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Spin-dependent tunnel junctions with ZrAlOx barriers were fabricated with low resistance3area
product 4V3mm2, and tunnel magnetoresistance of 15.2%. Barrier fabrication was done by natural
oxidation~5 min, at oxidation pressures ranging from 0.5 to 10 Torr!. The junctions were deposited
on top of 600 Å thick, ion beam smoothed, low resistance, Al electrodes. X-ray photoelectron
spectroscopy analysis indicates the presence of AlOx , ZrO2 , some remnant metallic Zr, but no
metallic Al in the as-deposited barriers. High resolution transmission electron microscopy indicates
that ZrAlOx forms an amorphous barrier that is smoother than pure crystalline ZrOx or pure
amorphous AlOx barriers. These low resistance tunnel junctions are attractive for read head
applications above 100 Gbit/in2 where competitive signal to noise ratios imply resistance3area
product below a fewV3mm2, and tunneling magnetoresonance signals near or above
20%. © 2002 American Institute of Physics.@DOI: 10.1063/1.1447195#
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I. INTRODUCTION

Low resistance spin-dependent tunnel junctions are p
sible candidates for replacement of spin valve sensors in
heads as recording densities move beyond 100 Gbit/in2. As a
current perpendicular to the plane sensor, the tunnel junc
can be inserted directly in between the shields, avoiding
insulating layers1–4 and improving linear density. For prope
signal to noise ratio, and for compatibility with head pr
amps, tunnel junctions must have very low resistance~few
V3mm2! and maintain tunneling magnetoresonance~TMR!
values near or excess than 20%. Results from various gro
on low resistance junctions using naturally oxidized AlOx

barriers~5–7 Å Al! report resistance3area (R3A) products
ranging from 5 to 20V3mm2, but with TMR values scaled
down to 10%–20%.1–6 Better control of oxidation time and
pressure can further optimize these values.7 Another ap-
proach to produce low resistance junctions is to use lo
band gap oxides~ZrOx , HfOx , among others! as barrier.
ZrOx , for example, is found to form polycrystalline barrier
with reasonable TMR values ('20%).8 The polycrystalline
nature of the barrier may be detrimental for producing h
mogeneous ultrathin barriers due to the different oxidat
speeds across grain boundaries. This article describes
properties of ZrAlOx junctions prepared by natural oxidatio
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Low resistance~4 – 8V3mm2, for 7 Å thickness!, amor-
phous, ZrAlOx barriers, with TMR values reaching 15.2%
are obtained.

II. EXPERIMENT

The junctions used in this work have a bottom-pinn
structure, glass / bottom lead / Ta 70 Å / NiFe 70 Å/ MnIr 80
Å/ CoFe 35 Å / (Zrt1Al t2)1Ox. / CoFe 35 Å/ NiFe 40 Å /Ta
30 Å / TiW~N! 150 Å /top lead. Here NiFe, CoFe, and Mn
stand for Ni81Fe19, Co90Fe10, and Mn83Ir17, respectively.
Except for the bottom and top leads, and the Ti10W90(N)
antireflective coating~ARC!, all layers were deposited in
Nordiko 2000 magnetron sputtering system, with a ba
pressure of 531028 Torr. During deposition, a magneti
field of 20 Oe was applied to induce parallel easy axis in
bottom and top magnetic layers. The ZrAlOx is grown by
depositing sequentially Zr~2.5–3 Å! and Al ~4.5 Å!, fol-
lowed by natural oxidation~5 min at 0.5, 1, and 10 Torr!.
Bottom and top leads, and the ARC layer were deposited
magnetron sputtering in a Nordiko 7000 cluster system~base
pressure 531029 Torr!. The bottom lead is formed by 600 Å
of Al 1%Si 0.5%Cu~0.6 V/sq!, subject to a postdepositio
anneal at 400 °C for 30 min. The AlSiCu layer is then io
beam smoothed for 90 s at a substrate pan of 40°, leadin
an atomic force microscope~AFM! rms roughness down to
,2 Å9 ~rms around 10 Å before smoothed!. The mm-size
junctions were patterned by a self-aligned microfabricat
3 © 2002 American Institute of Physics
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process using direct-write laser-lithography and ion-be
milling. Junctions were measured using a four-probe
method. Anneals were carried out in a vacuum furna
(1026 Torr) under a 3000 Oe magnetic field for 40 min, wi
ramp-up and cooldown times of about 1 h. X-ray photoel
tron analysis~XPS! analysis was made in specially fabricat
specimens allowing the separation of the different peaks
quiring study ~Zr, Al, Co, Fe, and their oxides in barrie
region!. Since the XPS signal comes from an area within
distance of about 2l–3l ~l is the inelastic mean free path fo
electrons! from the sample surface, low-energy ion beam~4
keV, 45°! etch was carried out to obtain a depth profile. T
etch rate is around 6–10 nm/min, and each step takes
The structural characterization of the junctions was made
transmission electron microscopy~TEM! on cross sectiona
specimens. The specimens were glued face to face, mec
cally polished, then ion milled to achieve electron transp
ency. The TEM experiments were carried out on a Phil
CM30 microscope whose point resolution is 0.19 nm.

III. RESULTS AND DISCUSSION

Figure 1~a! shows the minor TMR loop of a ZrAlOx
junction, where the barrier was formed by natural oxidat
~10 Torr 5 min! of a ~2.5 Å Zr/4.5 Å Al! film. The junction
area is 1mm2. TMR of 15.2% and a resistance3area product
of 4 V3mm2 are obtained. Due to the low resistance of t
bottom lead compared with junction resistance, no curr
inhomogeneity across the junction area occurs. Junct

FIG. 1. ~a! TMR minor loop, and junction parameters for
(Zr 2.5 Å/Al 4.5 Å)Ox junction after anneal at 240 °C for 40 min.~b! I –V
curves and barrier parameters for both positive and negative bias vo
branches.
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were annealed at 240 °C for 40 min to set up the excha
bias field in the MnIr/CoFe bilayer.10 Figure 1~b! shows the
current–voltage (I –V) curve measured up to 400 mV fo
both positive~current flow from top to bottom! and negative
~current flow from bottom to top! bias voltages. After fitting
the I –V curves by Simmon’s model,11 the effective barrier
height and effective barrier thickness are 0.3 ev and 8.1ge

FIG. 2. ~a! TMR dependence on oxidation pressure for (Zr 2.5 Å
Al 4.5 Å)Ox barrier junction.~b! Resistance3area product dependence o
oxidation pressure for~Zr 2.5Å/Al 4.5 Å! Ox barrier junction.

FIG. 3. XPS spectra~a! AlOx , ~b! Zr and ZrO2 , and~c! depth profile for Zr
and ZrO2 in the barrier region.
IP license or copyright; see http://jap.aip.org/jap/copyright.jsp
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for the negative voltage branch, and 0.27 ev and 8.34 Å
the positive voltage branch, respectively. The small asym
try observed for positive and negative bias voltages proba
reflects incomplete oxidation of the Zr–Al film and nonh
mogeneous oxidation profile at these short oxidation tim
required to provide low resistances, leading to different b
rier properties at both interfaces. The bias voltage where
TMR signal drops to half its zero-bias value is 210 m
Junction breakdown voltage is 0.412 V, measured in 1mm2

junctions. The 15.2% TMR value is still low in compariso
with that obtained in fully oxidized higher resistance AlOx

barriers~30% TMR for R3A.40– 70V3mm2!, but com-
parable to that observed in our lowest resistance AlOx barri-
ers~12V3mm2, 17% TMR, 7 Å Al, oxidized 5 min at 500
mTorr!,7 but the resistance3area product of the ZrAlOx bar-
riers is significantly lower. The low resistance values co
also be associated with the expected lower band gap of
ZrAlOx or part of the Zr left unoxidized.

Figure 2 shows TMR~a! andR3A(b) data obtained for
a similar structure~junctions with (2.5 Å Zr14.5 Å Al)Ox

as barrier! oxidized 5 min at different oxidation pressure
~0.5, 1, and 10 Torr!. These junction were annealed at 240
for 40 min. As can be seen, there is no major difference
the presented results~resistance is around 5V3mm2, and
with the TMR around 14%–15%!, indicating that the same
oxidation state is obtained in the three cases. This indic
that a fast oxidation mechanism is present in the three ca
namely the oxidation of the metallic layers (Zr1Al) con-
trolled by the interface reaction rate between the formed
ide surface and the bulk gas.

In order to clarify the oxidation status of the barrier,
XPS analysis was performed in specially prepared samp
allowing the observation of the different oxide peaks. Figu
3 shows data obtained in the structure, Si/Ti50 Å /CoFe35
(2.5 Å Zr14.5 Å Al)Ox /CoFe35 Å /Ti50 Å. The barrier
was oxidized 5 min at 10 Torr. Figure 3~a! shows the XPS

FIG. 4. HRTEM micrograph showing the stacking sequence of the junc
and the low roughness of the amorphous ZrAlOx barrier.
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spectra for AlOx , and Fig. 3~b! for metallic Zr and ZrO2.
The data were taken in the barrier region~step 7!. For Al, all
the signals are AlOx . The peak is symmetric and appears
74.7 eV, as expected for aluminum oxide. No metallic Al
found. On the contrary, Fig. 3~b! shows that evidence is
found for metallic Zr left unoxidized in the barrier. The me
tallic contribution should appear at 179 eV (3d5/2) and
181.5 (3d3/2), while ZrO2 should appear at 182–182.
(3d5/2) and 184.5–185 (3d3/2). The amount of metallic Zr
left over in the barrier is estimated at 13%. Figure 3~c! shows
the depth profile obtained for metallic Zr and ZrO2 in the
barrier. Notice that the amount of metallic Zr increases n
the junction bottom, as expected.

High resolution transmission electron microsco
~HRTEM! was used to characterize the barrier. For t
study, junction structure was, glass/Ta70 Å / NiFe70 Å
MnIr 80 Å / CoFe 35 Å /(4.5 Å Zr14.5 Å Al)Ox / CoFe 35
Å / NiFe 40 Å / Ta 30 Å. For these thicker barriers, rad
frequency~rf! plasma oxidation was used~40 in., 35 W rf, 5
mTorr O2!. The HRTEM micrograph in Fig. 4 in which the
stacking sequence: float Glass / Ta / NiFe / MnIr / CoF
ZrAlOx / CoFe / NiFe clearly shows up. The ZrAlOx oxide
layers is 2.5 nm thick at the as-deposited state and appea
be amorphous with smooth top and bottom interfaces. T
same experiments performed on the ZrOx barriers and AlOx
barriers reveal that the ZrOx oxide layer is crystalline while
the AlOx insulating layer was found to be amorphous. It
therefore concluded that the addition of Zr favors the wett
of the bottom CoFe electrode by the oxide and that the 5
Al/Zr ratio is sufficient to keep the oxide amorphous.

IV. CONCLUSION

In conclusion, low resistance tunnel junctions wi
ZrAlOx barriers have been successfully fabricated. The
clusion of Zr has helped to provide smoother interfaces
form homogeneous barriers. Low resistance is due eithe
leftover metallic Zr in the barrier, or the expected lower ba
gap of ZrAlOx .
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