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Evolutionary rates provide important information about the pattern and mechanism of evolution. Although the rate of gene
sequence evolution has been well studied, the rate of gene expression evolution is poorly understood. In particular, it is
unclear whether the gene expression level and tissue specificity influence the divergence of expression profiles between
orthologous genes. Here we address this question using a microarray data set comprising the expression signals of 10,607
pairs of orthologous human and mouse genes from over 60 tissues per species. We show that the level of gene expression
and the degree of tissue specificity are generally conserved between the human and mouse orthologs. The rate of gene
expression profile change during evolution is negatively correlated with the level of gene expression, measured by either
the average or the highest level among all tissues examined. This is analogous to the observation that the rate of gene (or
protein) sequence evolution is negatively correlated with the gene expression level. The impacts of the degree of tissue
specificity on the evolutionary rate of gene sequence and that of expression profile, however, are opposite. Highly tissue-
specific genes tend to evolve rapidly at the gene sequence level but slowly at the expression profile level. Thus, different
forces and selective constraints must underlie the evolution of gene sequence and that of gene expression.

Introduction

It has been proposed that evolutionary changes of mor-
phology and development are more often due to alterations
of gene expressions than protein sequences (King and
Wilson 1975; Carroll 2005). However, compared to our
knowledge of gene and protein sequence evolution (Li
1997; Nei and Kumar 2000), genome-wide patterns of gene
expression evolution (Cavalieri, Townsend, and Hartl
2000; Enard et al. 2002; Oleksiak, Churchill, and Crawford
2002; Ranz et al. 2003; Rifkin, Kim, and White 2003) are
poorly understood, except for the divergences of duplicate
genes (Gu et al. 2002; Makova and Li 2003; Gu et al. 2004;
Huminiecki and Wolfe 2004; Gu, Zhang, and Huang 2005;
He and Zhang 2005). The advancement of high-throughput
technologies for characterizing the expressions of thou-
sands of genes simultaneously and the subsequent availabil-
ity of microarray expression data from multiple species
open the door for searching for general principles governing
gene expression evolution. Two recent studies suggested
that expression evolution is largely neutral, with little influ-
ences of either positive or purifying selection (Khaitovich
et al. 2004; Yanai, Graur, and Ophir 2004). However, sub-
sequent experimental studies and computational analysis
using microarray-based expression data suggested that
the expression evolution of most genes is subject to purify-
ing selection (Denver et al. 2005; Jordan, Marino-Ramirez,
and Koonin 2005; Rifkin et al. 2005; Liao and Zhang
2006). For example, Liao and Zhang (2006) estimated that
84% of mammalian genes have significantly lower expres-
sion divergence than expected under complete neutrality.
These findings raise the question about the determinants
of the level of purifying selection on gene expression.

Evolutionarychangesofgeneexpression canbe studied
from two aspects: (1) changes of gene expression level in
a given tissue or under a certain condition and (2) changes
of gene expression profile across spatial, temporal, or envi-

ronmental dimensions. The first aspect has been studied
more than the second (e.g., Ranz et al. 2003; Khaitovich
et al. 2004). Therefore, we focus on the second aspect in this
work. Specifically, we examine expression profile evolution
ofmammalian genes across tissues by comparing human and
mouseorthologs. Pearson’s correlation coefficient (r) is used
tomeasure the expression profile similarity between a pair of
orthologous genes. Because all human-mouse orthologs
have diverged for the same amount of time, one can use r
to compare the relative rates of expression profile evolution
among genes. That is, higher r indicates a lower rate of evo-
lution, whereas lower r indicates a higher rate of evolution.

Here we consider two potential determinants of the
rate of gene expression profile evolution: expression level
and tissue specificity. These two factors were previously
shown to be major determinants of the rate of gene (or
protein) sequence evolution (Hastings 1996; Duret and
Mouchiroud 2000; Pal, Papp, and Hurst 2001; Subramanian
and Kumar 2004; Zhang and Li 2004; Zhang and He 2005),
and our analysis would answer whether gene sequence evo-
lution and expression profile evolution are governed by the
same rules. Furthermore, a recent study showed that the ex-
pression divergence between a pair of human-mouse ortho-
logs is negatively correlated with the number of tissues in
which the gene is expressed (Yang, Su, and Li 2005). This
finding is puzzling because highly specific tissue expression
of a gene indicates that the gene performs a tissue-specific
function (e.g., chemoreception or immunity), and it would
be unlikely for such a highly specialized gene to perform
functions useful to other tissues in a different species. Here
we analyze the Gene Atlas V2 microarray data set (Su et al.
2004), which includes the expression information of 10,607
human and mouse orthologous genes in over 60 tissues.
Our analysis indicates that the evolutionary rate of gene ex-
pression profile is negatively correlated with the level of
expression and the degree of tissue specificity.

Materials and Methods
Gene Expression Data

We used the human and mouse gene expression infor-
mation from the Gene Atlas V2 data set (http://symatlas.
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gnf.org/), which contains the expression data obtained by
hybridization of RNAs from 73 human nonpathogenic tis-
sues and 61 mouse tissues onto the Affymetrix microarray
chips (human, U133A/GNF1H; mouse, GNF1M) designed
according to the annotated human and mouse genome
sequences (Su et al. 2004). A gene is represented on a chip
by at least one probe set, each of which comprises either 11
(in human arrays) or 10 (in mouse arrays) pairs of probes
that overlap in their nucleotide sequences. To assign the
probe sets to the current annotated version of Ensembl
human and mouse genes, we aligned sequences of each
probe set to the Ensembl cDNA sequences (human,
Homo_sapiens.NCBI35.feb.cdna.fa;mouse,Mus_musculus.
NCBIM33.feb.cdna.fa; http://www.ensembl.org/info/data/
download.html/) using BlastN (http://www.ncbi.nlm.nih.
gov/blast/) and kept those probe sets in which all 11 human
or 10 mouse matching probes perfectly matched to the same
Ensembl gene. For further analysis, 25,368 probe sets
(75.3%) in the human chip corresponding to 16,456 genes
and18,005probe sets (49.8%) in themouse chip correspond-
ing to 15,835 genes were retained. The expression level
detectedbyeachprobesetwasobtainedas thesignal intensity
(S) computed from either MAS 5.0 algorithm (MAS5)
(Hubbell, Liu, andMei 2002) orGC content–adjusted robust
multiarray algorithm (GC-RMA) (Wuet al. 2004). TheGene
Atlas V2 data set derived from GC-RMA algorithm was
downloaded from GNF Genome Informatics Applications
& Data sets (http://wombat.gnf.org). The S values were av-
eragedamongreplicates.Because the results fromMAS5and
GC-RMA are similar, we present the findings obtained from
MAS5 unless otherwise noted.

Tissue Specificity of Gene Expression

We used tissue specificity index s (Yanai et al. 2005)
to measure the tissue specificity of a human or mouse gene.
The s of human gene i is defined by

sH 5

PnH
j5 1 1� log2SHði;jÞ

log2SHði;maxÞ

h i� �
nH � 1

; ð1Þ

where nH is the number of human tissues examined and
SH(i, max) is the highest expression signal of gene i across
the nH tissues. To minimize the influence of noise from low

intensities, we arbitrarily let SH(i, j) be 100 if it is lower than
100. Note that this strategy of reducing the effect of noise is
used only in computing s. When a gene has more than one
probe set on the chip, we compute s by averaging the s val-
ues derived from the different probe sets. The s value ranges
from 0 to 1, with higher values indicating higher variations
in expressional level across tissues or higher tissue specif-
icities. If a gene has expression in only one tissue, s ap-

proaches 1. In contrast, if a gene is equally expressed in
all tissues, s 5 0.

Human-Mouse Orthologs

The homology information of human andmouse genes
was obtained from Ensembl EnsMart (http://www.ensembl.
org/Multi/martview) (Kasprzyk et al. 2004). There are sev-
eral annotated homology relationships between human and
mouse genes by Ensembl. We only considered those pairs
of genes annotated as UBRH (Unique Best Reciprocal Hit,
meaning that they were unique reciprocal best hits in all-
against-all BlastZ searches) to be orthologous. We found
that 10,607 pairs of human-mouse orthologs have expres-
sion data. Affymetrix probes with name suffixes _x_at
and _s_at were thought to be prone to cross-hybridization,
compared to other probes (Affymetrix Technical Support,
Data Analysis Fundamentals, Appendix B; http://www.
affymetrix.com/support/downloads/manuals/), and have
been considered ‘‘suboptimal’’ (Yang, Su, and Li 2005).
But our recent analysis showed that the quality of these
probes is not worse than other probes (Liao and Zhang
2006). We therefore considered all probe sets equally.

The number of synonymous substitutions per synon-
ymous site (dS) and the number of nonsynonymous substi-
tutions per nonsynonymous site (dN) between human and
mouse orthologs were retrieved from Ensembl EnsMart.
In this database, dS and dN were estimated by the maximum
likelihood method using the PAML package (Yang 1997).

Expression Profile Similarity Between
Orthologous Genes

Tomeasure the similarity in expression profile between
human and mouse orthologs, we analyzed 26 common tis-
sues of the two species included in the data set (Su et al.
2004). These 26 tissues are adipocyte, adrenal gland, amyg-
dala, bone marrow, cerebellum, dorsal root ganglion, heart,
hypothalamus, kidney, liver, lung, lymph node, ovary, pan-
creas, pituitary, placenta, prostate, skeletal muscle, spinal
cord, testis, thymus, thyroid, tongue, trachea, trigeminal gan-
glion, and uterus. Mouse lower spinal cord was used as the
homologous tissue of human spinal cord. We measured the
expression profile similarity between a pair of orthologous
genes by Pearson’s correlation coefficient r, defined as

Here, n5 26 is the number of common tissues considered, H
indicates human, andM indicates mouse. SH(i, j) and SM(i, j)
are the expression signal intensities of gene i in human tissue
j and mouse tissue j, respectively. A high r indicates a high
similarity in expression profile between the orthologs and
a low rate of expression profile evolution. Note that in our
previous study (Liao and Zhang 2006), the relative abun-
dance of mRNA across tissues (the signal of one tissue

r5

Pn

j5 1½SHði; jÞSMði; jÞ� �
Pn

j5 1 SHði; jÞ
h i Pn

j5 1 SMði; jÞ
h i�

nffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

j5 1½SHði; jÞ�2 �
Pn

j5 1 SHði; jÞ
h i2�

n

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

j5 1½SMði; jÞ�2 �
Pn

j5 1 SMði; jÞ
h i2�

n

s : ð2Þ
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relative to the total signal of all tissues) was used to compute
r. In fact, using either relative abundance or S gives exactly
the same r value. To compare our results with those of Yang,
Su, and Li (2005), we also used the expression conservation
index (ECI) that they developed. The ECI between a pair of
human-mouse orthologs is

ECI5
NHM 1 0:5

ðNH 1NMÞ=21 0:5
; ð3Þ

where NH and NM are the numbers of human and mouse
tissues in which the gene is expressed, respectively, and
NHM is the number of tissues in which the gene is expressed
in both species. According to Yang, Su, and Li (2005), a
gene is considered to be expressed in a tissue if S � 200
for the tissue. ECI varies from 0 to 1, with higher values
indicating higher similarity between expression profiles.
When a gene is represented by more than one probe set
on a microarray chip, r and ECI are computed by averaging
the values obtained from all possible combinations of a
human probe set and a mouse probe set of the gene.

Results and Discussion
Choice of Parameters Used in This Study

The transcriptome data analyzed in the present study
were obtained from oligonucleotide microarray experi-
ments. It is important to consider properties of microarray
data when quantifying tissue specificity of a gene or expres-
sion profile similarity between a pair of orthologs.

Tissue specificity of gene expression measures the de-
gree of differential expression across tissues. It is expected
that a gene with higher tissue specificity tends to have lower
expression breadth (B), which is the proportion of tissues in
which the gene is expressed. In microarray data analysis,
the number of tissues (N) in which a gene is expressed
is usually determined by an arbitrary cutoff of the signal
intensity S (Su et al. 2002; Vinogradov 2004; Yang, Su,
and Li 2005). Similar definitions of tissue specificity have
also been used in studies based on serial analysis of
gene expression or expression sequence tag data (Duret
and Mouchiroud 2000; Ponger, Duret, and Mouchiroud
2001; Lercher, Urrutia, and Hurst 2002; Subramanian
and Kumar 2004). However, there are several problems
with the approach of applying a cutoff in defining whether
a gene is expressed in a tissue. First, the number of mRNA
molecules of a gene in a given tissue is a continuous figure;
expression should not be characterized as absent or present.
Second, the expression level required for a gene to be func-
tional presumably varies substantively among genes; it is
unreasonable to use a single cutoff for all genes in all tis-
sues. Third, expression breadth actually measures the tissue
restriction of expression but ignores quantitative variations
in expression among many tissues (Schug et al. 2005).
Fourth, the S value in microarray data is not only deter-
mined by the quantity of the target mRNA but also by
the probe-target affinity and the algorithm of raw-data pro-
cessing. In other words, two genes with the same S values
do not necessarily have the same mRNA concentration. Al-
though a recent study (Khaitovich et al. 2005) used the Af-
fymetrix detection P value instead of the cutoff value of S to
determine the expression status of a gene in a given tissue,

several of the above problems cannot be avoided. Because
of these problems with the cutoff-based expression breadth
(B), we use tissue specificity index (s) to measure tissue
specificity. Use of the parameter s can avoid the aforemen-
tioned problems.

Another potential measure of tissue specificity is the
coefficient of variation (CV) of expression across tissues.
CV is defined as the standard deviation (SD) of a random
variable divided by its mean. The CV value for human gene
i can be computed by the SD of log2SHði; jÞ among the
73 human tissues considered divided by the average
log2SHði; jÞof the 73 tissues. A high CV indicates a great
variation in gene expression among tissues, implying tissue
specificity. Because s and CV are highly correlated (Spear-
man’s rank correlation coefficient 5 0.693, P , 10�300;
Pearson’s correlation coefficient 5 0.690, P , 10�300;
see Fig. S1, Supplementary Material online), we will only
use s in this study.

We use Pearson’s correlation r to measure the expres-
sion profile similarity (conservation) between a pair of or-
thologous genes. It was claimed by Yang, Su, and Li (2005)
that compared to r, ECI is a more appropriate measure.
However, our results suggest that r is better than ECI in
quantifying expression profile similarity (see below). For
instance, unlike ECI, using r avoids the use of cutoff-based
method in defining N.

Conservation of Gene Expression Level and Tissue
Specificity During Evolution

We examine whether the level of gene expression and
the degree of tissue specificity are similar between human
and mouse orthologous genes. If gene expression evolution
is not selectively constrained, as suggested earlier (Khaitovich
et al. 2004; Yanai, Graur, and Ophir 2004), no such similarity
is expected (Jordan, Marino-Ramirez, and Koonin 2005) be-
cause of the long divergence time between the two species
(Springer et al. 2003; Murphy, Pevzner, and O’Brien 2004)
and the rapid pace with which gene expression can change
during evolution (Gu et al. 2002). However, we found a strong
positive correlation in both mean expression level (fig. 1a;
Spearman’s rank correlation coefficient 5 0.392, P ,
10�300) and tissue specificity (fig. 1b; Spearman’s rank corre-
lation coefficient5 0.296, P, 10�212) between human and
mouse orthologs. Note that the mean expression levels are
calculated from averaging the S values of 73 normal human
tissues or 61 mouse tissues. Similar results were obtained
when only the 26 common tissues between humans and mice
were considered (Spearman’s rank correlation coefficient 5
0.384, P , 10�300, for mean expression level; Spearman’s
rank correlation coefficient 5 0.335, P , 10�276, for tissue
specificity). It is interesting to note that although the type of
microarray data we analyzed were reported to be noisy (Hill
et al. 2001; Irizarry et al. 2003) and probe sets of orthologous
genes often have different hybridization behaviors (Liao and
Zhang 2006), significant similarities in expression level and
tissue specificity are still apparent between human and mouse
orthologs, strongly suggesting the evolutionary conservation
of gene expression. Our result regarding the conservation
of gene expression level is consistent with that of Jordan,
Marino-Ramirez, and Koonin (2005).
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Previous studies showed that gene expression level
and expression breadth are strongly and positively cor-
related (Lercher, Urrutia, and Hurst 2002; Vinogradov
2004). This is not unexpected as expression breadth is de-
termined by the expression signal cutoff used. However, in
the present study, virtually no correlation is found between
expression level and tissue specificity s. For example, in
humans, Spearman’s rank correlation coefficient between
s and mean S is �0.007 (P 5 0.481). Because the correla-
tionswe report in the following two sections aremuch higher
and very significant, it is appropriate to assume that s and
S are uncorrelated.

Highly Expressed Genes Have Low Rates of Expression
Profile Evolution

The phenomenon that highly expressed genes have
lower substitution rates than lowly expressed genes in cod-
ing sequences has been reported in bacteria (Rocha and
Danchin 2004), unicellular eukaryotes (Pal, Papp, and Hurst
2001; Wall et al. 2005; Zhang and He 2005), and multicel-
lular eukaryotes (Subramanian and Kumar 2004; Jordan,
Marino-Ramirez, and Koonin 2005). This is also true in
our data set. For example, the average expression level
of human genes (SH) and the nonsynonymous nucleotide
distance dN between human and mouse orthologs are nega-
tively correlated (Spearman’s rank correlation coefficient5
�0.160, P, 10�58). We also found a weak negative corre-
lation between SH and the synonymous nucleotide distance
dS (Spearman’s rank correlation coefficient 5 �0.099,
P , 10�23). SH and dN/dS are also negatively correlated
(Spearman’s rank correlation coefficient 5 �0.139, P ,
10�44). These results confirm that genes of high expression
are more selectively constrained in the coding sequence
than genes of low expression. Below, we examine whether
highly expressed genes are also more constrained in their
expression profile evolution.

Our analysis of 10,607 human-mouse orthologs shows
that highly expressed genes have more similar expression
profiles between species than lowly expressed genes (fig. 2
for the binned data). This is true regardless of whether the
expression level is measured by the average S over all tis-

sues (fig. 2a, human; fig. 2b, mouse) or by the maximum S
(fig. 2c, human; fig. 2d, mouse) among 73 human or 61
mouse tissues examined. For the unbinned original data,
the positive correlation between profile similarity and ex-
pression level is also strong (rank correlation coefficient:
0.17–0.37) (fig. 2 legend). Because the expression profile
similarities are derived from the 26 tissues common to
the humans and mice, we also conducted the correlation
analysis using average S and maximum S computed from
the 26 common tissues. The results obtained (Fig. S2, Sup-
plementary Material online) are similar to those presented
in fig. 2. Furthermore, we used the GC-RMA expression
data set and obtained similar results (Fig. S3, Supplemen-
tary Material online).

It is possible that the positive correlation between gene
expression level and expression profile similarity is due to
the relatively strong background noise at low expression
levels, which would reduce the expression profile similarity
more for lowly expressed genes. If our result is mainly due
to such a factor, the correlation between the expression
level and profile similarity should be much weaker in the
subset of genes with high expressions. We examined genes
with average S � 800, a much greater value than that com-
monly thought to be significant (S 5 200, Su et al. 2002).
We found that highly expressed genes (S � 800) still show
the same trend (fig. 2a and b), suggesting that our observa-
tion is not due to the background noise. Our results thus
suggest that highly expressed genes are exposed to stronger
purifying selection in both coding sequence evolution and
expression profile evolution than lowly expressed genes.

Tissue-Specific Genes Have Low Rates of Expression
Profile Evolution

Previous studies showed that broadly expressed genes
such as housekeeping genes have lower substitution rates in
their coding sequences than narrowly expressed genes
(Hastings 1996; Duret and Mouchiroud 2000; Winter,
Goodstadt, and Ponting 2004; Zhang and Li 2004). It is
expected that the same trend exists between tissue specific-
ity s and the rate of coding sequence evolution. Indeed,
we found weak positive correlations between sH and dN

FIG. 1.—Similarity between human-mouse orthologs in (a) mean expression level and (b) tissue specificity. Spearman’s rank correlation coefficient5
0.392 (P , 10�300) for (a) and 0.296 (P , 10�212) for (b). In addition, the linear regression and Pearson’s correlation coefficient (R) are presented for
each panel. The data included 10,607 human-mouse orthologs. The mean expression levels (SH or SM) and tissue specificity (sH or sM) of the human and
mouse genes are calculated from 73 human and 61 mouse normal tissues, respectively.
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(Spearman’s rank correlation coefficient 5 0.089, P ,
10�18), dS (Spearman’s rank correlation coefficient 5
0.114, P, 10�24), and dN/dS (Spearman’s rank correlation
coefficient5 0.060, P, 10�9). Next, we examined the re-

lationship between tissue specificity and the rate of expres-
sion profile divergence. We found that genes with higher
s tend to show higher expression profile similarity (r) be-
tween human-mouse orthologs (see fig. 3 for the binned

FIG. 2.—Highly expressed genes have higher expression profile similarity between human-mouse orthologs than lowly expressed genes (MAS5 data
set). The expression level is measured by either the mean expression level or the maximum expression level across all tissues (i.e., 73 human normal
tissues or 61 mouse tissues). The error bar shows 95% confidence interval of the mean, estimated by 10,000 bootstrap replications for each bin. The data
include 10,607 human-mouse orthologs. We measured the correlations using the original unbinned data. Spearman’s rank correlation coefficient is (a)
0.172 (P, 10�71), (b) 0.176 (P, 10�74), (c) 0.333 (P, 10�272), and (d) 0.365 (P, 10�300). The numbers of gene pairs used in each bin are (a) 0–200:
2,517; 200–400: 2,781; 400–800: 3,093; 800–1,600: 1,576;.1,600: 640; (b) 0–200: 4,377; 200–400: 3,132; 400–800: 2,064; 800–1,600: 768;.1,600:
266; (c) 0–400: 909; 400–800: 1,900; 800–1,600: 2,743; 1,600–3,200: 2,302; 3,200–6,400: 1,472; .6,400: 1,281; (d) 0–400: 2,439; 400–800: 2,507;
800–1,600: 2,402; 1,600–3,200: 1,619; 3,200–6,400: 961; .6,400: 679.

FIG. 3.—Greater expression profile similarities between human-mouse orthologs for genes of high tissue specificity than genes of low tissue spec-
ificity (MAS5 data set). Tissue specificity is measured using all tissues (i.e., 73 human normal tissues or 61 mouse tissues). The error bar shows 95%
confidence interval of the mean, estimated by 10,000 bootstrap replications for each bin. The data include 10,607 human-mouse orthologs. We measured
the correlations using the original unbinned data. Spearman’s rank correlation coefficient is (a) 0.340 (P , 10�285) and (b) 0.377 (P , 10�300). The
numbers of genes in each bin are (a) 0.00–0.05: 84; 0.05–0.10: 397; 0.10–0.15: 1,810; 0.15–0.20: 3,146; 0.20–0.25: 2,352; 0.25–0.30: 1,305; 0.30–0.35:
756; 0.35–0.40: 397; .0.40: 360; (b) 0.00–0.05: 444; 0.05–0.10: 1,184; 0.10–0.15: 2,473; 0.15–0.20: 2,151; 0.20–0.25: 1,613; 0.25–0.30: 1,117;
0.30–0.35: 740; 0.35–0.40: 444; .0.40: 441.
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data). This correlation is strong (rank correlation coefficient
of 0.34–0.38) and highly significant even for the original
unbinned data (see fig. 3 legend). The GC-RMA expression
data set gave similar results (Fig. S4, Supplementary Ma-
terial online). Because the correlation between r and s is
much higher than that between s and S, we conclude that
the former correlation is not due to the latter. In other words,
expression level and tissue specificity independently influ-
ence the rate of expression profile evolution.

Our finding of the positive correlation between r and s
appears to be opposite of what Yang, Su, and Li (2005)
found. They showed that broadly expressed genes have
lower rates of gene expression profile evolution than nar-
rowly expressed genes, which was based on the observation
of a positive correlation between expression breadth (B) and
the ECI between human and mouse orthologs. Their results
may not reflect biological reality for the following three
reasons.

First, as aforementioned, they used a potentially prob-
lematic approach of applying a signal cutoff to the micro-
array data and defining expression breadth by counting the
number of tissues in which a gene is expressed. Figure 4a
gives an example illustrating its flaws. It is common that on
a microarray chip there are more than one probe set to rep-
resent a gene. Theoretically, different probe sets of the same
gene should give similar values of s (or B) because these
different probe sets target the same mRNA. However, when
the cutoff value of 200 is used for the two probe sets of
human WASPIP gene, B is substantively different depend-
ing on which probe set is used (probe set #1, B 5 2/26 5
0.077; probe set #2, B 5 17/26 5 0.654). Figure 4a shows
that the two probe sets provide relatively consistent expres-
sion patterns except that probe set #1 has much lower af-
finity to the target mRNA than probe set #2. Contrary to B,
similar s values were obtained using these two probe sets
(probe set #1, 0.351; probe set #2, 0.334), illustrating that
s is a better measure than B.

Second, because the number of tissues in which a gene
is expressed (N) is highly dependent on the signal cutoff
used and because ECI is computed from N, one can expect
that ECI is also problematic. For example, in figure 4a, al-
though the two probe sets represent the same human gene
(WASPIP) and have congruent expression patterns, the ECI
value is low (0.250). In figure 4b, although human and
mouse NEU1 genes have substantively different expression
profiles, ECI is high (0.961). Contrary to ECI, Pearson’s
r between expression profiles seems a better index reflect-
ing biological facts (fig. 4a, r 5 0.849; fig. 4b, r 5 0.288).

Finally, because both ECI and B are computed from N,
it is expected that ECI and B are not independent from each
other. From equation (3), we expect that human-mouse or-
thologs with larger N should have higher ECI values be-
cause by chance they have more opportunities to overlap
in expression. To demonstrate this effect, we randomly
paired human and mouse genes. As shown in figure 5a,
the randomly paired genes still show positive correlation
between ECI and B, suggesting that the previously ob-
served correlation in Yang, Su, and Li (2005) may not
be due to true biological relationships but rather an artifact
caused by the dependence between the two parameters
used. By contrast, such a correlation does not exist for ran-

domly paired genes when we use s to measure tissue spec-
ificity and r to measure expression profile similarity (fig.
5b). Yang, Su, and Li (2005) attempted to avoid the depen-
dence between ECI and B by using different sets of tissues
to compute ECI and B. They suggested that their result still
holds after this consideration, as shown in their table 1.
However, they did not control for the expression level S.
Because expression breadth B and mean S are highly cor-
related (Spearman’s rank correlation5 0.86, P, 10�300 in
our data), their observation of conservation of broadly ex-
pressed genes could be due to the fact that (1) broadly ex-
pressed genes tend to have high expression and (2) highly
expressed genes tend to be conserved (fig. 2). The advan-
tage of using s instead of B is that s and S are uncorrelated
(see above).

Previous molecular evolutionary studies have consid-
ered the differences between housekeeping and non-house-
keeping genes (e.g., Zhang and Li 2004). Housekeeping
genes are those expressed in the majority of tissues. It is
expected that housekeeping genes have lower tissue spec-
ificity than non-housekeeping genes. If one defines human
housekeeping genes by S � 200 in at least 70 of the 73 ex-
amined tissues, s is 0.168 6 0.001 (mean 6 standard error

FIG. 4.—Two examples of expression profiles obtained from Gene
Atlas V2. (a) Profiles of two probe sets (probe set #1, 202663_at; probe
set #2, 202664_at) of humanWASPIP gene. Expression breadth (B) for the
probe set #1 and probe set #2 is 0.077 and 0.654, respectively. Tissue spec-
ificity (s) for the two probe sets is 0.351 and 0.334, respectively. For the
similarity between the two profiles generated by the two probe sets, ECI5
0.250 and r5 0.849. (b) Expression profiles of human NEU1 gene (probe
set, 208926_at) and its mouse ortholog (probe set, gnf1m23979_at). The
ECI value between the profiles of human-mouse NEU1 orthologs is 0.961,
while r is 0.288.
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of mean) for the 2,262 housekeeping genes but 0.225 6
0.001 for the other 8,345 genes, consistent with the above
expectation. However, the average expression level is much
higher for housekeeping genes (1,351 6 33) than for the
other genes (413 6 5). Interestingly, we found that the ex-
pression profile similarity (r) between human-mouse ortho-
logs does not differ between housekeeping genes (0.211 6
0.006) and the other genes (0.215 6 0.003). Apparently,
high expression levels and low tissue specificities offset
each other so that housekeeping genes do not differ from
other genes in r. We note that although housekeeping genes
tend to have low variations in expression level across tis-
sues, the variance is not 0. Furthermore, the relative ex-
pression levels across tissues may not be important to
housekeeping genes. This may explain why r is not higher
for housekeeping genes than for non-housekeeping genes.

Similarities and Differences Between Coding Sequence
and Expression Profile Evolution

In this work, we used statistical correlations to identify
factors that might influence the evolution of expression
profiles of mammalian genes. It is important to address
(1) whether two quantities are significantly correlated and
(2) how strong the correlation is. The important correlations
on which our main conclusions are based range from 0.17 to
0.38. These correlations are not particularly high, though
statistically highly significant. The relatively low correla-
tions may reflect two facts. First, the evolutionary rate of
gene expression profile is determined by multiple factors,
each of which may only have a small effect. Second, micro-
array expression data are known to be noisy, which reduces
correlations. Because the evolution of gene expression pro-
files is poorly understood, it is important to first identify all
relevant determinants before one can evaluate their relative
contributions. It is also useful to compare the magnitudes
of the newly identified correlations with those of well-
established correlations, as will be discussed below.

By analyzing over 10,000 human-mouse orthologous
gene pairs, we found that highly expressed genes have
lower rates of evolution than lowly expressed genes in both
coding sequence and expression profile (fig. 6). Gene ex-

pression level (S) is thought to be the single most important
determinant of the rate of coding sequence evolution
(Drummond, Raval, and Wilke 2006). We found that the
correlation (0.17) between expression profile similarity
(r) and S is slightly higher than that (0.14–0.16) between
dN (or dN/dS) and S for mammalian genes, suggesting sim-
ilar importance of expression level in determining the rate
of expression profile evolution and the rate of coding se-
quence evolution.

Do the similar impacts of gene expression level on
coding sequence and expression profile evolution suggest
a common evolutionary mechanism? A recent study pro-
posed that highly expressed proteins are under stronger
pressures to avoid misfolding caused by translational er-
rors; consequently, these proteins have more rigid require-
ments for their sequences and are more conserved in
evolution (i.e., the translational robustness hypothesis)
(Drummond et al. 2005). Although this hypothesis may ex-
plain why highly expressed genes have low rates of coding
sequence evolution, it cannot explain why they also have
low rates of expression profile evolution because there is

FIG. 5.—The correlation between expression breadth (B) and ECI is due to the intrinsic dependence between the two parameters. (a) B and ECI are
positively correlated in both real orthologs and randomly paired human and mouse genes. Following the procedure that Yang, Su, and Li (2005) used to
generate their fig. 3, we calculated B from the 47 human tissues that are not studied in mouse. (b) Tissue specificity (s) and expression profile similarity (r)
are positively correlated in real orthologs but not in randomly paired human and mouse genes.

FIG. 6.—A summary of the correlations discussed in this paper. The
‘‘1’’ symbol denotes a positive correlation, while the ‘‘�’’ symbol denotes
a negative correlation. The correlations found in previous studies and con-
firmed in the present work are presented as gray arrows, while those newly
found in this study are presented as black arrows. The relationship between
the evolutionary conservation of coding sequences and that of expression
profiles is unclear.
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no link between expression profile conservation and protein
misfolding. It has also been proposed that highly expressed
genes are functionally more important and therefore are
more conserved in their coding sequences (Rocha and
Danchin 2004). This functional importance hypothesis
may explain our observations if functionally important
genes are under strong purifying selection in both coding
sequences and expression profiles. However, the functional
importance hypothesis was not supported in a previous
study of yeasts (Drummond et al. 2005). Furthermore, in
yeasts and bacteria, only a small fraction of the strong cor-
relation between gene expression level and dN may be ex-
plained by their covariations with gene importance, which
is measured by the fitness reduction caused by gene dele-
tions (Rocha and Danchin 2004; Zhang and He 2005). The
main reason behind the impact of gene expression level on
the rate of coding sequence evolution is still unclear. It is
possible that the apparently similar influences of gene ex-
pression level on coding sequence divergence and expres-
sion profile divergence have different underlying causes.

We found that tissue specificity has opposite impacts
on the rate of coding sequence evolution and the rate of ex-
pression profile evolution. Compared with a gene with low
tissue specificity, a gene with high tissue specificity tends to
evolve faster in its coding sequence but slower in its expres-
sion profile (fig. 6). It has been suggested that there is less
functional constraint on a protein sequence if it is expressed
only in a small number of tissues (Duret and Mouchiroud
2000). At the same time, tissue-specific genes may be more
adaptable due to fewer pleiotropic effects (Duret and
Mouchiroud 2000). As a consequence, tissue specificity
and dN become positively correlated. More detailed causal
effects regarding this relationship have been discussed in
Zhang and Li (2004). However, it is worth noting that
the correlation between tissue specificity (s) and dN is
low (Spearman’s rank correlation5 0.089) in our analysis.
Previous studies demonstrating an impact of tissue specific-
ity on coding sequence evolution were likely confounded
by the influence of expression level as expression cut-
offs were used to define tissue specificity (Duret and
Mouchiroud 2000; Zhang and Li 2004). In the present
study, however, the impact of tissue specificity can be
clearly separated as s is uncorrelated with expression level.

The correlation between expression profile similarity
and s ranges from 0.34 to 0.38, indicating that the impact of
tissue specificity on expression profile evolution is much
greater than that on coding sequence evolution. Given
the large estimation error of expression profile similarity
caused by microarray technologies (Liao and Zhang
2006), the high correlation observed prompts us to believe
that tissue specificity is one of the most important determi-
nants of the evolutionary rate of gene expression profile in
mammals. Why do highly tissue-specific genes have a low
rate of expression profile evolution? It is possible that for
a tissue-specific gene, its function is highly specialized for
the tissues where it is expressed. Expression of the gene in
a different tissue would make the protein physiologically
useless or even detrimental. In contrast, non–tissue-specific
genes may be more tolerant to changes of expression level
in various tissues, thus having relatively high rates of ex-
pression profile evolution. Taken together, expression pro-

file evolution and coding sequence evolution appear to be
governed by different principles.

A recent study based on human-chimpanzee compar-
isons suggested that the evolutionary rate of the expression
level of a gene is positively correlated with the evolutionary
rate of its coding sequence (Khaitovich et al. 2005). How-
ever, it is unclear whether the evolutionary rate of expres-
sion profile is correlated with that of coding sequence (fig.
6). Several studies using human-mouse orthologs do not
find such a correlation (Jordan et al. 2004; Yanai, Graur,
and Ophir 2004; Jordan, Marino-Ramirez, and Koonin
2005). Our previous study revealed a weak positive corre-
lation between these two quantities when the Euclidean
distance was used to measure the profile similarity of hu-
man-mouse orthologs (Liao and Zhang 2006). However,
such a correlation was not observed when Pearson’s r
was used to measure the profile similarity. Figure 6 illus-
trates that these ambiguous results might be related to
the different effects of the expression level and tissue spec-
ificity on the evolutionary rate of coding sequence and that
of expression profile.

It should be emphasized that genome-wide analysis of
gene expression evolution has just begun, and most studies
have focused on identifying correlations. When a higher
quantity and quality of data become available, the underly-
ing causes of the identified correlations and the relative con-
tributions of various factors may be examined. We also
want to stress that the impacts of expression level and tissue
specificity on the evolutionary rate of expression profile that
we report in this work should be confirmed in other data
sets and other species. Unlike the study of gene/protein se-
quence evolution, in which various evolutionary distances
have been developed (Li 1997; Nei and Kumar 2000), the
study of expression profile divergence still lacks a good
distance measure. All the distances so far introduced
(r, Euclidean distance, and ECI) only measure the relative
divergence of expression profiles but tell nothing about the
number of genetic changes that are responsible for the ex-
pression divergence. Understanding the molecular genetic
mechanisms of expression regulation will facilitate the de-
velopment of such distance measures, which will in turn
help elucidate the mode and cause of expression evolution.

Supplementary Material

Supplementary figures S1–S4 are available at Molec-
ular Biology and Evolution online (http://www.mbe.
oxfordjournals.org/).
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