

dictionary built on anisotropic refinement of contour-like func-

tions. The quantization scheme has been specifically designed
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according to the characteristics of the signal representation.

The resulting encoder is comparable, at low bit rate, with state

of the art coders like JPEG2000 or SPIHT, both in terms of

PSNR and visual quality. The coding artifacts are in general

much less annoying for the MP-based encoder, thanks to the

dictionary design.

In addition to good compression performance for low

bit-rate coding, the MP coder provides interesting adaptivity

features. Due to the structured nature of the dictionary, the bit-

stream can be adapted to any spatial resolution at a negligible

computational cost. In the same time, the intrinsic multireso-

lution features of MP expansions allow for very simple rate

adaptation. Even if the MP encoder mainly provides good

compression performance at low to medium rates, its adaptivity

features stay interesting for particular applications, such as

huge image databases queried through portable devices, where

low bit rate coding is important for quick browsing. They are

also interesting in layered coding scenario for example, where

the base layer becomes adaptive too. Some work has already

been done in order to complement the MP coder with a wavelet

coder, in order to achieve very high bit-rate coding [42], while

maintaining adaptivity. Extensions of this work to video coding,

and particularly efficient frame-rate adaptation methods, are

certainly worth investigating as a potential solution to adaptive

video delivery scenarios.

Finally, the encoder proposed in this paper has been specifi-

cally designed in order to produce flexible and easily manage-

able bitstreams. By relaxing these requirements, the coding per-

formance could be largely improved. It can be shown that the

proposed representation clearly provides a sparser image ap-

proximation than separable decompositions, like wavelet-based

schemes. However, this primary advantage is counter-balanced

by a very efficient coding strategy in wavelet-based schemes.

An improved coding scheme adapted to the proper characteris-

tics of the MP decomposition is currently under study.
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