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LOW REYNOLDS NUMBER FLOW IN
A HEATED TUBE OF VARYING SECTION
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Abstract

In this paper we study the effect of forced and free convection heat transfer on flow in an
axisymmetric tube whose radius varies slowly in the axial direction. Asymptotic series
expansions in terms of a small parameter E, which is a measure of the radius variation, are
obtained for the velocity components, pressure and temperature on the assumption that
the Reynolds number (R) is of order one. The effect of the free convection parameter or
Grashof number (G) on the axial velocity, temperature distribution, shear stress and heat
flux at the wall are discussed quantitatively for a locally constricted tube.

1. Introduction

The determination of the flow through a tube of varying section is a fundamental
one with obvious applications in physiology and engineering. One of the initiators
of the study, Manton [5], considered the steady flow in axisymmetric tubes of
varying section. He obtained an asymptotic series expansion in terms of a small
parameter e for the velocity, pressure and shear stress and found that his solutions
compared favourably with the numerical results of Lee and Fung [4] even for
values of e as large as 2. Hall [3] considered the unsteady flow in a slowly varying
tube of small eccentricity when a pulsatile pressure difference is applied across
the ends.

Recently the problem of heat transfer has been gaining importance owing to its
wide application in a variety of physiological flow situations, both natural and
artificial (see for example Radhakrishnamacharya and Maiti [6]). Also, from the
technological standpoint, the possibility of sodium-water fires in the secondary
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[21 Low Reynolds number flow 245

heat exchangers of liquid-metal fast-breeder reactors has necessitated further
study of problems in pipe flows with heat transfer. The object of this paper is to
consider the combined effect of forced and free convention heat transfer to steady
flow in axisymmetric tubes of slowly varying radius. The procedure adopted
below is as follows.

In Section 2 the governing equations are derived. The approximate solutions to
these equations are presented in Section 3. Using these solutions the expressions
for the wall shear stresses and heat flux are obtained in Sections 4 and 5
respectively. In Section 6 quantitative discussion is presented for the axial
velocity, temperature, shear stress and heat flux in a locally constricted tube.

2. Formulation of the problem

We consider flow in cylindrical polar coordinates (/•', ep, z') with corresponding
velocity components («', v', w') such that r' = 0 is the axis of symmetry of the
tube (Figure 1). The tube wall defined as

r' = a(z';e) = aos(ez'/aQ) (2.1)

is maintained at a constant temperature Tw. Here e is small and a0 a suitable
constant. The equations of continuity, momentum and energy are

1 d(ru') 1 3o' 9W'
r' 9r' r' 9<p 3z' ~ ' (2.2a)

gravitation

Figure 1. Physical model.
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246 A. R. Bestman (3)

, 3 M ' . v' 3M ' V'2 . , 3 M '

_ _ 9£ x / '2 ' _ JfL _ J_ 1 ^ 4. l!«l
3r' M ( V " r '2 r/2 3(p + dz,i I • ^ 6 "

(2.2b)

( , / ^ + ^ ^ j . ^ x . ,,ac'\

(2.2c)

'£ + ££ +-IF)-
in which

1 A
' 3/-'

and /?' is the pressure, 7" the temperature, A: the thermal conductivity, g the
constant heat source/sink term. The undisturbed fluid density is denoted by pOT,
Cp is the heat capacity while p is the molecular viscosity and (pgcos <p, —pg sin <p,
0) the buoyancy force terms.

In (2.2) we have assumed that the density of the fluid is constant and equal to
its value in the undisturbed fluid except in the buoyancy force terms, that is, we
have made the Boussinesq approximation. Also in the energy equation (2.2e)
viscous dissipation is neglected since the low Reynolds number assumption
necessarily entails low flow velocities. The heat source/sink term in most physio-
logical flows through blood vessels, which is the primary concern of this investiga-
tion, stems primarily from depletion of white blood cells and consequent rise in
body temperature during infection.

The boundary conditions are

u' = 0 = v' = w', T'=TW on r' = a(z'),

fl'1dr'f1'r'w'd<p=2*%,Jo Jo
M', V', W', 7" < oo on r' = 0.

(2-3)

https://doi.org/10.1017/S0334270000004045 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000004045


[41 A. R. Bestman 247

Now in the undisturbed fluid

0 = -jpr + Pxg cos 9, 0 = - - i ^ - p o o g s i n < f > , (2.4)

where p'x is the undisturbed fluid pressure. Also the equation of state for a
Boussinesq fluid is

p . - P = Poc/Kr - r j , (2.5)

)8 being the coefficient of volume expansion. To facilitate analysis we introduce
the following non-dimensional quantities

r' ez' ( \ x i , , ,\al (P' ~ P'x)
al

"0 "0 e M) r*0

a =

aov k ev% v '

Combining (2.2), (2.4), (2.5) and (2.6) we get

1 3 , , 1 3o 3w , ,
- — (ru) + - 3 — + - 5 - = 0, (2.7a)

9M U 3M t)2
 3M \ 3/? / 2 1 \ 2e 3t>

3r r 3<p r dz J dr [ r
2 r 9<P

(2.7b)
6z2

_ , / 3t> , v dv uv 3 u \ 1 dp \ 2 \ \ 2e 3M

\ 3r r 3<p r 02 / r 3ip I r
2 J r d<p

+ £ 3 ^ 4 + Ge0sin<p, (2.7c)

3w « 3>v 3 2
3r r 3<p 3z / 3z 3 Z

2

PRe\ u-r- + - -K- + w - r - = V 2 0 + e 2 — - + a, (2.7e)
\ 3r r 3<p 3z / 3Z2

subject to the boundary conditions

M = 0 = v= w, 0 = 1 on r = 5(
u,v,w, 0 < 00 on r = 0.
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248 Low Reynolds number flow Is)

In these equations R is the Reynolds number, a the non-dimensional heat
source/sink term, P the Prandtl number and G the Grashof number or free
convection parameter.

If the pressure gradients are eliminated from equations (2.7b, c) we get

1 3 f / dv v dv uv dv \]
r or [ \ dr r o<p r oz /J

RE
r or y \ or

1 3 / 3M v 3M v2
 3M

r d<p\ dr r dtp r dz

2 f l 3 , , 1 a« 1 , _f 30 . , 1 30
= V { — T-\rv) -z~ ) + G\ r̂— sm<p + — ^— cosi

[ r dr /- d<p J [ dr r dip

+e2±iL(A( n ; )_9ii l ( 2 9 )
r2 dz2 [ °r dip j

Equation (2.9) will be found useful in subsequent analysis.

3. Approximate solutions

The mathematical statement of the problem is to solve (2.7) subject to condi-
tions (2.8). This problem is nonlinear and coupled and not readily amenable to
closed form analytical treatment. We are interested in low Reynolds number
situations such that eR = o{\) rather than eR — 0(1) and larger. We therefore

adopt an asymptotic analysis similar to that in Bestman [1] by expanding the
velocity components and temperature in the form

M = M(0» + £M(I) + eV 2 ) + • • • , etc. (3.1a)

while the pressure is expanded as

/ , = l / , < 0 > + / l > + e/,<» + . . . . (3.1b)

In adopting a hybrid finite-element finite-difference technique in an allied peri-
staltic problem, Bestman [2] discovered that approximate solutions in the form
(3.1) agree well with numerical results when the Reynolds number is fairly low.
3.1 Solutions for the leading expansion

When (3.1) is substituted in (2.7) and (2.8) we find that the leading terms
satisfy the equations

I
r or

(3.2a)
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161 A. R. Bestman 249

1 ^ , (3.2b)
r dq>

0 = - ^ + V V°>, 0 = V20(O) + a, (3.2c)
az

subject to the conditions
M(o> = 0 = o(0) = w ( 0 ) j ( 3 3 a )

0<°>=1 on r = s(z), (3.3b)

M(0) = VQ) = w<.oy = 0(O) < ^ o n r = 0 . (3.3c)

We see that pi0) is independent of r and <p and we take solutions to (3.2c), which
are regular at the origin, in the form

-Ur2, (3.4a)

where from now on in the rest of this section, a dash over a symbol or subscript z
will be used to denote differentiation with respect to z. In (3.4) A(0\z) and B{a\z)
are arbitrary functions of z.

Next we substitute (3.4b) into (3.2a) and we get

\ (3.5a)

To obtain another equation linking u<0) and o(0) we substitute expansion (3.1a)
into (2.9), the leading term of which is

( m ) j + G| n +( n j ) j + G| sin(p + _ __ COS(p| = 0.
(3.5b)

Putting
M(0) =

and substituting (3.4a) and (3.6) in (3.5b), then integrating the resulting equation
we have

while (3.5a) becomes

7£ 7 = o. (3.7b)
Solving (3.7a, b) simultaneously, the final results are

M(0) = _ C(0V2 - r4)cos <p, (3.8a)
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250 Low Reynolds number flow [71

u(0) = -&Ga{D™ + 36«V - 5r4). (3.8b)

Employing the boundary conditions on 0(O) and >v(0) we find that

A™ = 1 + iocs2, (3.9a)

B<®=-tpV>'s2, (3.9b)
while the boundary conditions on w(0) and o(0) give

' = 0,

which is reminiscent of the Reynolds equation for pressure in lubrication theory,
and

We may integrate the Reynolds equation and, choosing an arbitrary constant
appropriately, we get

pm = _ f\i6/sA) dz, B(0) = 4/s2,

so that the first term in the expansion for the pressure equation (3.9b) corre-
sponds to that of Manton [5], while

C ( O ) = 2 J 2 , £ > < ° > = - S 4 . (3.10)

The solutions are now complete. For reference purposes we now collect them
together:

0<°> = 1 + i«52{l - (r/s)2}, w<0> = (4A2){1 - {r/sf},

p<f»=-f(\6/s*)dz,

um = 4(s2/s
2){r/s - (r/s)3} - ^Gas4{\ -(r/s)2}cosy,

!><«» = ^Gas^l - (r/sf][\ - 5(r/s)2]sm<p. (3.11)

We observe that the axial velocity and pressure correspond to those of Manton
[5]. The radial velocity is modified by the appearance of additional free convec-
tion terms while the presence of an azimuthal velocity is wholly accounted for by
free convection currents. The buoyancy contribution to the total flow is a double
longitudinal roll system with the centre line of the pipe the boundary between the
rolls.
3.2 Higher approximations

The equations governing the next approximation are

( w ) + + ^ = 0, (3.12a)
r 3rv ' r 3<p dz
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(3.,2b)

, v » , (3.12c)

RP[ M « » ° | _ + £ _ °^L_ + w(0)^— = V20(D (3.12d)
\ 9r r 9<p 8z / 7

subject to the conditions

„(!) = 0 = o(l) = w(l)f e = 0 o n r = J ( z ) ;

M(i))t5(i))M,(i))0(i)<oo onr = 0.

Also, an equation corresponding to (3.5b) is

R
r or [ \ dr r d(p r oz /J

r 3<p y 3r r 9<p r 3z

2 f i 9 , OT. i , ae<'>
s l n < P "< 5—cos<p

r 9<p ^

5 f + G \ Z s l n < P < 59<p J [ 9 / - r 9<p

(3-14)

Again we find that pw is independent of r and <p. If we substitute (3.11) in
(3.12c, d) we get

V2VV(.) =pW. _ 32R(sz/s
5){l - 2{r/s)2 + {r/s)4}

+ jEGRas{r/s - 2{r/sf + (r/s)5}cos<p,

and

V20(i) = 2PRa(sz/s){l - 2(r/sf + (r/s)4}

+ 1kGPRa2s5{r/s - 2(r/sf + (r/s)5}cos<p.

If we integrate these, then on employing (3.13) we find that

s^n - \i(r/s)2 + 9(r/s)4 - 2(r/sf}

V{3 - 6(r/a)3 + 4(r/s)5 - {r/s)7}cos<p, (3.15)4 X 962
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252 Low Reynolds number flow (91

and

+ Rs2(l/s<)!{2(r/s)2 - {r/sf + l(r/sf - ^ }

-±2GRas3{3 - 6(r/sf + 4(r/sf - (r/s)1}cosy. (3.16)

Next we calculate «(1) and o(l) by substituting (3.16) into (3.12a) and (3.11) and
(3.15) in (3.14). Then writing

M(D =/o(D(r> z) +/,(')(r, z)cos<p +/2
(1)(r, z)cos2<p, (3.17a)

o(I> = g^Cr, z)sin<p + g('>(r, z)sin2<p, (3.17b)

we get

-Rs\\/s*)zz{2{r/s)2 - (r/s)4 + |

6 - V}, (3.18)

) - 32(r/s)3 + 2l(r/s)5}

- 3(r/sf + (r/s)5}, (3.19b)

and

7^(l))+7ril) = 0. (3.20a)

12(rA)2- 16(r/5)4 + 6(rA)6).

(3.20b)
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First we integrate (3.18) to give

/o(O = ip«>»s>{t(r/s) ~ Kr/sf} + \pw's\(r/s)

-Rs\\/s*)IZ{{{r/sf - i(r/s)5 1

Invoking the boundary condition f^\s, z) ~ 0, we obtain the Reynolds equation
for the pressure

which can be put in the form

We can now integrate this twice with the eventual result

pO)= -4R/s4. (3.21)

So that to terms of order e, the free convection currents have no effect on the
pressure distribution. Finally,

/„<•> = -Rs3(l/s*)u{Ur/sf - Kr/sf + Mr/s? ~ Mr/')}

+ lM0A4)J2{H*A)5 ~ Ur/s? - Mr/s)}, (3.22)
and this result can be obtained if equation (4.7) in [5] is expressed in terms of
velocity components.

Second, employing (3.21), (3.16) can now be written as

»<•> = Rs*(l/s<)z{Ur/sf ~ (r/s)A + {r/sf - $}

{3 - 6(r/sf + A(r/sf - (r/s)7}cos9. (3.23)

And third, we integrate (3.19) and (3.20) as for M(0) and v(0). The results after
invoking the homogeneous boundary conditions at the tube wall, are

+ \{r/s) - \(r/sf + %(r/sf - %(r/s)6 + l{r/sf)

{% - %{r/sf + \{r/s)* - \{r/sf +

{-± + Ur/s) - 2i(r/sf

(3.24)
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254 Low Reynolds number flow [ 11)

and

. (3.25)

The free convection contribution to the total flow of the present approximation is
now in two parts: a double longitudinal roll system as in the previous approxima-
tion and four separate roll systems, one in each quadrant in the vertical plane.

4. The shear stresses

Knowing the velocity distributions, the local shear stresses at the tube wall
/•' = a(z') can be computed from the equations

Introducing non-dimensional stresses by (say)

we have
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[12] A. R. Bestman 255

Substituting the various quantities in (4.1) it may be deduced that

ff } + 3§5£GWcos9 + O(e2), (4.2)

V = 0 + O(e2). (4.3)

Thus to order e, the shear stress f9Z is zero, the free convection currents have a
null effect.

5. The heat flux

The local heat transfer rate at the wall is, by definition,

dT'

Here n is a unit normal to the wall. Thus it may be deduced that

-k'
9r' dz' dz' J |r'=a(z.)-

 ( 5 I )

Introducing the non-dimensional heat transfer rate

q = aoq'/k(Tw - Tj, (5.2)

and employing (2.6), we get

3© _2 3 0 1 / f , L . 2 . 2 ! 1/2,

Thus

q = ^as - ^eRPa^ - 20el^\ GRPcosy. (5.4)

6. Discussion

In the last four sections, we have formulated and solved approximately for the
velocity components, pressure, shear stress and heat flux for flow in a heated tube
of slowly varying section. A primary observation is the appearance of a rotational
velocity component as a result of free convection heat transfer. To obtain a
physical feel for the various parameters involved in the problem numerical results
are presented for flow in a locally constricted tube defined as

s{z) = \~{e->\ (6.1)
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256 Low Reynolds number flow [131

Equation (6.1) is useful in simulating stenosis in arterial diseases. Since in the
systemic circulation the nutrients are convected by the blood plasma in the axial
direction, the discussion of the velocity distributions will be limited to the axial
component. The other velocity components can be discussed similarly. In all the
numerical results, e is taken as 0.1.

In the discussion of the velocity and temperature distributions (Figures 2 and
3) the value of <p is taken as zero. Other values of <p (such as <p — 30°. 120°) show
insignificant change in the presentation.

w
16

U

12

10

vn.ym

02 06 08 10 r/s

Figure 2. Axial velocity distribution in a locally constricted tube.
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Figure 2 depicts the axial velocity distribution at various stations of the
constriction. When the Reynolds number of the flow is small, the presence of a
free convection current has little effect on the velocity whether there is external
heat generation or not. Increase in the free convection current and Prandtl
number causes insignificant change in the axial velocity and this situation remains
the same when the source and sink interchange their roles. However the velocity
distribution is highest at the throat. Upstream of the throat the axial velocity is
slightly lower, near the centre, than downstream of this constriction.

e

Figure 3. Temperature distribution in a locally constricted tube.
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258 Low Reynolds number flow Us]

For the temperature distribution (Figure 3), change in the Reynolds number,
Prandtl number and free convection parameter also causes little effect on the
temperature. But the temperature is now higher away from the throat than at the
throat, the value of the temperature downstream of the constriction being higher
than that upstream of this constriction.

The heat flux at the wall is shown in Figure 4. Little change occurs as a result
of change in Prandtl number, free convection parameter and angular displace-
ment. When the Reynolds number increases, the heat flux increases upstream and
decreases downstream of the constriction. Increase in the heat source causes a

2 0 -15 -1-0 -0-5 0 0-5 10 1-5 20

Figure 4. Heat flux distribution in a locally constricted tube.
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[16] A. R. Bestman 259

corresponding increase in the heat flux while when the source changes to a sink
the heat flux decreases and in fact becomes negative. In Figure 5 the modulus of
the shear stress distribution is given for the zero heat transfer case when R = 0.5.
The changes in the various parameters for the case of Figure 3 cause virtually no
departure from this distribution.

Figure 5. Shear stress distribution in a locally constricted tube for zero heat transfer for R = 0.5.

Acknowledgement

The author gratefully acknowledges financial support from the University of
Science and Technology, and comments of the referees which greatly improved
the presentation of this paper.

https://doi.org/10.1017/S0334270000004045 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000004045


260 Low Reynolds number flow 117 ]

References

[1] A. R. Bestman, "Peristaltic pumping in a heated tube at low Reynolds number", Proc. \(>th
Midwestern Fluid Mechanics Conference 10 (1979), 195.

[2] A. R. Bestman, "Numerical studies of peristaltic pumping in a heated tube", Numerical
Methods in Thermal Problems, II (1981), 790.

[3] P. Hall, "Unsteady viscous flow in a pipe of slowly varying cross-section", J. Fluid Mech. 64
(1974), 209-226.

[4] J. S. Lee and Y. C. Fung, "Flow in a locally constricted tube at low Reynolds numbers", J.
Appl. Mech. 37 (1970), 9-16.

[5] M. J. Manton, "Low Reynolds number flow in slowly varying axisymmetric tubes", J. Fluid
Mech. 49 (1971), 451-459.

[6] G. Radhakrishnamacharya and M. K. Maiti, "Heat transfer to pulsatile flow in a porous
channel", Int. J. Heat Mass Transfer 20 (1977), 171-173.

https://doi.org/10.1017/S0334270000004045 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000004045

