
Low-redundancy codes for correcting multiple
short-duplication and edit errors

Yuanyuan Tang∗, Shuche Wang†, Hao Lou∗, Ryan Gabrys‡, and Farzad Farnoud∗
∗ Electrical & Computer Engineering, University of Virginia, U.S.A.,

{yt5tz,hl2nu,farzad}@virginia.edu
† Institute of Operations Research and Analytics, National University of Singapore,

shuche.wang@u.nus.edu
‡ Calit2, University of California-San Diego, U.S.A., rgabrys@ucsd.edu

Abstract

Due to its higher data density, longevity, energy efficiency, and ease of generating copies, DNA is considered
a promising storage technology for satisfying future needs. However, a diverse set of errors including deletions,
insertions, duplications, and substitutions may arise in DNA at different stages of data storage and retrieval. The
current paper constructs error-correcting codes for simultaneously correcting short (tandem) duplications and at most
p edits, where a short duplication generates a copy of a substring with length ≤ 3 and inserts the copy following
the original substring, and an edit is a substitution, deletion, or insertion. Compared to the state-of-the-art codes for
duplications only, the proposed codes correct up to p edits (in addition to duplications) at the additional cost of
roughly 8p(logq n)(1 + o(1)) symbols of redundancy, thus achieving the same asymptotic rate, where q ≥ 4 is the
alphabet size and p is a constant. Furthermore, the time complexities of both the encoding and decoding processes
are polynomial when p is a constant with respect to the code length.

I. INTRODUCTION

With recent advances in sequencing and synthesis,deoxyribonucleic acid (DNA) is considered a promising
candidate for satisfying future data storage needs [3], [4]. In particular, experiments in [3], [5]–[9] demonstrate that
data can be stored on and subsequently retrieved from DNA. Compared to traditional data storage media, DNA has
the advantages of higher data density, longevity, energy efficiency, and ease of generating copies [3], [9]. However,
a diverse set of errors may occur at different stages of the data storage and retrieval processes, such as deletions,
insertions, duplications, and substitutions. Many recent works, such as [9]–[26], have been devoted to protecting
the data against these errors. The current paper constructs error-correcting codes for duplication and edit errors,
where an edit error is an insertion, deletion, or substitution.

A (tandem) duplication in a DNA sequence generates a copy of a substring and then inserts it directly following
the original substring [10], where the duplication length is the length of the copy. For example, given ACTG, a
tandem duplication may generate ACTCTG, where CTCT is a (tandem) repeat of length 4 (i.e., twice the length of
the duplication). Bounded-length duplications are those whose length is at most a given constant. In particular, we
refer to duplications of length at most 3 as short duplications. Correcting fixed-length duplications [10], [12]–[14],
[27] and bounded-length duplications [10], [25], [28]–[31] have been both studied recently. In particular, the code
in [10], which has a polynomial-time encoder, provides the highest known asymptotic rate for correcting any number
of short duplications. For an alphabet of size 4, corresponding to DNA data storage, this rate is log 2.6590 and as
the alphabet size q increases, the rate is approximately log(q − 1) [25].

For channels with both duplication and substitution errors, restricted substitutions [14], [27], which occur only
in duplicated copies, and unrestricted substitutions [14], [31]–[33], which may occur anywhere, have been studied.
The closest work to the current paper, [33], constructed error-correcting codes for short duplications and at most
one (unrestricted) edit. However, compared to the codes in [10] for only duplications, the codes in [33] incur an
asymptotic rate loss when q = 4 in order to correct the additional edit. The current paper provides codes for
correcting any number of short duplications and at most p (unrestricted) edits with no asymptotic rate penalty,
where p and the alphabet size q are constants.

One of the challenging aspects of correcting multiple types of errors, even when optimal codes for individual
error types exist, is that codes for each type may utilize incompatible strategies. In particular, correcting duplications
relies on constrained codes (local constraints) while edits are corrected using error-correcting codes with codewords
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that satisfy certain global constraints. Combining these strategies is not straightforward as encoding one set of
constraints may violate the other, or alter how errors affect the data. Our strategy, which can be viewed as modified
concatenation described in [34], is to first encode user data as a constrained sequence x that is irreducible, i.e.,
does not contain any repeats of length ≤ 6. Then using syndrome compression, we compute and append to x a
“parity” sequence r to help correct errors that occur in x. Syndrome compression has recently been used to provide
explicit constructions for correcting a wide variety of errors with redundancy as low as roughly twice the Gilbert-
Varshamov bound [35]–[38]. Another challenge arises from the interaction between the errors. When both short
duplications and edits are present, a single edited symbol may be duplicated many times and affect an unbounded
segment. However, when the input is an irreducible sequences, after removing all tandem copies with length ≤ 3
from the output, the effects of short duplications and at most p edits can be localized in at most p substrings, each
with length ≤ 17 [33]. Using the structure of these localized alterations, we describe the set of strings that can be
confused with x and bound its size, allowing us to leverage syndrome compression to reduce redundancy. A third
challenge is ensuring that the appended vector r is itself protected against errors and can be decoded correctly.
We do this by introducing a higher-redundancy MDS-based code over irreducible sequences. After decoding the
appended vector, we use it to recover the data by eliminating incorrect confusable inputs. Compared to the explicit
code for short duplications only [10], the proposed code corrects ≤ p edits in addition to the duplications at the
extra cost of roughly 8p(logq n)(1 + o(1)) symbols of redundancy for q ≥ 4, and achieves the same asymptotic
code rate. We note that the state-of-the-art redundancy for correcting p edits is no less than 4p logq n(1+o(1)) [37].
Time complexities of both the encoding and decoding processes are polynomial when p is a constant.

For simplicity, we first consider the channel with short duplications and substitutions only and construct codes
for it. Then, in Subsection IV-B, we show that the same codes can correct short duplications and edit errors. We
note that short duplications and edits may occur in any order. Henceforth, the term duplication refers to short
duplications only.

The paper is organized as follows. Section II presents the notation and preliminaries. In Section III, we derive
an upper bound on the size of the confusable set for an irreducible string, which is a key step of the syndrome
compression technique used to construct our error-correcting codes. Then, Section IV presents the code construction
as well as a discussion of the redundancy and the encoding/decoding complexities, under the assumption that the
syndrome information can be recovered correctly by an auxiliary error-correcting code, which is described in
Section V. Finally, Section VI concludes the main results.

II. NOTATION AND PRELIMINARIES

Let Σq = {0, 1, 2, · · · , q − 1} represent a finite alphabet of size q and Σnq the set of all strings of length n over
Σq . Furthermore, let Σ∗q be the set of all finite strings over Σq , including the empty string Λ. Given two integers
a, b with a ≤ b, the set {a, a+1, . . . , b} is shown as [a, b]. We simplify [1, b] as [b]. For an integer a ≥ 1, we define
b mod+ a as the integer in [a] whose remainder when divided by a is the same as that of b. Unless otherwise
stated, logarithms are to the base 2.

We use bold symbols to denote strings over Σq , i.e., x,yj ∈ Σ∗q . The entries of a string are represented by
plain typeface, e.g., the ith elements of x,yj ∈ Σ∗q are xi, yji ∈ Σq , respectively. For two strings x,y ∈ Σ∗q , let
xy denote their concatenation. Given four strings x,u,v,w ∈ Σ∗q , if x = uvw, then v is called a substring of
x. Furthermore, we let |x| represent the length of a string x ∈ Σnq , and let ‖S‖ denote the size (the number of
elements) of a set S.

A (tandem) duplication of length k is the operation of generating a copy of a substring and inserting it directly
following the substring, where k is the length of the copy. For example, for x = uvw with |v| = k, a (tandem)
duplication may generate uvvw, where vv is called a (tandem) repeat with length 2k. A duplication of length at
most 3 is called a short duplication. Unless otherwise stated, the short duplications are simply called duplications
in the rest of the paper. For example, given x = 213012 ∈ Σ∗4, a sequence of duplications may produce

x = 213012→ 213213012→ 21321303012

→ 213221303012 = x′,
(1)

where the duplicated copies are marked with underlines. We call x′ a descendant of x, i.e., a string generated from
x by a sequence of duplications. Furthermore, for a string x ∈ Σ∗q , let D(x) ⊆ Σ∗q be the set of all descendants
generated from x by an arbitrary number of duplications. Note that, unless x = Λ, D(x) is an infinite set.
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A deduplication of length k replaces a repeat vv by v with |v| = k. In the rest of the paper, unless otherwise
stated, dedulications are assumed to be of length at most 3. For example, the string x in (1) can be recovered from
x′ by three deduplications.

The set of irreducible strings of length n over Σq , denoted Irrq(n), consists of strings without repeats vv, where
|v| ≤ 3. Furthermore, Irrq(∗) represents all irreducible strings of finite length over Σq . The duplication root of x′ is
an irreducible string x such that x′ is a descendant of x. Equivalently, x can be obtained from x′ by performing all
possible deduplications. Any string x′ has one and only one duplication root [10]1, denoted R(x′). The uniqueness
of the root implies that if x′′ is a descendant of x′, we have R(x′) = R(x′′). For a set S of strings, we define
R(S) = {R(s) : s ∈ S} as the set of the duplication roots of the elements of S.

Besides duplications, we also consider substitution errors, where each substitution replaces a symbol by another
one from the same alphabet. Continuing the example in (1), two substitutions and two duplications applied to x′

may produce

x′ = 213221303012→ 213211303012

→ 213213211303012→ 213213211323012

→ 213213211323323012 = x′′,

where the substituted symbols are marked in red. Let D≤p(x) ⊆ Σ∗q represent the set of strings derived from x by
an arbitrary number of duplications and at most p substitutions. In the example above, we have x′′ ∈ D≤2(x). Note
that the alphabet over which D≤p(x) is defined affects its contents. For example, for x = 012, D≤1(x) contains
013 if the alphabet is Σ4 but not if the alphabet is Σ3. Unless x = Λ, D≤p(x) is infinite.

We define a substring edit in a string x ∈ Σ∗q as the operation of replacing a substring u with a string v, where at
least one of u,v is nonempty. The length of the substring edit is max{|u|, |v|}. An L-substring edit is one whose
length is at most L. For example, given x = 0123456, a 4-substring edit can generate the sequence y = 078956 or
the sequence z = 018923456, where the inserted strings are underlined. Furthermore, a burst deletion in x ∈ Σ∗q
is defined as removing a substring v of x, where |v| is the length of the burst deletion.

Given a sequence x ∈ Σnq , we define the binary matrix U(x) of x with dimensions dlog qe × n as
u1,1 u1,2 · · · u1,n

u2,1 u2,2 · · · u2,n

...
...

. . .
...

udlog qe,1 udlog qe,2 · · · udlog qe,n

 , (2)

where the jth column of U(x) is the binary representation of the jth symbol of x for j ∈ [n]. The ith row of U(x)
is denoted as Ui(x) for i ∈ dlog qe.

The redundancy of a code C ⊆ Σnq of length n is defined as n− logq ‖C‖ symbols, and its rate as 1
n log ‖C‖ bits

per symbol. Asymptotic rate is the limit superior of the rate as the length n grows.
In order to construct error-correcting codes by applying the syndrome compression technique [35], we first

introduce some auxiliary definitions and a theorem.
Suppose q ≥ 3 is a constant. We start with the definition of confusable sets for a given channel and a given set

of strings S ⊆ Σnq . In our application, S is the set of irreducible strings, upon which the proposed codes will be
constructed.

Definition 1. A confusable set B(x) ⊆ S of x ∈ S consists of all y ∈ S, excluding x, such that x and y can
produce the same output when passed through the channel.

Definition 2. Let R(n) be an integer function of n. A labeling function for the confusable sets B(x),x ∈ S, is a
function

f : Σnq → Σ2R(n)

such that, for any x ∈ S and y ∈ B(x), f(x) 6= f(y).

Theorem 3. (c.f. [35, Theorem 5]) Let f : Σnq → Σ2R(n) , where R(n) = o(log log n · log n), be a labeling function
for the confusable sets B(x),x ∈ S. Then there exists an integer a ≤ 2log ‖B(x)‖+o(logn) such that for all y ∈ B(x),
we have f(x) 6≡ f(y) mod a.

1Note that this statement only applies to duplications of length at most 3. For duplications of length at most 4, the root is not necessarily
unique.
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Dups, ≤ p subs

(a) DS(p) channel

Dups, ≤ p subs Root

(b) DSD(p) channel

Dups ≤ 1 sub Root

(c) DSD(1) channel

Figure 1: Any error-correcting code for channel (b) is also an error-correcting code for channel (a). The confusable
set for a channel obtained by concatenating p copies of channel (c) contains the confusable set for channel (b).

The above definitions and theorem are used in our code construction based on syndrome compression, presented
in Section IV. The construction and analysis rely on the confusable sets for the channel, discussed in the next
section.

III. CONFUSABLE SETS FOR CHANNELS WITH SHORT DUPLICATION AND SUBSTITUTION ERRORS

In this section, we study the size of confusable sets of input strings passing through channels with an arbitrary
number of duplications and at most p substitutions. This quantity will be used to derive a Gilbert-Varshamov bound
and, in the next section, to construct our error-correcting codes.

Since the duplication root is unique, and duplications and deduplications do not alter the duplication root of
the input, Irrq(n) is a code capable of correcting duplications. The decoding process simply removes all tandem
repeats. In other words, if we append a root block, which deduplicates all repeats and produces the root of its input,
to the channel with duplication errors, any irreducible sequence passes through this concatenated channel with no
errors. This approach produces codes with the same asymptotic rate as that of [10], achieving the highest known
asymptotic rate.

Similar to [33], we extend this strategy to design codes for the channel with duplication and at most p substitution
errors, denoted the DS(p) channel and shown in Figure 1a. Note that the duplications and substitutions can occur
in any order. We take the code to be a subset of irreducible strings and find the code for a new channel obtained by
concatenating a root block to the channel with duplication and substitution errors, denoted as the DSD(p) channel
and shown in Figure 1b. Clearly, any error-correcting code for DSD(p) is also an error-correcting code for the
DS(p) channel.

We now define the confusable sets over Irrq(n) for the DSD(p) channel and bound its size, which is needed to
construct the code and determine its rate.

Definition 4. For x ∈ Irrq(n), let

B≤pIrr (x) = {y ∈ Irrq(n) : y 6= x,

R(D≤p(x)) ∩R(D≤p(y)) 6= ∅}
(3)

denote the irreducible-confusable set of x.

Note that the DSD(1) channel can be represented as shown in Figure 1c. This is because the sequence of errors
consists of duplications, substitutions, more duplications, and finally all deduplications. Hence, duplications that
occur after the substitutions are all deduplicated and we may equivalently assume they have not occurred. Next,
observe that the confusable set for the concatenation of p DSD(1) channels contains the confusable set for a DSD(p)
channel. We can thus focus on this concatenated channel. The advantage of considering DSD(1) is that it is reversible
in the sense that if v can be obtained from an input u, then u can be obtained from the input v, and this simplifies
our analysis.

Fig. 2 shows a confusable string z obtainable from irreducible sequences x ∈ Irrq(n) and y ∈ B≤pIrr (x), after
passing through p DSD(1) channels, each represented by a solid arrow. More precisely, xi ∈ R(D≤1(xi−1)) and
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Figure 2: A sequence z = xp = yp that can be obtained from both x and y through channels resulting from
the concatenation of p DSD(1) channels, each shown by a solid arrow. The dashed arrows represent the reverse
relationships and each yi−1 can be obtained by passing yi through a DSD(1) channel.

yi ∈ R(D≤1(yi−1)), where x = x0,y = y0, z = xp = yp. Furthermore, yi−1 ∈ R(D≤1(yi)). Hence, y can
be generated from x by concatenating the solid-line path from x to z and the dashed-line path from z to y, i.e.,
x→ x1 → · · · → z → yp−1 → · · · → y, where each → represents a DSD(1) channel. Considering the number of
possibilities in each step gives the following lemma.

Lemma 5. For x ∈ Irrq(n),

‖B≤pIrr (x)‖ ≤ max
xi,yj

p−1∏
i=0

‖R(D≤1(xi))‖
p∏
i=1

‖R(D≤1(yi))‖

where the maximum for xi (resp. yi) is over sequences that can result from x (resp. y) passing through the
concatenation of i DSD(1) channels.

It thus suffices to find ‖R(D≤1(x))‖. As

‖R(D≤1(x))‖ ≤ ‖R(D1(x))‖+ ‖R(D(x))‖
= ‖R(D1(x))‖+ 1,

we find an upper bound on ‖R(D1(x))‖, in Lemma 7, using the following lemma from [33].

Lemma 6. [33, Lemma 3] Let x be any string of length at least 5 and x′ ∈ D(x). For any decomposition of x as

x = r ab c de s,

for a, b, c, d, e ∈ Σq and r, s ∈ Σ∗q , there is a decomposition of x′ as

x′ = u ab w de v

such that u,w,v ∈ Σ∗q , uab ∈ D(rab), abwde ∈ D(abcde), and dev ∈ D(des).

Lemma 7. For an irreducible string x ∈ Σnq ,

‖R(D1(x))‖ ≤ nmax
t∈Σ5

q

‖R(D1(t))‖.

Proof: Given an irreducible string x ∈ Irrq(n), let x′ ∈ D(x) be obtained from x through duplications and
x′′ obtained from x′ by a substitution. For a given x, ‖R(D1(x))‖ equals the number of possibilities for R(x′′)
as x′′ varies. Note that duplications that occur after the substitution do not affect the root. So we have assumed
that the substitution is the last error before the root is found.
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Start S1 S2
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4223

43

Figure 3: Finite automaton for the regular language D∗(01234) based on [28].

Decompose x as x = rabcdes with r, s ∈ Irrq(∗) and a, b, c, d, e ∈ Σq , so that the substituted symbol in x′ is
a copy of c. Note that if |x| < 5 or if a copy of one of its first two symbols or its last two symbols is substituted,
then we can no longer write x as described. To avoid considering these cases separately, we may append two
dummy symbols to the beginning of x and two dummy symbols to the end of x, where the four dummy symbols
are distinct and do not belong to Σq , and prove the result for this new string. Since these dummy symbols do not
participate in any duplication, substitution, or deduplication events, the proof is also valid for the original x.

By Lemma 6, we can write

x = r ab c de s

x′ = u ab w de v,

x′′ = u ab z de v,

(4)

where uab ∈ D(rab), abwde ∈ D(abcde), dev ∈ D(des), and z is obtained from w by substituting a copy of
c. From (4), R(x′′) = R(rR(abzde)s), where R(abzde) starts with ab and ends with de (which may fully or
partially overlap).

To determine ‖R(D1(x))‖, we count the number of possibilities for R(x′′) as x′′ varies. Considering the
decomposition of x′′ into uabzdev given in (4), we note that if R(abzde) is given, then R(x′′) = R(rR(abzde)s)
is uniquely determined. So to find an upper bound, it suffices to count the number of possibilities for R(abzde).
We thus have

‖R(D1(x))‖ ≤
∑
‖{R(abzde) : abzde ∈ D1(abcde)}‖,

where the sum is over the choices of c in x, or equivalently the decompositions of x into rabcdes, in (4). As there
are n choices for c, we have

‖R(D1(x))‖ ≤ nmax
t∈Σ5

q

‖R(D1(t))‖.

The next lemma provides a bound on ‖R(D1(t))‖ for t ∈ Σ5
q by identifying the “worst case”. The proof is given

in Appendix A.

Lemma 8. Given q ≥ 3, we have

max
t∈Σ5

q

‖R(D1(t))‖ ≤ ‖R(D1(01234))‖,

where D1(01234) ⊆ Σ∗q+4 (the substituted symbol can be replaced with another symbol from Σq+4).

As shown in [28], D(01234) is a regular language whose words can be described as paths from ‘Start’ to S9 in
the finite automaton given in Figure 3. Then D1(01234) is equivalent to the set of paths from ‘Start’ to S9 but with
the label on one edge substituted. We will use this observation to bound ‖R(D1(01234))‖ in Lemma 10. The next
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lemma establishes a symmetric property of the automaton that will be useful in Lemma 10. Lemma 9 is proved by
showing that there is a bijective function h : U → V between U and V and between R(U) and R(V ). Specifically,
for u = u1 · · ·un, we let v = h(u) = ūnūn−1 . . . ū1, where for a ∈ {0, 1, 2, 3, 4}, ā = 4− a. A detailed proof is
given in Appendix B.

Lemma 9. Let U and V be the sets of labels of all paths from Start to any state and from any state to S9,
respectively, in the finite automaton of Figure 3. Then ‖U‖ = ‖V ‖ and ‖R(U)‖ = ‖R(V )‖.

Lemma 10. For q̂ ≥ 5 and D1(01234) ⊆ Σ∗q̂ , where the substitution replaces a symbol with any symbol from Σq̂ ,
we have

‖R(D1(01234))‖ ≤ 222(q̂ − 1).

Proof: Based on [28], recall that D(01234) is a regular language whose words can be described as paths from
‘Start’ to S9 in the finite automaton given in Figure 3, where the word associated with each path is the sequence
of the edge labels. Let x′ ∈ D(01234) and let x′′ be generated from x′ by a substitution. Assume x′ = uwv and
x′′ = uŵv, where u,v ∈ Σ∗5, w ∈ Σ5 and ŵ ∈ Σq̂ \{w}. So there are q̂−1 choices for ŵ. The string u represents
a path from ‘Start’ to some state su and the string v represents a path from some state sv to S9 in the automaton,
where there is an edge with label w from su to sv .

As x′′ = uŵv, we have R(x′′) = R(R(u)ŵR(v)), where R(u) is an irreducible string represented by a path
from “Start” to state su, and R(v) is an irreducible string represented by a path from sv to S9. Define U and V
as in Lemma 9. We thus have ‖R(D1(x))‖ ≤ ||R(U)|| × (q̂− 1)× ||R(V )|| = ||R(U)||2 × (q̂− 1). By inspection,
we can show that

R(U) = {Λ, 0, 01, 01201, 012, 0120, 010, 012010,

0121, 01202, 0123, 01232, 01231, 012313, 012312,

0123121, 01234, 012343, 012342, 0123424,

0123423, 01234232},

and hence ||R(U)|| = 22, completing the proof.

Theorem 11. For an irreducible string x ∈ Σnq , with q ≥ 3,

‖R(D≤1(x))‖ ≤ 968nq + 1.

Proof: From Lemmas 7, 8, and 10, it follows that ‖R(D1(x))‖ ≤ 222n(q̂ − 1) ≤ 2q · 222n = 968nq with
q̂ = q + 4. Furthermore, ‖R(D≤1(x))‖ ≤ ‖R(D1(x))‖+ 1.

We can now use Theorem 11 along with Lemma 5, to find a bound on ‖B≤pIrr (x)‖. To do so, we need to bound the
size of xi and yi shown in Figure 2, for which the following theorem is of use. The theorem is a direct extension
of [33, Theorem 5] and thus requires no proof. An example demonstrating the theorem is given in Appendix E.

Theorem 12 (c.f. [33, Theorem 5]). Given strings x ∈ Σnq and v ∈ D≤p(x), R(v) can be obtained from R(x) by
at most p L-substring edits, where L = 17.

It follows from the theorem that for 1 ≤ i ≤ p,

|xi| ≤ n+ pL, |yi| ≤ n+ pL. (5)

The next theorem then follows from Lemmas 5 and 11.

Theorem 13. Let x ∈ Irrq(n) ⊆ Σnq be an irreducible string of length n with q ≥ 3. The irreducible-confusable
set B≤pIrr (x) of x satisfies

‖B≤pIrr (x)‖ ≤ (968q(n+ pL) + 1)2p.

The size of the confusable sets will be used for our code construction. It also allows us to derive a Gilbert-
Varshamov (GV) bound, as follows.

Theorem 14. There exists a code of length n capable of correcting any number of duplications and at most p
substitutions with size at least

‖ Irrq(n)‖
(968q(n+ pL) + 1)2p

·
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We will show in Lemma 22 that the size of the code with the highest asymptotic rate for correcting duplications
only is essentially ‖ Irrq(n)‖. Assuming that p and q are constants, this GV bound shows that a code exists for
additionally correcting up to p substitution errors with extra redundancy of approximately 2p logq n symbols. The
two constructions presented in the next section have extra redundancies of 4p logq n and 8p logq n, which are only
small constant factors away from this existential bound.

IV. LOW-REDUNDANCY ERROR-CORRECTING CODES

As stated in Section III, our code for correcting duplications and substitutions is a subset of irreducible strings
of a given length. In this section, we construct this subset by applying the syndrome compression technique [35],
where we will make use of the size of the irreducible-confusable set ‖B≤pIrr (x)‖ derived in Section III. In this
section, unless otherwise stated, we assume that both q ≥ 4 and p are constant.

We begin by presenting the code constructions for correcting duplications and substitutions in Subsection IV-A,
assuming the existence of appropriate labeling functions used to produce the syndrome information and an auxiliary
error-correcting code used to protect it. The labeling functions will be discussed in Subsection IV-C, while the
auxiliary ECC is presented in Section V. In Subsection IV-B, we show that the proposed codes can in fact correct
duplications and edits. The redundancy of the codes and the computational complexities of their encoding and
decoding are discussed in Subsections IV-D and IV-E, respectively.

A. Code constructions

We first present a construction that assumes an error-free side channel is available, where the length of the
sequence passing through the side channel is logarithmic in the length of the sequence passing through the main
channel. In DNA storage applications, an error-free side channel may be available, for example, through data
storage in silicon-based devices. We then present a second construction that does not make such an assumption,
using a single noisy channel. In addition to potential practical uses, the first construction also helps make the second
construction more clear by motivating some of its components.

1) Channels with error-free side channels: In the construction below, x is transmitted through the noisy channel,
while r, which encodes the information (a, f(x) mod a) is transmitted through an error-free channel.

Construction A. Let n, p, q be positive integers. Furthermore, let f be a (labeling) function and, for each x ∈
Irrq(n), ax be a positive integer, such that for any y ∈ B≤pIrr (x), f(x) 6≡ f(y) mod ax. Define

CAn = {(x, r) : x ∈ Irrq(n), r = (ax, f(x) mod ax)},

where r is assumed to be the q-ary representation of (ax, f(x) mod ax).

We consider the length of this code to be N = n+ |r|. As will be observed in (8), |r| = O(logq n) and so the
sequence carried by the side channel is logarithmic in length. Recall that the existence of the labeling functions is
discussed in Subsection IV-C.

Theorem 15. The code in Construction A, assuming the labeling function f and ax (for each x ∈ Irrq(n)) exist,
can correct any number of duplications and at most p substitutions applied to x, provided that r is transmitted
through an error-free channel.

Proof: Let the retrieved word from storing x be v ∈ R(D≤p(x)). Note that ax and f(x) mod ax can be
recovered error-free from r. By definition, for all y 6= x that could produce the same v, we have y ∈ B≤pIrr (x).
But then, f(y) 6≡ f(x) mod ax, and so we can determine x by exhaustive search.

2) Channels with no side channels: To better illustrate the construction with no side channels, let us first observe
what the issues are with simply concatenating x and r and forming codewords of the form xr.
• The code in Construction A relies on a sequence v ∈ R(D≤p(x)) but if xr is stored, the output of the channel

is a sequence w ∈ R(D≤p(xr)). As the boundary between x and r becomes unclear after duplication and
substitution errors, it is difficult to find v ∈ R(D≤p(x)) from w ∈ R(D≤p(xr)). To address this, instead of
finding v, we find a sufficiently long prefix, as discussed in Lemma 16. This will also require us to modify
the labeling function.

• The decoding process requires the information encoded in r, which is now subject to errors. We will address
this by using a high-redundancy code that can protect this information, introduced in Lemma 17 and discussed
in detail in Subsection V-C.
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• The codewords need to be irreducible. This is discussed in Lemma 18.

For integers p, j, denote by D≤p≤j (x) the set of strings that can be obtained by deleting a suffix of length at most
j from some v ∈ R(D≤p(x)). Note that D≤p≤j (x) ⊆ Irrq(∗).

Lemma 16. Let x be an irreducible string of length n and r any string such that xr is irreducible. Let w ∈
R(D≤p(xr)) and s be the prefix of w of length n− pL. Then s ∈ D≤p≤2pL(x).

The lemma is proved in Appendix C.
By choosing the first n − pL elements of w ∈ R(D≤p(xr)), we find s ∈ D≤p≤2pL(x), which is a function of

only x rather than xr. But in doing so, we have introduced an additional error, namely deleting a suffix of length
at most 2pL. As a result, we need to replace the labeling function f with a stronger labeling function f ′ that, in
addition to handling both substitutions and duplications, can handle deleting a suffix of x. More precisely, f ′ is a
labeling function for the confusable set

B≤p,≤2pL
Irr (x) = {y ∈ Irrq(n) :

y 6= x,D≤p≤2pL(x) ∩ D≤p≤2pL(y) 6= ∅}.
(6)

The details of determining f ′ will be discussed in Section IV-C. Assuming the existence of the labeling function,
r encodes (a′x, f

′(x) mod a′x), where for x ∈ Irrq(x), a′x is chosen such that

f ′(x) 6≡ f ′(y) mod a′x,∀y ∈ B
≤p,≤2pL
Irr (x).

To address the second difficulty raised above, i.e., protecting the information encoded in r, we use an auxiliary
high-redundancy code given in Section V. The following lemma, which is proved in Subsection V-C, provides an
encoder for this code.

Lemma 17. Let σ = 01020. There exists an encoder E1 : ΣL2 → Irrq(L
′) such that i) σE1(u) ∈ Irrq(∗) and

ii) for any string x ∈ Irrq(∗) with xσE1(u) ∈ Irrq(∗), we can recover u from any w ∈ R(D≤p(xσE1(u))).
Asymptotically, L′ ≤ L

log(q−2) (1 + o(1)).

We use E1(a′x, f
′(x) mod a′x) to denote E1(u), where u is a binary sequence representing the pair

(a′x, f
′(x) mod a′x). For x ∈ Irrq(n), by letting r = E1(a′x, f

′(x) mod a′x), we can construct codewords of
the form xσr. But such codewords would not necessarily be irreducible. Irreducibility can be ensured by adding
a buffer bx between x and σr, as described by the next lemma, proved in Appendix D.

Lemma 18. For q ≥ 3 and any irreducible string x over Σq , there is a string bx of length cq such that xbxσ is
irreducible. Furthermore, c3 = 13, c4 = 7, c5 = 6, and cq = 5 for q ≥ 6.

The lemma implies that xbxσr is irreducible. This is because any substring of length at most 6 is either in
xbxσ or σr but cannot span both as |σ| = 5. But xbxσ and σr are both irreducible, as shown in Lemma 18 and
Lemma 17.i, respectively.

We are now ready to present the code construction.

Construction B. Let f ′ be a labeling function for the confusable sets B≤p,≤2pL
Irr (x),x ∈ Irrq(n). Furthermore, for

each x, let a′x be an integer such that f ′(x) 6≡ f ′(y) mod a′x for y ∈ B≤p,≤2pL
Irr (x). Let

CBn = {xbxσr : x ∈ Irrq(n), r = E1(a′x, f
′(x) mod a′x)}.

Note that for simplicity, we index the code by the length of x rather than the length of the codewords xbxσr,
i.e., n in CBn refers to the length of x. The length of r is discussed in Subsection IV-D below.

Theorem 19. The code in Construction B can correct any number of short duplications and at most p substitutions.

Proof: Let the retrieved word be w ∈ R(D≤p(xbxσr)). From Lemma 17, given w, we can find a′x and
f ′(x) mod a′x. Let s be the (n− pL)-prefix of w. By Lemma 18, xbxσr is irreducible. Then, by Lemma 16, the
(n− pL)-prefix of w, denoted s, satisfies s ∈ D≤p≤2pL(x). By definition, for all y 6= x that could produce the same
s, we have y ∈ B≤p,≤2pL

Irr (x). But then, f ′(y) 6≡ f ′(x) mod a′x, and so we can determine x by exhaustive search.
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Dups ≤ 1 sub Root

(a) DSD(1) channel

Dups ≤ 1 edit Root

(b) DED(1) channel

Figure 4: Any error-correcting code for channel (a) is also an error-correcting code for channel (b).

B. Extension to edit errors

We now show that the codes in Constructions A and B are able to correct an arbitrary number of duplications
and at most p edit errors, where an edit error may be a deletion, an insertion, or a substitution.

Define the DED(1) and DED(p) channels analogously to the DSD(1) and DSD(p) channels by replacing
substitutions with edit errors. Any error-correcting code for a concatenation of p DED(1) channels is also an
error-correcting code for DED(p).

Additionally, any error-correcting code for a DSD(1) channel is also an error-correcting code for the DED(1)
channel. This is because any input-output pair (x,y) for DED(1), shown in Figure 4b, is also an input-output pair
for the DSD(1) channel, shown in Figure 4a. This claim is proved in [33, Corollary 12], where it was shown that
a deletion can be represented as a substitution and a deduplication, e.g., abc → ac as abc → aac → ac, and an
insertion as a duplication and a substitution, e.g., abc→ abdc as abc→ abbc→ abdc.

Since CA and CB can correct errors arising from a concatenation of p DSD(1) channels, they can also correct
errors arising from a concatenation of p DED(1) channels and thus a DED(p) channel, leading to the following
theorem.

Theorem20. The codes in Constructions A and B can correct any number of duplications and at most p edit errors.

C. The labeling function

In this subsection, we first present the labeling function f such that f(x) 6= f(y) for y ∈ B≤pIrr (x), used in
Construction A. By Theorem 12, z ∈ R(D≤p(x)) ∩ R(D≤p(y)) can be obtained from x and from y by at most
2pL indels. Hence, it suffices to find f such that f(x) 6= f(y) if there is a string z that can be obtained from both
x and y through 2pL indels. Note that since we are utilizing syndrome compression, choosing a more “powerful”
labeling function does not increase the redundancy, which is still primarily controlled by maxx∈Irrq(n) ‖B≤pIrr (x)‖.
We use the next theorem for binary sequences to find f .

Theorem 21. [38] There exists a labeling function g : {0, 1}n → Σ2R(t,n) such that for any two distinct strings
c1 and c2 confusable under at most t insertions, deletions, and substitutions, we have g(c1) 6= g(c2), where
R(t, n) = [(t2 + 1)(2t2 + 1) + 2t2(t− 1)] log n+ o(log n).

Since z ∈ R(D≤p(x)) can be obtained from x via at most 2pL indels, Ui(z) can be derived from Ui(x) by at
most 2pL indels, for i ∈ [dlog qe]. Based on Theorem 21 and the work in [38], by letting t = 2pL, we can obtain a
labeling function g for recovering Ui(x) from Ui(z) under at most 2pL indels. Therefore, f : Σnq → Σ2dlog qeR(t,n) ,

f(x) =

dlog qe∑
i=1

2R(t,n)(i−1)g(Ui(x)), (7)

where t = 2pL, is a labeling function for the confusable sets B≤pIrr (x), x ∈ Irrq(n). For each x, a value ax needs
to be also determined such that f(x) 6≡ f(y) mod ax for y ∈ B≤pIrr (x). The existence of such ax, satisfying
log ax ≤ log ‖B≤pIrr (x)‖+ o(log n), is guaranteed by Theorem 3 provided that p is a constant (ensuring that p4 =
o(log log n)). The labeling function f and integers ax are used in Construction A.

In a similar manner, we can construct f ′ as a labeling function for B≤p,≤2pL
Irr (x),x ∈ Irrq(n) and integers

a′x, by setting t = 4pL to account for the deletion of length at most 2pL. This time, for all x ∈ Irrq(n),
log a′x ≤ log ‖B≤p,≤2pL

Irr (x)‖+ o(log n). The labeling function f ′ and integers a′x are used in Construction B.
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D. The redundancy of the error-correcting codes

In this section, we study the rate and the redundancy of the codes proposed in Constructions A and B and
compare these to those of the state-of-the-art short-duplication-correcting code given in [10], which has the highest
known asymptotic rate. For an alphabet of size q, the asymptotic rate of this code for short duplications is log λ,
where λ is the largest positive real root of x3 − (q − 2)x2 − (q − 3)x− (q − 2) = 0 [25].

The following lemma shows that the code proposed in [10] essentially has size Irrq(N), where N is the length of
the code, a fact that will be helpful for comparing the redundancies of the codes proposed here with this baseline.

Lemma 22. Let CDN be the code of length N over alphabet Σq introduced by [10] for correcting any number of
duplication errors. For q ≥ 4,

‖ Irrq(N)‖ ≤ ‖CDN ‖ ≤
q − 2

q − 3
‖ Irrq(N)‖.

Proof: As shown in [10], ‖CDN ‖ =
∑N
i=1 ‖ Irrq(i)‖. Based on [33, Lemma 14], given u ∈ Irrq(N − 1), there

are at least q− 2 choices for a ∈ Σq such that x = ua ∈ Irrq(N). Thus, (q− 2)‖ Irrq(N − 1)‖ ≤ ‖ Irrq(N)‖ and,
consequently, ‖ Irrq(N − i)‖ ≤ ‖ Irrq(N)‖

(q−2)i . Then we have∑N
i=1 ‖ Irrq(i)‖
‖ Irrq(N)‖

≤
N−1∑
j=0

1

(q − 2)j
≤ q − 2

q − 3
.

We now compare the redundancy of the code CA of Construction A with the best known code CD for correcting
only duplications. The length N of CAn is N = n+ |r|, where

|r| = 2 logq ax ≤ 2logq ‖B
≤p
Irr (x)‖+ o(logq n) ≤ 4p logq n+ o(logq n) (8)

symbols. Hence, N = n + 4p logq n + o(logq n). Then, the difference in redundancies between CAn and CDN , both
of length N , is

logq ‖CDN ‖ − logq ‖CAn ‖ = logq
‖ Irrq(N)‖
‖ Irrq(n)‖

+O(1) (9)

≤ logq q
N−n +O(1) (10)

≤ 4p logq n+ o(logq n), (11)

where the equality follows from Lemma 22 and the first inequality from the fact that ‖ Irrq(i+ 1)‖ ≤ q‖ Irrq(i)‖.
Noting that logq n = logq N + o(logq N) yields the following theorem.

Theorem 23. For constants q ≥ 4 and p, the redundancy of the code CAn of length N is larger than the redundancy
of the code CDN of the same length by at most 4 logq N + o(logq N).

We now turn our attention to comparing the redundancy of CBn of length N with CDN . Here, N−n = |r|+O(1) =
|E1(a′x, f

′(x) mod a′x)|+O(1). Similar to (9), the extra redundancy is then |r|+O(1), which through a′x depends
on ‖B≤p,≤2pL

Irr (x)‖, investigated in the next lemma. The proof of the lemma is in Appendix F.

Lemma 24. For x ∈ Irrq(n) with q ≥ 3,

‖B≤p,≤2pL
Irr (x)‖ ≤ q4pL(n+ pL)2p.

Lemma 25. For constants q ≥ 4 and p, and x ∈ Irrq(n), the length |r| of r = E1(a′x, f
′(x) mod a′x) satisfies

|r| ≤ 8p logq n+ o(logq n).

Proof: From the previous subsection, assuming p is a constant, we have that log a′x ≤ log ‖B≤p,≤2pL
Irr (x)‖+

o(log n) ≤ 2p log n+ o(log n). Since (f ′(x) mod a′x) ≤ a′x, we need 4p log n+ o(log n) bits to represent the pair
(a′x, f

′(x) mod a′x). Then, by Lemma 17, |E1(a′x, f
′(x) mod a′x))| ≤ 4p log n(1 + o(1))/ log(q − 2). The lemma

follows from log q
log(q−2) ≤ 2 for q ≥ 4.

Using Lemma 25, the next theorem gives the extra redundancy of correcting p substitutions compared to [10]
and shows that there is no relative asymptotic rate penalty.
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Theorem 26. For constants q ≥ 4 and p, the redundancy of the code CBn of length N is larger than the redundancy
of the code CDN of the same length by at most 8 logq N + o(logq N). The codes have the same asymptotic rate,
which, for q = 4, equals log 2.6590.

E. Time complexity of encoding and decoding

Suppose q ≥ 4 is a constant. The total time complexities of both the encoding and decoding processes are
polynomial in the lengths of the stored and retrieved sequences, respectively. The encoding process consists of four
main parts:

1) Generating x ∈ Irrq(n) by the state-splitting algorithm, which has polynomial-time complexity [25].
2) Determining bx such that xbxσ ∈ Irrq(∗), which has constant time complexity as the relevant subgraph of

the De Bruijn graph (see Appendix D) has a constant size (no more than q5 vertices).
3) Determining a′x and f ′(x) mod a′x. This is done in three steps, with polynomial time complexity. i) Given
x ∈ Irrq(n), we find the elements of a set B̂ ⊇ B≤p,≤2pL

Irr (x) whose size satisfies the upper bound given in
Lemma 24. Specifically, given x we find all sequences that can be obtained from it through ≤ p short substring
substitutions, one deletion of a suffix of length ≤ 2pL, one insertion of a suffix of length ≤ 2pL, and another
≤ p short substring substitutions, where in each short substring substitution step, we replace a substring
abcde ∈ Irrq(5) by another irreducible substring from the set R(D1(abcde)) and then deduplicate all copies.
The total time complexity of this step is O(n2p) as each element of B̂ is obtained by a bounded number of
operations and ‖B̂‖ = O(n2p). ii) Since computing f ′(·) from [38] has time complexity O(n log n), computing
it for all elements of B̂ takes O(n3p log n) steps. iii) Computing the remainder of these values modulo the
≤ 2logO(n2p) possible values for a′x also has polynomial complexity.

4) Generating r = E1(a′x, f
′(x) mod a′x) using the encoder E1 for the code in Construction E, which has

complexity polynomial in |r| based on Subsection V-D. Hence, by Lemma 25, the complexity is at most
polynomial.

Therefore, when p is a constant, the time complexity of the encoding process is polynomial with respect to N (as
well as n).

Decoding requires finding the root of the retrieved word, which is linear in its length; decoding a′x and f ′(x) mod
a′x, which is polynomial as discussed in Subsection V-D; and determining x through a brute-force search among
all inputs that can lead to the same (n− pL)-prefix of the root of the retrieved sequence. Similar to the discussion
about finding B̂ above, the brute-force search is polynomial in n. Hence, decoding is polynomial in the length of
the retrieved sequence.

V. AUXILIARY HIGH-REDUNDANCY ERROR-CORRECTING CODES

Based on lemma 17 in Section IV, the error-correcting codes for short duplications and at most p substitutions
with low redundancy rely on an error-correcting code to protect the syndrome information (a′x, f

′(x) mod a′x),
where (a′x, f

′(x) mod a′x) is considered as a binary sequence. Therefore, this section focuses on constructing error-
correcting codes that can protect this information from short duplications and at most p substitutions. We will also
present the rate of the proposed codes in Section V-B, followed by the proof of Lemma 17 used in the previous
section.

While in the previous section, we used syndrome compression with a labeling function designed to handle indel
errors, in this section, the errors are viewed as substring edits in irreducible sequences, as described in Theorem 12.
An example for Theorem 12 is given in Appendix E.

A. Code construction

To construct codes correcting at most p L-substring edits in irreducible sequences, similar to [33], we divide the
codewords into message blocks, separated by markers, while maintaining irreducibility, such that an L-substring
edit only affects a limited number of message blocks. In the case of p = 1 studied in [33], it was shown that
if the markers appear in the correct positions in the retrieved word, then at most two of the message blocks are
substituted. For p > 1 however, even if all markers are in the correct positions, it is not guaranteed that a limited
number of message blocks are substituted, making it challenging to correct more than one error.

We start by recalling an auxiliary construction from [33].
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Construction C. [33, Construction 6] Let l,m,NB be positive integers with m > l ≥ 5 and σ ∈ Irrq(l). Also,
let Bmσ denote the set of sequences B of length m such that σBσ is irreducible and has exactly two occurrences
of σ. Define

Cσ = {B1σB2σ · · ·σBNB : Bi ∈ Bmσ }.

The irreducibility of σBiσ ensures that the codewords are irreducible.
We denote the output of the channel by y. Define a block in y as a maximal substring that does not overlap with

any σ. Furthermore, define an m-block in y as a block of length m. Note that m-blocks can be either message
blocks in x or new blocks created by substring edits.

Having divided each codeword into NB message blocks and NB − 1 separators, we study in the next lemma
how message blocks are affected by the errors.

Lemma 27. Let x ∈ Cσ , m > L, and y be generated from x through at most p L-substring edits. Then there are
less than (NB +p) m-blocks in y. Furthermore, there are at least NB−2p error-free m-blocks in y which appear
in x in the same order. More precisely, there are blocks Bi1 , Bi2 , . . . , Bik in y, where k ≥ NB − 2p, each Bij is a
message block in x, and any two blocks Bij and Bij′ have the same relative order of appearance in x and in y.

Proof: First suppose y has ≥ (NB + p) message blocks. This implies that the length of y is at least (NB +
p)m+ (NB + p− 1)l, which is larger than the length of x by pm+ (p− 1)l. But this is not possible as m > L
and the total length of inserted substrings is at most pL.

Furthermore, if m > L, each L-substring edit alters i) a message block in x, ii) a message block and a marker
σ, or iii) two message blocks and the marker between them. Hence at least NB − 2p message blocks of x appear
in y without being changed.

If the positions of the error-free m-blocks described in Lemma 27 in y were known, a Reed-Solomon (RS) code
of length NB and dimension NB − 2p could be used to recover codewords in Cσ . This however is not the case
since the blocks can be shifted by substring edits. In order to determine the positions of the error-free m-blocks,
we introduce another auxiliary construction based on Construction C by combining message blocks into message
groups, where the message blocks in each group have different “colors”.

Construction D. For an integer T , we partition Bmσ into T parts Bmσ (j), j ∈ [T ]. The elements of Bmσ (j) are said
to have color j. Let NB be a positive integer that is divisible by T . We define the code

C(σ,T ) =
{
B1σB2σ · · ·σBNB ∈ Cσ : Bi ∈ Bmσ (i mod+ T )

}
,

where Cσ has parameters m, l with m > L and m > l ≥ 5.
We divide the message blocks B1, . . . , BNB in each x ∈ C(σ,T ) into N̂ = NB/T message groups, where the

k-th message group is Sk = (B(k−1)T+1, . . . , BkT−1, BkT ). Note that the message blocks in each message group
have colors 1, 2, . . . , T in order.

For example, if NB = 12, T = 3, N̂ = 4, then in a codeword

x = B1σB2σB3σB4σB5σB6σ · · ·σB10σB11σB12,

the first group is (B1, B2, B3) and the second group is (B4, B5, B6). Furthermore, message blocks in both groups
have colors (1, 2, 3). The colors in the message group will help us identify the true positions of the message blocks.

Definition 28. For x ∈ C(σ,T ) and y derived from x through at most p L-substring edits, let the i-th m-block in y
be denoted by B′i. A T -group in y is a substring B′k+1σB

′
k+2 · · ·σB′k+T such that the m-block B′k+j has color j.

The next lemma characterizes how error-free message groups (those that do not suffer any substring edits but
may be shifted) appear in y.

Lemma 29. Suppose x ∈ C(σ,T ) and let y be obtained from x through at most p L-substring edits. For r ∈ [N̂ ],
if the r-th message group in x is not affected by any substring edit errors, then it will appear as a T -group after
b m-blocks in y, where b ∈ [(r − 1)T − 2p, (r − 1)T + p− 1].

Proof: Since m > L, each L-substring edit can affect at most two message blocks and thus at most two
message groups. Hence, there are at least N̂ − 2p message groups that do not suffer any substring edits.

Let the r-th message group Sr in x be free of substring edits. Given that the colors of its message blocks are
not altered, it will appear as a T -group in y. Since each substring edit alters at most two message blocks, among
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the (r− 1)T message blocks appearing before Sr in x, at most 2p do not appear in y. Furthermore, the substring
edits add at most pL to the length of x. Since m > L, this means that at most p− 1 new m-blocks are created in
y. Hence, b ∈ [(r − 1)T − 2p, (r − 1)T + p− 1].

The previous lemma guarantees the presence of error-free, but possibly shifted, T -groups, and provides bounds
on their position in y. In the following theorem, we use these facts to show that these T -groups can be synchronized
and the errors can be localized.

Theorem 30. Let C(σ,T ) be a code in Construction D and suppose T ≥ 3p and N̂ ≥ 4p + 1. There is a decoder
Dec such that, for any x ∈ C(σ,T ) and y derived from x through at most p L-substring edits, v = Dec(y) suffers
at most t substitutions and e erasures of message groups, where t+ e ≤ 2p.

Proof: We start by identifying all T -groups in y. Note that no two T -groups can overlap. Let v = (S′1, . . . , S
′
N̂

)
be the decoded vector, where S′r is the decoded version of the message group Sr, determined as follows.

For r = 1, . . . , N̂ :
1) If there exists a T -group T appearing after b message blocks such that b ∈ [(r− 1)T − 2p, (r− 1)T + p− 1],

then let S′r = T .
2) If such a T -group does not exist, let S′r = Λ, denoting an erasure.

We note that for each r, at most one T -group may satisfy the condition in 1). If two such T -groups exist appearing
after b and b′ message blocks, we must have |b− b′| ≥ T and b, b′ ∈ [(r − 1)T − 2p, (r − 1)T + p− 1], implying
3p− 1 ≥ T , which contradicts the assumption on T .

If a message group Sr is not subject to a substring edit, then by Lemma 29, we have S′r = Sr. Otherwise, we
may have a substitution of that message group, i.e., S′r 6= Sr, or an erasure, S′r = Λ. Since each substring edit may
affect at most 2 message groups, the total number of substitutions and erasures is no more than 2p.

We now construct an MDS code that can correct the output of the decoder of Theorem 30.

Construction E. Let C(σ,T ) be the code in Construction D with parameters l,m, T, N̂ satisfying m > L,m > l ≥
5, T ≥ 3p, and N̂ ≥ 4p+ 1. Furthermore, assume |Bmσ (j)| ≥ N̂ + 1 for j ∈ [T ]. Finally, let γ be a positive integer
such that 2γ ≤ N̂ + 1 and ζj : F2γ → Bmσ (j) be an injective mapping for j ∈ [T ]. We define CE as

CE = {ζ1(c11)σ · · ·σζj(cj1)σ · · ·σζT (cT1 )σ

ζ1(c12)σ · · ·σζj(cj2)σ · · ·σζT (cT2 )σ · · ·
ζ1(c1

N̂
)σ · · ·σζj(cjN̂ )σ · · ·σζT (cT

N̂
) :

{cj , j ∈ [T ]} ⊆ MDS(N̂ , N̂ − 4p, 4p+ 1)},

where MDS(N̂ , N̂ − 4p, 4p + 1) denotes an MDS code over F2γ of length N̂ = 2γ − 1, dimension N̂ − 4p, and
minimum Hamming distance dH = 4p+ 1, and cj = (cj1, c

j
2, . . . , c

j

N̂
) is a codeword of the MDS code.

For each j, we also define an inverse ζ−1
j for ζj . For B ∈ Bmσ (j), if β ∈ F2γ such that ζj(β) = B exists, then

let ζ−1
j (B) = β. Otherwise, let ζ−1

j (B) = 0.

Theorem 31. The error-correcting codes CE in Construction E can correct any number of short duplications and
at most p symbol substitutions.

Proof: Given a codeword x ∈ CE , let x′′ ∈ D≤p(x) and let y = R(x′′). Note that by construction, x is
irreducible. Thus, by Theorem 12, y can be obtained from x through at most p L-substring edits. As CE ⊆ C(σ,T ),
based on Theorem 30, v = Dec(y) suffers at most t substitutions and e erasures of message groups, where
t+ e ≤ 2p. Hence, for j ∈ [T ], the blocks (ζj(c

j
1), ζj(c

j
2), . . . , ζj(c

j

N̂
)) suffer at most 2p erasures or substitutions.

Consequently, if we apply ζ−1
j to the corresponding retrieved blocks in v, the codeword (cj1, c

j
2, . . . , c

j

N̂
) also suffers

at most 2p substitutions or erasures, which can be corrected using the MDS code.

B. Code rate

In this subsection, we present choices for the parameters of Construction E and discuss the rate of the resulting
code.

Among the nE symbols of each codeword in Construction E, 4pTm + (N̂T − 1)l symbols belong to MDS
parities or markers. We choose T and l to be their smallest possible values and set T = 3p and l = 5.
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The construction requires that ‖Bmσ (j)‖ ≥ N̂ + 1 for all j. Let M (m)
σ = ‖Bmσ ‖. Dividing Bmσ into parts of nearly

equal sizes, we find that each part Bmσ (j) has size at least M (m)
σ /T −1. We then choose N̂ +1 as the largest power

of two not larger than M (m)
σ /T − 1, ensuring that N̂ + 1 ≥M (m)

σ /(2T )− (1/2). Assume

M (m)
σ ≥ 24p2 + 15p. (12)

Then N̂ + 1 ≥M (m)
σ /(2T )− (1/2) ≥ 4p+ 2.

Furthermore, note that N̂T (m+ 5)− 5 = nE and thus N̂ = nE+5
(m+5)(3p) . The size of the code then becomes

‖CE‖ = (N̂ + 1)(N̂−4p)(3p),

and

log ‖CE‖ ≥
(

nE
m+ 5

− 12p2

)
log

(
M

(m)
σ

6p
− 1

2

)

≥
(

nE
m+ 5

− 12p2

)(
logM (m)

σ + log

(
1

6p
− 1

2M
(m)
σ

))
≥
(

nE
m+ 5

− 12p2

)(
logM (m)

σ − log (6p+ 1)
)
, (13)

where in the last step we have used the fact that M (m)
σ ≥ 24p2 + 15p.

It was shown in [33] that M (m)
σ ≥ (q − 2)m−cq for some σ, where cq is a constant independent of m. In

particular, c3 ≤ 13, c4 ≤ 7, c5 ≤ 6, and cq ≤ 5 for q ≥ 6. To satisfy (12), we need

m ≥ max{logq−2(24p2 + 15p) + cq,L+ 1}. (14)

From (13), for the rate of CE ,

log ‖CE‖
nE

≥
(
m− cq
m+ 5

− 12p2m

nE

)
log(q − 2)− log(6p+ 1)

m+ 5

≥
(

1− cq + 5

m+ 5
− 12p2m

nE

)
log(q − 2)− log(6p+ 1)

m+ 5
,

where m satisfies (14). For log p = o(log nE), letting m = Θ(log nE), we find that the rate asymptotically satisfies

log ‖CE‖
nE

≥ log(q − 2)(1− o(1)),

while the redundancy is at least Θ(nE/ log nE). We observe that a low redundancy and an asymptotic rate equal
to that of Irrq(nE) is not guaranteed for CE , unlike CB , proposed in the previous section. However, CB relies on
CE to protect its syndrome as stated in Lemma 17, whose proof is given in the next subsection.

C. Proof of Lemma 17

To simplify the proof, instead of directly proving Lemma 17, we prove the following lemma, which essentially
reverses the sequences in Lemma 17. Since both duplication and deduplication are symmetric operations, the lemmas
are equivalent.

Lemma 32. Let σ = 01020. There exists an encoder E1 : ΣL2 → Irrq(L
′) such that i) E1(u)σ ∈ Irrq(∗) and

ii) for any string x ∈ Irrq(∗) with E1(u)σx ∈ Irrq(∗), we can recover u from any w ∈ R(D≤p(E1(u)σx)).
Asymptotically, L′ ≤ L/ log(q − 2)(1 + o(1)).

Proof: Let v = E1(u) and w ∈ R(D≤p(vσx)). Furthermore, let s be |v| − pL-prefix of w. By Lemma 16,
we have s ∈ D≤p≤2pL(v). So s can be obtained from v through at most 3p L-substring edits. So if we let E1 be an
encoder for CE designed to correct 3p substitution errors and an infinite number of duplications, we can recover u
from s. The rate of this encoder is lower bounded by log(q − 2)(1 + o(1)).
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D. Time complexity of encoding and decoding

In this subsection, we analyze the time complexities of both the encoding and decoding algorithms for the error-
correcting code in Construction E. Recall that we choose T to be a constant and choose N̂ = Θ(‖Bmσ ‖) thus
satisfying log N̂ = Θ(m). Also, note that nE = Θ(N̂). Furthermore, we choose each part Bmσ (j) in the partition
of Bmσ to be a contiguous block in the lexicographically sorted list of the elements of Bmσ . So the complexity of
computing the mapping ζj is polynomial in ‖Bmσ ‖ and thus in N̂ .

We first discuss the complexity of the encoding. The complexity of producing the MDS codewords used in CE
is polynomial in N̂ . Mapping these to sequences in Bmσ is also polynomial in N̂ as discussed in the previous
paragraph. Hence, the encoding complexity is polynomial in N̂ as well as in nE .

Decoding can be performed as described in the proof of Theorem 31, using the decoder described in Theorem 30
and its proof. As the steps described in the proofs of these theorems are polynomial in the length of the received
sequence, so is the time complexity of the decoding.

VI. CONCLUSION

We introduced codes for correcting any number of duplication and at most p edit errors simultaneously. Recall
that the set of irreducible strings is a code capable of correcting short duplication errors. To additionally correct edit
errors, we append to each irreducible sequence x of length n a vector generated through syndrome compression that
enables us to distinguish confusable inputs. Given that edit and duplication errors manifest as substring edit errors,
we designed a buffer and the auxiliary code in a way to enable us to recover the syndrome information from the
received string. In each step of the construction, we carefully ensured that the resulting sequence is still irreducible.
The additional redundancy compared to the codes correcting duplications only [10] is 8p(logq n)(1 + o(1)), with
the number of edits p and the alphabet size q being constants, which is at most a factor of 2 away from the lowest-
redundancy codes for correcting p edits only [37] and a factor of 4 away from the GV bound given in Theorem 14.
The encoding and decoding processes have polynomial time complexities.

The codes proposed in this work correct a wide range of errors. However, the number of edit errors is limited to
be a constant. An important and interesting open problem is extending the work to correct more edits, e.g., linear
in the code length. Additionally, only duplications bounded in length by three can be corrected, due to the fact that
such duplications result in a regular language. So a second future direction is extending the work to correct longer
duplications.
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APPENDIX A
PROOF OF LEMMA 8

Lemma 8. Given q ≥ 3, we have

max
t∈Σ5

q

‖R(D1(t))‖ ≤ ‖R(D1(01234))‖,

where D1(01234) ⊆ Σ∗q+4 (the substituted symbol can be replaced with another symbol from Σq+4).

To prove Lemma 8, we start with the definition of dominance between two sequences from [33].

Definition 33. Let s and s̄ be strings of length n, and let A be the set of symbols in s and Ā the set of symbols in s̄.
We say that s dominates s̄ if there exists a function η : A→ Ā such that s̄ = η(s), where η(s) = η(s1) · · · η(sn).
Furthermore, a set U of strings dominates a set T if there is a single mapping η such that for each string t ∈ T
there is a string u ∈ U such that t = η(u).

For example, 0102 dominates 1212 (using the mapping η(0) = 1, η(1) = 2, η(2) = 2) but 0102 does not dominate
0010. The string 012 · · · k dominates any string of length k + 1.

We recall an auxiliary lemma showing properties of dominance from [33], along with two other auxiliary lemmas
that are used to simplify the proof of Lemma 8.
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Lemma 34. ( [33, Lemma 1]) Assume there are two strings s, s̄ with s dominating s̄.

1) Suppose we apply the same duplication in both s and s̄ (that is, in the same position and with the same
length). Let the resulting strings be s′ and s̄′, respectively. Then s′ dominates s̄′.

2) If a deduplication is possible in s, a deduplication in the same position and with the same length is possible
in s̄. Let the result of applying this deduplication to s and s̄ be denoted by s′ and s̄′, respectively. Then s′

dominates s̄′.

Lemma 35. Let s̄ be a string over Σ̄ and s a string over Σ such that s dominates s̄. Let the number of distinct
symbols in s̄ and s be denoted q̄s and qs, respectively, and suppose ‖Σ‖ ≥ ‖Σ̄‖ + (qs − q̄s). Then Dp(s) ⊆ Σ∗

dominates Dp(s̄) ⊆ Σ̄∗. In other words, there is a mapping η : Σ→ Σ̄ that for any ȳ ∈ Dp(s̄) ⊆ Σ̄∗, there exists
y ∈ Dp(s) ⊆ Σ∗ such that ȳ = η(y).

Before proving the lemma, we provide an example with multiple short duplications and a substitution error,
where the duplicated substrings are marked with underlines and the substituted symbols are in red.

Let Σ = {0, 1, 2, 3, 4} and Σ̄ = {0, 1, 2, 3}. Suppose s = 012 and s̄ = 010 with qs = 3 and q̄s = 2. The mapping
η(0) = 0, η(1) = 1, and η(2) = 0, shows that s dominates s̄, i.e., s = 012→ s̄ = 010.

Let ȳ1 = 010010010 ∈ D(s̄). Then there exists y1 = 012012012 ∈ D(s) dominating ȳ1, via the same mapping η.
Next, assume ȳ2 = 010012010 is generated from ȳ1 by a substitution 0 → 2. Then y2 = 012013012, obtained

from y1 after a substitution 2→ 3 in the same position, dominates ȳ2, via the mapping η extended by η(3) = 2.
Proof of Lemma 35: Without loss of generality, assume that Σ̄ = {0, 1, . . . , ‖Σ̄‖ − 1} and that the symbols

appearing in s̄ are 0, 1, . . . , q̄s − 1, where q̄s ≤ ‖Σ̄‖. Similar statements hold for Σ, s, qs. By assumption, there
exists some mapping η : {0, . . . , qs−1} → {0, . . . , q̄s−1} showing that s dominates s̄. Since ‖Σ‖−qs ≥ ‖Σ̄‖− q̄s,
we may extend η by mapping symbols in Σ not occurring in s to symbols in Σ̄ not occurring in s̄. Specifically,
we assign η(i) = i− (qs − q̄s) ∈ Σ̄ for i ∈ {qs, qs + 1, . . . , ‖Σ‖ − 1} ⊆ Σ to construct η : Σ→ Σ̄ .

Let the sequence of errors transforming s̄ to ȳ be denoted by T̄j , j = 1, . . . , k and let ȳj = T̄j(ȳj−1) with
ȳ0 = s̄ and ȳ = ȳk. We will find a corresponding sequence (Tj), where each Tj has the same type of error as
T̄j , and define yj = Tj(yj−1). We prove that for each j, we have ȳj = η(yj). The claim holds for j = 0 by
assumption. Suppose it holds for j − 1. We show that it also holds for j. If T̄j is a duplication, by Lemma 34.1),
then we choose Tj to be a duplication of the same length in the same position. If T̄j substitutes some symbol in
ȳj−1 with a ∈ Σ̄, then Tj substitutes the symbol in the same position in yj−1 with a symbol b ∈ Σ such that
η(b) = a. It then follows that ȳj = η(yj) for each ȳj . Therefore, we have Dp(s) ⊆ Σ∗ dominates Dp(s̄) ⊆ Σ̄∗.

Lemma 36. If a set of strings Y dominates a second set Ȳ , then ||R(Ȳ )|| ≤ ||R(Y )||.

Proof: Suppose Y dominates Ȳ via a mapping η : Σ→ Σ̄. Then, for each ȳ ∈ Ȳ , there exists some y ∈ Y such
that ȳ = η(y). For ȳ ∈ Ȳ , define η−1(ȳ) as the lexicographically-smallest sequence among {y ∈ Y : η(y) = ȳ}.
Furthermore, define Y ′ = {η−1(ȳ) : ȳ ∈ Ȳ } and note that Y ′ ⊆ Y . With this definition, Y ′ dominates Ȳ and η is
a bijection between the two sets. We have ‖Ȳ ‖ = ‖Y ′‖ ≤ ‖Y ‖. Also, as Y ′ ⊆ Y , we have ‖R(Y ′)‖ ≤ ‖R(Y )‖.

To prove the lemma, we show that ‖R(Ȳ )‖ ≤ ‖R(Y ′)‖. It suffices to prove that if ȳ1, ȳ2 ∈ Ȳ have distinct
roots, then y1,y2 ∈ Y ′, where y1 = η−1(ȳ1) and y2 = η−1(ȳ2), also have distinct roots.

Suppose, on the contrary, that y1,y2 do not have distinct roots, i.e., R(y1) = R(y2). Let T1 and T2 represent
the sequences of deduplications on y1 and y2 that produce their roots, i.e., R(y1) = T1(y1) and R(y2) = T2(y2).
Based on the Lemma 34.2) above, there exist two corresponding sequences of deduplications T̄1 and T̄2 such that
T̄1(ȳ1) = η(R(y1)) and T̄2(ȳ2) = η(R(y2)). If R(y1) = R(y2), then T̄1(ȳ1) = T̄2(ȳ2). But by the uniqueness of
the root, R(ȳ1) = R(T̄1(ȳ1)) and R(ȳ2) = R(T̄2(ȳ2)). So R(ȳ1) = R(ȳ2). But this contradicts the assumption.
Hence, the roots of y1 and y2 are distinct.

With Lemma 35 and Lemma 36 in hand, we prove Lemma 8 in the following.
Proof of Lemma 8: Let s = 01234. If t is the empty string, the claim is trivial. So in the rest of the proof,

we assume t is not empty. Based on Definition 33, s dominates t for any t ∈ Σ5
q \ {Λ}. Let qt denote the number

of distinct symbols in t and note that there are 5 distinct symbols in s. By Lemma 35, with p = 1, D1(s) ⊆ Σ∗q+4

dominates D1(t) ⊆ Σ∗q for any t ∈ Σ5
q since q + 4 ≥ q + (5 − qt) as qt ≥ 1. Applying Lemma 36 to D1(s) and

D1(t) completes the proof.
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APPENDIX B
PROOF OF LEMMA 9

Lemma 9. Let U and V be the sets of labels of all paths from Start to any state and from any state to S9,
respectively, in the finite automaton of Figure 3. Then ‖U‖ = ‖V ‖ and ‖R(U)‖ = ‖R(V )‖.

Proof: Define h(a) = 4 − a for a ∈ Σ5 and h(u) = h(un)h(un−1) · · ·h(u1) for u ∈ Σn5 . Furthermore, for
S ⊆ Σ∗5, define h(S) = {h(u) : u ∈ S}. Note that h is its own inverse. We claim that h has the following
properties, to be proved later:

1) For s, t ∈ Σ∗5, s is a prefix of t if and only if h(s) is a suffix of h(t).
2) For t ∈ Σ∗5, D(h(t)) = h(D(t)).
3) For S ⊆ Σ∗5, R(h(S)) = h(R(S)).
By definition, if u ∈ U then u is a prefix of some x ∈ D(01234). Then, by Property 1, h(u) is a suffix of h(x).

By setting t = 01234, it follows from Property 2 that D(01234) = h(D(01234)), and thus h(x) ∈ D(01234).
Hence, h(u) is in V . Similarly, we can show that if v ∈ V , then h(v) ∈ U . As h is its own inverse, we have
V = h(U) and ‖U‖ = ‖V ‖. Applying Property 3 with S = U yields R(V ) = h(R(U)) and ‖R(V )‖ = ‖R(U)‖.

We now prove Properties 1-3. Property 1 follows from the definition of h. Property 2 follows from the observation
that if x′ is obtained from x via a duplication, then h(x′) can be obtained from h(x) via a duplication, i.e.,
the relationship represented by h is maintained under duplication. To prove Property 3, it suffices to show that
R(h(t)) = h(R(t)) for t ∈ Σ∗5, which holds as h is maintained under deduplication.

APPENDIX C
PROOF OF LEMMA 16

Lemma 16. Let x be an irreducible string of length n and r any string such that xr is irreducible. Let w ∈
R(D≤p(xr)) and s be the prefix of w of length n− pL. Then s ∈ D≤p≤2pL(x).

Proof: Based on Theorem 12, w can be considered as being generated from xr by at most p L-substring edits.
Let j be the last symbol of x not affected by a substring edit (i.e., it is not deleted by a substring edit, but it may
be shifted). Suppose t ≤ p substring edits occur before xj and at most p− t after xj . Then, j ∈ [n− (p− t)L, n].
The symbol xj appears as the ith symbol of w for some i ∈ [j− tL, j+ tL] . Then, w[i] ∈ R(Dt(x[j])). It follows
that v ∈ R(Dt(x)) for v = w[i]x[j+1,n]. As i ≥ j − tL and j ≥ n − (p − t)L, we have n − pL ≤ i. Hence,
s = w[n−pL] is a prefix of w[i] and thus also a prefix of v. Specifically, s can be obtained from v by a suffix
deletion of length

|v| − (n− pL) = i+ (n− j)− (n− pL)

≤ n+ tL+ (p− t)L − (n− pL)

= 2pL.

As v ∈ D≤p(x), we have s ∈ D≤p≤2pL(x).

APPENDIX D
PROOF OF LEMMA 18

Lemma 18. For q ≥ 3 and any irreducible string x over Σq , there is a string bx of length cq such that xbxσ is
irreducible. Furthermore, c3 = 13, c4 = 7, c5 = 6, and cq = 5 for q ≥ 6.

Before proving Lemma 18, we recall from [10] that Irrq(∗) is a regular language whose graph Gq = (Vq, ξq) is
a subgraph of the De Bruijn graph. The vertex set Vq consists of 5-tuples a1a2a3a4a5 ∈ Irrq(5) that do not have
any repeats (of length at most 4). There is an edge from a1a2a3a4a5 → a2a3a4a5a6 if a1a2a3a4a5a6 belongs to
Irrq(6). The label for this edge is a6. The label for a path is the 5-tuple representing its starting vertex concatenated
with the labels of the subsequent edges. The proof below is similar to that of [33, Theorem 15] and is presented
here for completeness.

Proof: Given x ∈ Irrq(n) and q ≥ 3, x can be represented by a path over the graph Gq , ending at the vertex
x[n−4:n]. Furthermore, σ = 01020 can be considered as a vertex in Gq since σ ∈ Irrq(5). Let us assume for the
moment that q ≥ 6. Based on [33, Lemma 14], each vertex has at least q− 2 outgoing edges. So from each vertex,
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there is at least one outgoing edge whose label is equal to either 3, 4, or 5. So, starting from x[n−4:n], we may
arrive at some vertex with label bx ∈ {3, 4, 5}5 in 5 steps. Furthermore, bxσ is irreducible as both bx and σ are
irreducible and have no symbols in common. Hence, there is a path of length 5 from bx to σ in Gq . So there is a
path in Gq with label xbxσ, implying that xbxσ is irreducible. We further have cq = |bx| = 5. For q ∈ {3, 4, 5},
we have verified computationally that, for any choice of x[n−4:n], there exists a path from x[n−4:n] to σ of length
cq + 5, with the value of cq as given in the lemma. Denoting the label of this path as bxσ gives us the sequence
bx of length cq , with xbxσ being irreducible.

Figure 5: s results from passing x and y through a concatenation of p DSD(1) channels and a channel deleting a
suffix of length at most 2pL (c.f. Figure 2).

APPENDIX E
EXAMPLE FOR THEOREM 12

Theorem 12 (c.f. [33, Theorem 5]). Given strings x ∈ Σnq and v ∈ D≤p(x), R(v) can be obtained from R(x) by
at most p L-substring edits, where L = 17.

The following example illustrates the theorem.

Example37. Let the alphabet be Σ4 = {0, 1, 2, 3} and p = 2. We take the input x to be irreducible, i.e., R(x) = x.
By passing through the channel, x suffers multiple duplications and 2 symbol substitutions, resulting in y ∈ D2(x).
We show the difference between R(x) and R(y) for two possible input-output pairs. Below, substrings added via
duplication are marked with underlines, while substituted symbols are red and bold.

First, we provide an example where R(y) can be obtained from R(x) via non-overlapping substring edits:

x = 3210313230121321,

y = 321320321031313213232121321321,

R(x) = 321︸︷︷︸
α0

︸︷︷︸
β1

031︸︷︷︸
α1

3230121︸ ︷︷ ︸
β2

321︸︷︷︸
α2

,

R(y) = 321︸︷︷︸
α0

320321︸ ︷︷ ︸
β′

1

031︸︷︷︸
α1

︸︷︷︸
β′

2

321︸︷︷︸
α2

,

where the errors are β1 = Λ→ β′1 and β2 → β′2 = Λ.
In the second case, the two edits overlap, leading to a single substring substitution:

x = 132031230,

y = 132320321320321230230230,

R(x) = 13203︸ ︷︷ ︸
α0

︸︷︷︸
β

1230︸︷︷︸
α1

R(y) = 13203︸ ︷︷ ︸
α0

2132032︸ ︷︷ ︸
β′

1230︸︷︷︸
α1

.
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APPENDIX F
PROOF OF LEMMA 24

Lemma 24. For x ∈ Irrq(n) with q ≥ 3,

‖B≤p,≤2pL
Irr (x)‖ ≤ q4pL(n+ pL)2p.

Proof: The proof is similar to that of Theorem 13, but also takes into account the effect of the suffix deletions,
as shown in Figure 5. We have

‖B≤p,≤2pL
Irr (x)‖ ≤ (968q(n+ pL) + 1)2p(2pL+ 1)(2pLq2pL + 1)

≤ (2pL+ 1)2q2pL(968q + 1)2p(n+ pL)2p

≤ q4pL(n+ pL)2p.
In the first line, (968q(n+ pL) + 1)2p is derived based on Theorem 13; (2pL+ 1) bounds the number of ways s
can be obtained from xp through a suffix deletion of length at most 2pL; and (2pLq2pL + 1) bounds the number
of ways yp can be obtained from s by appending a sequence of length at most 2pL. The third line is obtained by
noting that (968q + 1)2p(2pL+ 1)2 ≤ q2pL with L = 17.
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