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Abstract—Communications in millimeter-wave (mm-wave)
spectrum (30–300 GHz) have experienced a continuous increase
in relevance for short-range, high-capacity wireless links, because
of the wider bandwidths they are able to provide. In this work,
we introduce a new mm-wave frequency transmission scheme that
exploits a combination of the concepts of beamspace multi-input
multi-output (B-MIMO) communications and beam selection
to provide near-optimal performances with a low hardware-
complexity transceiver. While large-scale MIMO approaches in
mm-wave are affected by high dimensional signal space that in-
creases considerably both complexity and costs of the system, the
proposed scheme is able to achieve near-optimal performances
with a reduced radio-frequency (RF) complexity thanks to beam
selection. We evaluate the advantages of the proposed scheme via
capacity computations, comparisons of numbers of RF chains re-
quired and by studying the trade-off between spectral and power
efficiency. Our analytical and simulation results show that the
proposed scheme is capable of offering a significant reduction in
RF complexity with a realistic low-cost approach, for a given per-
formance. In particular, we show that the proposed beam selection
algorithms achieve higher power efficiencies than a full system
where all beams are utilized.

Index Terms—High dimensional MIMO, multiuser MIMO,
beam selection, capacity maximization, SINR maximization,
beamforming.

I. INTRODUCTION

IN THE last years, data traffic has suffered an exponential

growth, supported by the increasing popularity of mobile de-

vices, such as smartphones and tablets. As a consequence, recent

studies predicted that the global mobile data traffic will reach a

66% annual growth rate in the next years [1]. Recent works

showed that millimeter-wave (mm-wave) communications of-

fer a promising approach [2]–[5] for meeting this demand.

Millimeter-wave technologies, operating in the 30–300 GHz

spectrum, are in fact able to provide very high-dimensional

MIMO operations and spatial re-use of the spectrum at close

distance. The main disadvantage might be identified in the

attenuation characteristics [6], [7], because it is widely known

that the free space propagation loss is inversely proportional
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to the wavelength λ. However, a shorter wavelength allows to

use more antennas in the same physical space. Therefore, if we

consider the same aperture area for two systems working at two

different carrier frequencies, the system with a shorter wave-

length will allow beamforming with higher gains than the sys-

tem with a longer wavelength. In fact, it has been demonstrated

[8] that a mm-wave mobile broadband system could achieve

gigabit per second data rates at distances up to 1 km in an urban

environment.

A large or massive MIMO approach in mm-wave frequencies

is still prohibitive because of the number of antennas and the

high transceiver complexity [9], [10]. In fact, the use of an

increased number of antennas leads to an equally large number

of radio frequency (RF) chains. At the same time, recent studies

[11] proved that systems that involve massive antenna arrays

in MIMO are particularly subjected to RF chain imperfections,

which are accounted for additional degradations in performance.

Moreover it is understood that RF components may consume up

to 70% of the total transceiver power consumption [12].

In order to exploit the favorable characteristics of mm-wave

frequency communications, research is focusing on the devel-

opment of new techniques that aim to reduce the hardware

complexity of very high dimensional MIMO systems. Previous

works tackled the hardware complexity with antenna selection

[13]–[15], amongst many others, but showed high degradation

in performances compared to the full system. Antenna selection

techniques generally require more power from the amplifier in

the output stage to compensate the transfer attenuation of RF

switches [13] and are characterized by lower values of average

SNR [15]. In addition, [14] showed that waterfilling for a full

system provides higher performances than the antenna selection

at the transmitter and, at the same time, highlighted the costs of

selections applied to the transmitter in terms of SNR.

In this paper, we propose an architecture that combines B-

MIMO communication [16] with beam selection criteria, based

on concepts for antenna selection. We show that the use of beam

selection algorithms reduces significantly the RF complexity of

the system. The benefits of the system simplification provided

by the beam selection are strongly enhanced by the use of

Discrete Lens Array (DLA) [17] where there is a direct corre-

spondence between the number of selected beams and radio fre-

quency (RF) chains. Discrete Lens Arrays behave as a convex

lens, directing the signals towards different points of the focal

surface [18]. Moreover, the fact that with DLA technology nar-

row beam-widths are preserved even in the reduced RF-chain

operation allows to reduce significantly the power required per

stream as well as the interference between the streams. As a con-

sequence, the low hardware complexity and the high antenna
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Fig. 1. Proposed scheme block diagram.

gain properties of DLA systems make this technology partic-

ularly suitable for mm-wave communications [5]. Therefore,

unlike antenna selection, the performance obtained with beam

selection in B-MIMO is close-to-optimal, as its application

does not affect the beamforming properties at the transmitter.

As regards the transmit processing involved, capacity achieving

non-linear precoders [19]–[26] are known to involve prohibitive

computational complexity. Computationally efficient alterna-

tives are provided by linear precoding [27]–[31], which become

near-optimal in massive MIMO systems. Accordingly, in this

paper we focus on zero-forcing (ZF) precoders [32], [33], as a

practical closed-form precoding solution [34]. In particular, we

show how system performances are affected when we use dif-

ferent beam selection algorithms to reduce the RF complexity

of the transmitter.

The following list summarizes the contributions of the pre-

sent work:

1) We propose a mm-wave transmission scheme based

on beam selection for B-MIMO, able to achieve near-

optimal performances with a reduced RF complexity

transceiver, and introduce 3 associated beam selection

schemes,

2) We analytically determine the computational complexity

of the proposed beam selection schemes, with regards to

conventional B-MIMO,

3) We analytically derive the capacity losses caused by beam

selection, identifying an upper bound for the proposed

techniques,

4) Building on the above, we analyze the performances

achieved by the proposed transmission schemes in terms

of sum rate and power efficiency, by introducing a joint

sum-rate and complexity metric that models the trade-off

between performance and complexity.

The paper is organized as follows. In Section II we introduce

the channel model used and describe the concepts of beamspace

MIMO. Section III presents the selection algorithms, describ-

ing in depth their application and implementation. We show

complexity analysis studies for all the algorithms proposed in

Section IV. Section V is focused on the performance losses

caused by beam selection, describing them in an analytical way

and obtaining an upper bound for the proposed techniques.

Section VI describes the numerical results, while conclusions

are discussed in Section VI.

The following notation is used throughout the paper: lower

case boldfaced letters denote vectors, upper case boldfaced

letters are used for matrices, tr(·) denotes the trace of a matrix,

superscripts (·)H and (·)∗ stand respectively for Hermitian

transpose and complex conjugate. Matrices are characterized by

different subindices and superscripts, here declared and sum-

marized for simplicity: Xl is used to identify the matrix X

without the l-th row, x:,l and xl,: respectively denote the l-th

column and l-th row of X.

II. SYSTEM MODEL

We consider a downlink communication scenario where the

access point (AP), equipped with a discrete lens array and a ZF

precoder, communicates with K single-antenna mobile stations

or MSs [9], as in Fig. 1. In particular, the DLA at the AP can be

analytically modeled as a critically sampled, i.e. d = λ
2

spaced,

uniform linear array (ULA) of length L leading to a signal space

dimension n that can be defined analytically as

n =
2L

λ
. (1)

The parameter n, with DLAs, represents the maximum num-

ber of spatial modes that are supported by the antennas, i.e.

the total number of orthogonal beams that are supported by the

system [17].

For a linearly precoded transmission, the received symbol

vector can be expressed as

r = HHx + n (2)

where H = [h:,1, . . . , h:,K] is a n × K matrix that contains the

n × 1 channel vectors h:,1, .., h:,K of all the K MSs, x = Gs

is the transmitted signal, G is the linear precoding matrix, s is

a K × 1 vector that contains all the symbols that have to be

transmitted and n is the K × 1 additive white Gaussian noise

(AWGN) vector.

It is important to stress that, even though the spatial domain

channel model H for DLAs can be analytically modeled as

a n sized ULA, the hardware complexity required by these

approaches are profoundly different. In fact, as shown in Fig. 1,

an AP with DLA requires only a reduced set of RF chains, one

for each data stream, and a beam selector to support n narrow

beams. A classical MIMO approach instead, where the AP is

equipped an equivalent n-dimensional linear array, requires one

RF chain for each of the radiating elements, regardless of the

number of streams to be transmitted.

A. Channel Model

In order to describe the channel model we need to define the

steering-response vectors of the array. In particular for ULA,
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we have [16], [35]

a(θ) = [e−j2πθ i]i∈I(n) (3)

where a(θ) is the n × 1 steering vector, θ = d
λ

sin(φ) is the

spatial frequency, whose value ranges between −0.5 ≤ θ ≤ 0.5

for a critically spaced array, φ represents the physical directions

−π/2 ≤ φ ≤ π/2 and I(n) = {i − (n − 1)/2 : i = 0, 1, . . . ,

n − 1} is a symmetric set of indices centered around 0.

Hence the multipath (MP) channel vector for the k-th MS of

a multiuser scenario can be defined as

h
(MP)
:,k =

Np∑

i=1

β
(k)
i a

(
θ

(k)
i

)
(4)

where Np is the total number of paths, β
(k)
i and θ

(k)
i are respec-

tively the gain and the direction of the i-th path of the k-th user.

In particular, θ
(k)
i can be evaluated in terms of spatial frequencies.

This model however does not take into account the line-

of-sight (LoS) component of the propagation, which strongly

characterizes the channel in mm-wave frequencies communi-

cations. In fact, the small wavelengths λ involved in mm-wave

communications lead to narrow and high gain beams with

reduced angular spreads. Thanks to these considerations, we

can consider the presence of LoS paths for all the MSs without

loss of generality.

The channel model for the LoS path can be defined as

h
(LoS)
:,k = β

(k)
0 a

(
θ

(k)
0

)
(5)

where θ
(k)
0 represents the direction or position of the k-th user

and β
(k)
0 is the complex gain for the LoS path.

Finally, we can define the channel vector for the k-th user as

a sum of the two terms (4) and (5), leading to

h:,k = h
(LoS)
:,k + h

(MP)
:,k = β

(k)
0 a

(
θ

(k)
0

)
+

Np∑

i=1

β
(k)
i a

(
θ

(k)
i

)
(6)

where the ratio between β2
0 and

Np∑
β2

i
i=1

is called Rice factor. Note

that the spatial domain model described here implicitly includes

the effects of transmit correlation. In fact, since we model the

spatial domain for DLA as a critically sampled ULA, different

degrees of correlation can be achieved by varying the angle

spread [36], [37].

B. Beamspace Representation

The model presented in the previous section can be translated

in the beamspace or angular [35] domain via the beamforming

matrix U, which represents the operation of a perfectly designed

DLA [17]. The beamforming matrix is obtained by computing

the steering vectors for n fixed spatial frequencies with uniform

spacing [16], [38]. The beamforming matrix is defined analyti-

cally as follows

U =
1

√
n

[a(�θ0i)]i∈I(n) , (7)

leading to a n × n matrix where �θ0 = 1
n

is the uniform spac-

ing used.

We can define the (2) in the beamspace domain as follows

r = HHx + n (8)

H = UH (9)

where x = UGs, s = s and n = n are the transmitted signal,

symbol vector and noise in the beamspace domain. The multi-

plication of the channel matrix H for the beamforming matrix is

hence a mapping of the signals for each MS in a new domain of

orthogonal beams, defined by U. In the angular or beamspace

domain, each row of the channel model H represents one of the

n beams supported by the DLA. The beamforming matrix de-

fined in (7) is unitary, UHU = UUH = I, leading to the follow-

ing relationships between the spatial and the beamspace domain

x = UHx, x = UHx. (10)

In addition, the relationship between the channel in the

angular-beamspace domain H and the channel in the spatial

domain H is well known. In fact, since the elements of U are

in the form 1√
n

e−j2πkl/n, H is the inverse discrete Fourier trans-

form of the channel matrix in the spatial domain H [16], [35].

III. BEAM SELECTION TECHNIQUES

In this paper we apply different selection criteria to identify

the beams that will be used by the system during the data

transmission. The use of DLA at the transmitter allows us to

apply the selection algorithm directly over the channel matrix

in the beamspace domain, hence without affecting the beam-

width nor the gain of the antenna pattern. Beam selection can be

performed according to different parameters, such as the mag-

nitude of the path [9], the signal-to-interference-ratio (SINR) at

the receiver [39], the capacity of the system [40], [41] and mini-

mum error rate [41]. Our main focus is on the application of se-

lection criteria based on the first three characteristics, since our

analysis is mostly based on the spectral efficiency of the system.

A. Maximum Magnitude Selection (MM-S)

As a reference to the proposed beam selection schemes, we

define as maximum magnitude selection (MM-S) the criterion

used in [9]. This criterion takes advantage of the properties of

the channel model in the BS domain. The channel matrix H has

in fact a sparse nature, where few elements of the matrix have

dominant values near the LoS direction of the MSs. This is a

valid assumption for channels where the multipath component

of (6) is negligible, but becomes questionable as we introduce

additional paths to the model. In order to apply the MM-S we

need to define a set of beam indices called sparsity masks. Spar-

sity masks are used by the AP to identify the dominant beams

to be selected for the transmission and are defined as follows

M
(k) =

{
i ∈ I(n) : |hi,k|2 ≥ ξ (k) max

i
|hi,k|2

}
(11)

M =
⋃

k=1,..,K

M
(k) (12)
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where hi,k is the i-th element of the k-th column of H, M(k) is

the sparsity mask for the k-th MS and ξ (k) ∈ [0, 1] is the thresh-

old used to define it. We can see that in order to obtain a min-

imum number of beams for each of the K MSs, the threshold

ξ (k) is chosen independently for each user.

After the sparsity mask, we can define the channel derived

from the activation of a subset of beams as

H̃ = [hl,:]l∈M (13)

where the sizes nd × K of the new channel matrix H̃ depend

on the number of dominant beams nd = |M| identified in the

sparsity mask. From (12) we can see that the MM-S algorithm

leads to values of nd which change according to the channel

realization. In fact, the user wise selection implemented by

MM-S often leads to multiple selections of the same beam for

different users and therefore a varying number of required RF

chains for different channel realizations and user topologies.

As a consequence, a direct application of MM-S in practical

systems, where the number of RF chains is fixed, is not viable.

While MM-S selects the strongest channel paths, it can be

seen that it is suboptimal in the receive SNR or capacity. Toward

this end we propose three selection techniques, described in the

following sub-sections.

B. Proposed Maximization of the SINR Selection (MS-S)

In the proposed technique, beams are chosen to maximize

the signal to interference ratio at the MS side; we define this

selection criterion as Maximization of SINR selection (MS-S).

In order to identify the subset of beams used during data trans-

mission, we need to define the SINR metric for our model. The

SINR for each user depends on the precoder used at the trans-

mitter, which can described by the precoding matrix G

G = αF (14)

where F is the precoding matrix without power scaling and α

the scaling factor that guarantees E[xxH] = 1, defined analyti-

cally as

α =
√

ρ

tr(F�SFH)
(15)

where ρ is the signal power and �S = E[ssH] is the input cov-

ariance matrix, considered unitary and diagonal for our system.

The received SINR of the i-th user is defined as [9]

SINRi(ρ, G|H) =
ρ|α|2

K

∣∣hH
:,if:,i

∣∣2

ρ|α|2
K

∑
m�=i

∣∣hH
:,mf:,i

∣∣2 + σ 2
(16)

where hH
:,i is the Hermitian transpose of the i-th column of H

and σ 2 is the noise power.

In this work, we focus on a practical case where the AP is

equipped with a low-complexity zero forcing linear precoder,

hence

FZF = H(HHH)
−1

. (17)

The denominator term in (16) contains two different factors:

the first one defines the interference while the second one

identifies the noise. Thanks to the properties of ZF precoding

we have
∑

m�=i |hH
:,mf:,i|

2 = 0 and |hH
:,if:,i|

2 = 1, leading to the

definition of a simplified SINR equation [36]

SINRi,ZF(γ, G|H) =
γ |α|2

K
(18)

where γ = ρ/σ 2 is the signal-to-noise ratio (SNR). The max-

imization of the SINR can then be obtained simply, by maxi-

mizing the scaling factor α.

In order to maximize the SINR, a full search algorithm would

compute the SINR for all the possible combination of beam

subsets and then choose the subset that leads to the highest

value. Such approach leads to an optimal but computationally

prohibitive selection because of its
(

n
N

)
possible combinations,1

where N is the subset size. We propose a suboptimal decre-

mental selection of the beams that identifies the subset of

beams with the minimum loss in terms of SINR, shown in

Algorithm 1.

Algorithm 1 Incremental MC-S

Input: H

Output: H̃

• C := H

• F := C(CHC)
−1

• for j = 1 → n − N

- for l = 1 → n − j

∗ F(l) = Cl(C
H
l Cl)

−1

∗ α(l) =
√

ρ/tr(F(l)F(l)H)

- end

- δj = arg max
l

{|α(l)|2}
- D = {δ1, . . . , δj}
- C = [hm,:]m/∈D

• end

• H̃ = [hm,:]m/∈D

Using (18) we compute the SINR for the reduced system after

the elimination of the l-th beam as

SINR
(l)
i,ZF(γ, G|Hl) =

γ
∣∣α(l)

∣∣2

K
(19)

with

α(l) =
√

ρ

tr
(
F(l)F(l)H

) (20)

where Hl represents the channel matrix whose l-th beam has

been eliminated, F(l) is the precoding matrix obtained with

1A scenario where n = 81 and N = 40 leads to
(81
40

)
≈ 2 · 1023 possible

subsets, which is computationally prohibitive for a simulation evaluated study.
However, previous works on antenna selection for low dimensional systems
[42] showed that the performances of decremental approaches are close to the
ones achieved by exhaustive search methods.
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the Hl channel model and α(l) is the corresponding scaling

factor.2 Hence we identify the index of the beam to be disabled

via the following maximization criterion

δ = arg max
l

{
γ
∣∣α(l)

∣∣2

K

}
(21)

where δ is an element of the subset of disabled beams D.

Since ρ, K and σ 2 are channel independent we can reduce the

maximization criterion to a simple

δ = arg max
l

(∣∣∣α(l)
∣∣∣
2
)

. (22)

In our studies, the selection metric for MS-S derived in

(22) is obtained by exploiting the orthogonal properties of ZF

precoding. However, the presented technique can be applied

independently from the precoding involved at the AP. In fact,

following the notation used in (16) and under a generic precod-

ing assumption G, the MS-S algorithm proceeds by maximizing

the SINR for the reduced system

SINR
(l)
i = SINRi

(
ρ, G(l)|Hl

)
(23)

where G(l) represents the precoding matrix that corresponds to

the reduced channel model Hl.

C. Maximization of the Capacity Selection (MC-S)

We identify as selections for maximization of the capacity

(MC-S) the algorithms whose main objective is the definition of

a subset of beams with the minimum loss in capacity from the

full system [40]. The MC-S can be performed with two different

approaches:

• Decremental-When the algorithm chooses one by one the

beams not to be used.

• Incremental-When the algorithm chooses one by one the

beams to be used.

It is immediate to see that the difference between the two

algorithms resides in the computational costs [40]. The incre-

mental selection is faster when the number of beams to be used

in the subset is lower than n/2, while the decremental is to be

preferred when the number of beams to be used in the subset is

higher than n/2.

1) Decremental MC-S(DMC-S): The algorithm selects the

beams whose elimination causes the minimum loss in terms of

capacity. The capacity is defined as follows

C(H) = log2 det(I + γ HHH). (24)

IfweconsiderHas thechannel for the full system,wecancom-

pute the capacity after the l-th beam has been disabled as [43]

C(Hl) = log2 det
(
I + γ HH

l Hl

)
(25)

2Note that MS-S does not affect the transmitted power constraint E[xxH ] =
1. In fact, the system deriving from the selection employs a ZF precoder,
which is computed according to the low dimensional channel matrix H̃ obtained
through MS-S and uses a scaling factor to constrain the average transmit power.

where the channel Hl is related to the full system matrix ac-

cording to the following equation.

HH
l Hl = HHH − hH

l,:hl,:. (26)

We can substitute (26) in (25) to show the relationship in

terms of capacity between the two channels

C(Hl) = log2 det
(
I + γ HHH − γ hH

l,:hl,:
)

(27)

which can be rearranged to

C(Hl) = log2 det(I + γ HHH)

+ log2 det

(
I − (I + γ HHH)

− 1
2 γ hH

l,:hl,:(I + γ HHH)
− 1

2

)

(28)

that, thanks to some straightforward algebra, leads to [40]

C(Hl) = C(H) + log2

[
1 − γ hl,:(I + γ HHH)

−1
hH

l,:

]
. (29)

In particular (29) shows the relationship in terms of capacity

between the full system and the system where a beam has been

disabled. The algorithm chooses the beam that minimizes the

second term on the right-hand side of the relationship, because

it is responsible for the capacity loss from the full system. The

search criterion can be described analytically as

δ = arg min
l

{
hl,:(I + γ HHH)

−1
hH

l,:

}
. (30)

If we consider a fixed number of beams for our system,

the algorithm has to compute all the others n − N different

beams to eliminate. The above selection is implemented using

Algorithm 2 below.

Algorithm 2 Decremental MC-S

Input: H, γ

Output: H̃

• K := H

• B := (I + γ KHK)−1

• for j = 1 → n − N

- for j = 1 → n − j

∗ �(l) = kl,:BkH
l,:

- end

- δj = arg min
l

{�(l)}
- D = {δ1, δ2, . . . , δj}
- B := B + BkH

δj,:(γ
−1 − kδj,:BkH

δj,:)
−1

kδj,:B

- K := [hm,:]m/∈D
• end

• H̃ = [hm,:]m/∈D

2) Incremental MC-S(IMC-S): The algorithm selects the

beams whose contribution in terms of system capacity is the

highest. In particular we want to show how the capacity is af-

fected when we add a new row-beam to the channel matrix. By

using a similar notation as the previous one for the IMC-S, the
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TABLE I
COMPLEXITY IN NUMBER OF OPERATIONS

capacity of the channel with an additional beam can be defined

as [40]

C(H̄, hl,:) = log2 det
[
I+γ

(
H̄HH̄ + hH

l,:hl,:
)]

(31)

where H̄ represents the channel matrix formed by the beams

that were previously chosen and hl,: is the beam we add in the

channel model. The (31) can be expressed as a function of the

system channel H̄ via the same procedure used for the DMC-S,

leading to

C(H̄, hl,:) = log2 det(I + γ H̄HH̄)

+ log2

[
1 + γ hl,:(I + γ H̄HH̄)

−1
hH

l,:

]
(32)

which has to be maximized by focusing on the second term of

the equation with an exhaustive search through all the available

beams. In particular

ǫ = arg max
l/∈E

[
hl,:(γ

−1I + H̄HH̄)
−1

hH
l,:

]
(33)

where E represents the subset of enabled beams ǫ. This se-

lection technique is presented analytically in the Algorithm 3,

where it uses a recursive update on the matrix inversion, based

on the Sherman-Morrison-Woodbury Identity [44].

Algorithm 3 Incremental MC-S

Input: H, γ

Output: H̃

• K := H

• A := γ I

• ǫ1 := arg max
l

‖kl,:‖2

• for j = 1 → N − 1

- A := A − AkH
ǫj,:(1 + kǫj,:AkH

ǫj,:)
−1

kǫj,:A
- for l = 1 → n − j

∗ �(l) = kl,:AkH
l,:

- end

- ǫj+1 = arg max
l

{�(l)}
- E = {ǫ1, ǫ2, . . . . , ǫj, ǫj+1}

• end

• H̃ = [hm,:]m∈E

The identity states that for an invertible matrix A and two or

more non-invertible matrices B, C

(A + BC)−1 =
[
A(I + A−1BC)

]−1

(A + BC)−1 = (I + A−1BC)
−1

A−1
(34)

which, thanks to the identity (I + P)−1 = I − (I + P)−1P, can

be modified to

(A + BC)−1 =
[
I − (I + A−1BC)

−1
A−1BC

]
A−1 (35)

rearranged with the identity P + PQP = P(I + QP)−1 to

(A + BC)−1 = A−1 − A−1B(1 + CA−1B)
−1

CA−1. (36)

IV. COMPUTATIONAL COMPLEXITY ANALYSIS

This section of the paper analyzes the computational com-

plexity of each of the proposed algorithms, in order to achieve

a complete comparison with the approach by [9]. Complexity

evaluations for all the algorithms are listed in the Table I,

pointing up the number of operations required for each step.

For clarity we emphasize the distinction between the digital

signal processing (DSP) complexity, which is the focus of this

section, and the RF chain complexity. In fact DSP complex-

ity involves the processor at the transmitter and its impact

in power consumption is of the order of 5.76mW/KOps −
22.88mW/KOps as for the Virtex family from Xilinx [45],

where values are expressed in watts per 103 operations. RF

complexity, instead, derives by the number of chains used in the

transmission. Each chain is characterized by a high number of

elements, such as mixer, digital-analogic converter (DAC) and

filters, whose values of power consumption are particularly

significant. Typical values of power consumption for a single

RF chain are of the order of ∼30mW as in [12], leading to power

consumptions in the order of watts, when the amplifier is in-

cluded in the model.

The first column represents the MM-S criterion as a refer-

ence, while the other columns collect the analysis of MS-S,

DMC-S and IMC-S respectively. In particular we identify with

the notation nb the number of beams chosen per user by MM-S

and with ndel = n − N the number of beams to be deactivated

in decremental selections. We focus our analysis on the appli-

cation of the algorithms within a channel realization and on the
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operations that dominate the complexity. In order to define the

complexity order for each operation, we used the costs pre-

sented in the literature [35], [46].

The table shows that the DSP complexity for the MM-S is

lower than the other algorithms, as the selection is based only

on the amplitude of the paths. As a consequence, the beam

selection algorithms presented in the other columns are affected

by higher computational complexity. The higher costs are due

to the necessity to compute additional elements, such as α for

the MS-S or A and B for the DMC-S and IMC-S respectively.

We decided to keep the constant terms in the complexity com-

putations to show the differences between the DMC-S and

IMC-S. Thanks to this notation it is possible to see how DMC-

S is more efficient when ndel ≤ n/2 while IMC-S has to be

chosen when N ≤ n/2. Since differences in performances are

negligible, the results obtained by these techniques will be ad-

dressed as MC-S from now on, without differentiating between

incremental or decremental approach.

Finally, it is worth noticing that, even though the MM-

S has a lower computational time, it is affected by strong

losses in performances in a realistic MP environment, as

shown in the results that follow. This consideration makes the

presented algorithms relevant in realistic applications, thanks

to their appealing trade-off between computational costs and

performances.

V. PERFORMANCE ANALYSIS-SPECTRAL

EFFICIENCY LOSS

This section is dedicated to the analysis of the spectral effi-

ciency losses caused by the selection of a subset of beams over

the full system, providing an analytical study of the perfor-

mances achieved by the proposed algorithms. The search of the

best tradeoff is a critical element of the system design because

the selection of a subset of beams benefits from a hardware

complexity simplification while suffering a degradation in per-

formances.

The spectral efficiency achievable by a multiuser system can

be defined as

C =
K∑

i=1

log2(1 + SINRi). (37)

In particular, when using a ZF linear precoder, the detection

SINR in a multiuser scenario depends only on the scaling factor

α, and is given as [36]

SINRi,ZF =
γρ

K · tr
[
(HHH)

−1
] . (38)

It is immediate to see that (38) leads to the same value for all

the users, then the capacity can be evaluated as

C = K log2(1 + SINRZF). (39)

The losses caused by the elimination of one beam can be

defined as the difference between the performances achieved by

the full system and by the system when one beam is eliminated

�(l) �K log2(1 + SINRZF) − K log2

(
1 + SINR

(l)
ZF

)

= K log2

⎛
⎝1 +

γρ/K

tr
[
(HHH)

−1
]

⎞
⎠

− K log2

⎛
⎝1 +

γρ/K

tr
[
(HH

l Hl)
−1
]

⎞
⎠ (40)

where SINR
(l)
ZF represents the SINR for the system without the

l-th beam. The equation (40) is particularly useful to show the

optimality of the MS-S. In fact, in order to find the best tradeoff

between performances and hardware complexity, the losses

caused by the selection have to be minimized. The first term

in (40) does not depend on the selection because it represents

the full system, while the second term depends on the criterion

used to identify the l-th beam. Hence the minimum loss �(l) is

obtained when the second term is maximized.

In particular, the second term of the equation can be re-

arranged by using the matrix properties showed in (26) and

(36) as

K log2

⎛
⎜⎜⎝1+

γρ/K

tr

[
R−1+R−1hH

l,:

(
1−hl,:R−1hH

l,:

)−1
hl,:R−1

]

⎞
⎟⎟⎠ (41)

where R = HHH.

Hence, thanks to the properties of logarithms, (40) can be

rearranged as

�(l) =K log2

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

(
1 + γρ/K

tr(R−1)

)

⎛
⎝1+ γρ/K

tr

[
R−1+R−1hH

l,:

(
1−hl,:R−1hH

l,:

)−1
hl,:R−1

]

⎞
⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (42)

With some straightforward algebra, (42) can be simplified to

the form

�(l) = K log2(1 + ι) (43)

where the parameter ι in the argument of the logarithm of (43) is

ι=
γ
K

tr(RhH
l,:(1 − hl,:ShH

l,:)hl,:S)

tr(S)2+ γ
K

tr(S)+tr(S)tr

(
ShH

l,:

(
1−hl,:ShH

l,:

)−1
hl,:S

) (44)

where S = R−1.

Results obtained in (43), (44) can be generalized to identify

the global loss caused by the selection of a subset of beams as

� =K log2

⎛
⎜⎝1+

γ
K

tr(TD)

tr
(

R−1
E

)2
+ γ

K
tr
(

R−1
E

)
+tr

(
R−1
E

)
tr(TD)

⎞
⎟⎠ (45)
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Fig. 2. Comparison analytical and simulated � for a n = 81 and K = 40
system.

where RE = HH
E

HE , TD = REHH
D
(I−HDR−1

E
HH

D
)
−1

HDR−1
E

and the subindices E and D represent the enabled and disabled

subset of beams respectively. In particular HD = [hm,:]m∈D and

HE = [hm,:]m∈E .

Hence the loss � is a function of γ and approaches an upper

bound [42] as γ → ∞, defined in the following equation

� ≤ K log2

⎛
⎝1 +

tr(TD)

tr
(

R−1
E

)

⎞
⎠ . (46)

The analytical results of the loss are confirmed by simula-

tions (n = 81 and K = 40 system), as shown in Fig. 2 for a MP

scenario. In particular, the upperbounds derived through (46)

are indicated in the legend as MC-S N = 40 Analytical and MS-

S N = 40 Analytical for the selection over capacity and SINR

respectively, while the numerical values are addressed as Simu-

lated for all the selection techniques.

The MM-S criterion is characterized by fluctuations in the

size of the beam subset, leading to losses that are not limited by

the upperbound defined in (46).

VI. NUMERICAL RESULTS

In this section we present the numerical results obtained

through Monte Carlo simulations over 10000 channel realiza-

tions. For comparison to [9] we assume a transmission scheme

where the AP is equipped with an ULA of n = 81 elements

and communicates with K = 40 MSs, equipped with a single

isotropic antenna each.

We define two different channel scenarios both with perfect

channel state information at the transmitter3: one with only

3Perfect CSI is a common assumption in the literature [13] for systems
that involve AS at the transmitter. Due to the sizes of the systems involved
in mm-wave communications, the acquisition of channel state information
represents a critical step. Recent works on M-MIMO approached the problem,
with the aim to reduce the signal processing complexity [47] or the time [48]
required for CSI acquisition. In our scenario, to retain the benefit of reduced
RF-chain operation, a trivial approach for the CSI provisioning would be
by scheduled acquisition and RF switching, although more sophisticated and
efficient approaches can be found in the literature.

the LOS component (5) in accordance to [9] and one with the

additional MP components as in (6) with NP = 2, in line with

[9]. We define analytically the complex path gains as

βi = |βi|e−jψi (47)

where:

• MP component (i �= 0): |βi|2 = −10dB and ψi is uni-

formly distributed between 0 and 2π

• LoS component (i = 0): |β0|2 = 0dB and ψ0 = 0.

In order to have a simplified definition for the angles of

arrival in the MP component, we consider a scenario where

the distance between AP and MSs is wide enough so that

|θi| is uniformly distributed between
[
�θ − �θ

4
,�θ + �θ

4

]
and

sign(θ) is chosen randomly.

We applied the algorithms with two different approaches: one

where we fix the total number of beams to be used and one

where we choose the beams in order to capture a certain per-

centage η of the total channel power σ 2
c . Accordingly, in the

figures, we use the following notation: Full System to denote the

performances obtained by the scheme without beam selection,

MM-S 2-beam to identify the performances obtained by mag-

nitude selection with nb = 2 in accordance to [9], η = 95% to

classify the approach where the percentage of channel power

captured by the subset of beams is fixed, N = 40 and N = K to

address the approach where the maximum number of beams is

fixed at 40 or at the number of users K respectively.

It is worth to notice that in practical systems the number of

RF chains is generally fixed, making the MM-S of [9] inappli-

cable and the N = {40, K} approaches shown here particularly

relevant in realistic scenarios.

For the η = 95% approach,we used the following definition

of channel power

σ 2
c = tr(HHH). (48)

Hence we can define the captured channel power ratio η as

η =
tr(H̃H̃H)

σ 2
c

. (49)

A. Spectral Efficiency

In this section we show the spectral efficiencies in B-MIMO

achieved with different selection algorithms when the transmit-

ter is equipped with a ZF precoder. In particular we compare

our results with the performances we achieve: a) with a full

rank system and b) with the selection criterion showed in [9].

If we use the previous definition of SINR in (16) we can

compute the spectral efficiency as

C(SINR, G|H) =
K∑

i=1

log2 (1 + SINRi(γ, G|H)) (50)

The presented formula is defined for the full channel model

H, but can be applied directly for the low dimensional channel

after beam selection, by replacing H with H̃.

In Figs. 3 and 4 we can see the spectral efficiency as a func-

tion of the SNR for both approaches, N = 40 and η = 95% in

the legend, and both proposed algorithms, MS-S and MC-S in

the legend. Since both incremental and decremental MC-S
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Fig. 3. Spectral efficiency as a function of SNR[dB] in a Line of Sight
scenario.

Fig. 4. Spectral efficiency as a function of SNR[dB] in a Multipath scenario
with NP = 2.

achieve the same performances, DMC-S has been used to obtain

the results showed, because it introduces complexity savings, as

explained above. When comparing the performances of MC-S

and MS-S, we can see a gap in the low SNR region. This gap,

beneficial for MS-S, is justified by the different metrics used by

the two algorithms. In fact, whilst MC-S does not consider the

precoding involved at the AP, the MS-S algorithm maximizes

the SINR at the receiver for the particular ZF precoding used

here, by maximizing the scaling factor α. The impact of this

difference over the received SINR is described analytically

in (16), where the noise component of the denominator is

inversely proportional to the scaling factor.4

The losses caused by beam selection in Np = 0 scenarios are

almost negligible, as we can see in Fig. 3. In particular the figure

shows that the N = 40 approach is characterized by higher per-

formance degradations for the low-SNR region, but it starts to

achieve similar or better performances than the MM-S for

4Hence, the gap between the two techniques is wider in the low-SNR region,
since the dependence of the SINR over the scaling factor is more visible at high
values of noise power.

Fig. 5. Mean number of beams (RF chains) used for transmission as a function
of the number of users in a Line of Sight scenario.

SNR ≥ 10dB for both MC-S and MS-S. If we apply the beam

selection according to the η = 95% approach, then perfor-

mances increase greatly for both algorithms, arriving to almost

optimal performances with the MS-S.

Fig. 4 shows the spectral efficiencies obtained in the MP

environment. For the N = 40 study we see how the MC-S

algorithm performs well as we increase the SNR, while the

MS-S algorithm outperforms the previous MM-S approach

even in low SNR regions. When we set the number of beams

according to the η = 95% approach instead, we can see how

the capacities obtained by both algorithms are very close to

the optimal performances. In particular the MS-S algorithm

performs very closely to the full-system with a negligile

degradation.

It is important to notice that the improvement in perfor-

mances between the N = 40 and the η = 95% approach resides

in a higher number of selected beams, as shown in the following

section where we focus on this aspect.

B. Mean Number of Beams

In this section we show the mean number of selected beams

for both algorithms as a function of the number of users in the

system. The beam usage is a fundamental parameter for our

study, because it provides an immediate evaluation of the RF

complexity reduction achieved by beam selection at the trans-

mitter. In particular, the N = K environment is characterized by

a number of beams that is a linear function of K because of the

convention we used. This holds for both MC-S and MS-S and

leads to matching results, presented in Figs. 5 and 6 with MC-S

N = K only.

In Fig. 5 we can see how the MM-S 2-beam selects a number

of beams that grows constantly and rapidly with the number of

users in the scenario. In particular we can see that the N = K

approach leads to an higher simplification of the transmitter

than the other approaches when 20 ≤ K ≤ 46. When we apply

the selection with the η = 95% approach, the subset defined by

the MC-S is characterized by a number of beams which is al-

ways lower than the MM-S, except for K = 20. On the other
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Fig. 6. Mean number of beams (RF chains) used for transmission as a function
of the number of users in a Multipath scenario with Np = 2.

hand, the MS-S algorithm is affected by a wider selection

of beams than the MM-S, while still providing an interesting

simplification gain compared to the full system.

In a more realistic multipath scenario, see Fig. 6, the MM-

S technique uses a higher number of beams than the N = K

approach with both MC-S and MS-S until we keep the number

of users K ≤ 50. In particular, it is interesting to notice how

this simplification benefit is accomplished while providing at

the same time higher spectral efficiencies. When we apply the

MC-S with a η = 95% approach the gains in terms of number of

beams are visible for systems where K ≥ 50, while the MS-S

uses always bigger subsets than the MM-S. For the case with

40 users, we can see that the MC-S selects in average only ∼2

more beams than the MM-S and yet provide a considerable be-

nefit in terms of spectral efficiency, leading to a very advanta-

geous trade-off. In a system with K = 40, the MS-S algorithm

in a MP scenario is affected by a selection of a wider number of

beams, but at the same time is able to provide near-optimal per-

formances with an significant complexity simplification com-

pared to the full system.

In both Figs. 5 and 6 we consider a SNR=15dB scenario,

however, the effects of this assumption over the number of se-

lected beams are negligible. In fact, while selections with a

fixed number of beams N = K, together with MM-S and MS-S

are independent from the SNR, the channel power approach

with MC-S showed imperceptible differences in a low SNR

scenario.

C. Power Efficiency

In order to provide an evaluation of the trade-off between per-

formance and RF complexity in the practical implementation

in terms of RF chains required, we show the power efficiency

values obtained by the different selection algorithms we used.

We follow the definition of transmit power efficiency used in

[22] based on the modelling [49]

εP =
C

Pt + N · PRF

(51)

Fig. 7. Power efficiency as a function of K in a Line of Sight scenario with
Pt = 15dBm.

where C represents the spectral efficiency in [bits/s/Hz], Pt

the transmitted power of the system in [Watt], N the number

of transmitting beams and PRF the power consumed in the

components per RF chain in [Watt]. We use practical values

for PRF = 34.4mW [22], accounting for mixer, DAC and filters,

and Pt = 15dBm [4], to model a small cell transmission. This

metric is particularly useful to show the effects of the selection

of a reduced number of beams on the power needed by the sys-

tem, together with the effects on the average spectral efficiency

of the system.

Fig. 7 illustrates how the N = K approach, with both the

MC-S and MS-S, outperforms greatly all the others until the

number of users K ≤ 31. This is due to the fact that the number

of beams, and hence RF chains, we use is much smaller than the

other approaches, yielding a great reduction in power consump-

tion. The η = 95% approach is characterized by lower efficien-

cies than with N = K for reduced number of users, due to the

independence of the selection criterion from the number of users,

but once K ≥ 35 the MC-S η = 95% approach keeps having

higher performances than all the other techniques. The channel

power approach over MC-S shows an interesting behavior in

the highly populated scenario, i.e. K > 50, where the values of

power efficiency start to increase. This behavior is explained

by Fig. 5, where the mean number of beams selected by MC-S

η = 95% when K > 50 is lower than all the other approaches

and even lower than the number of users in the scenario. Conse-

quently, the increasing spectral efficiency, combined with lower

power requirements, leads to an increase in terms of power

efficiency. Lastly, when we apply the MS-S we can see that

the η = 95% approach, in K ≥ 36 scenarios, is characterized

by higher values than the MM-S algorithm. This is due to the

fact that the effects of a higher number of selected beams are

mitigated by near optimal spectral efficiency values.

In Fig. 8 we can see that the approach with N = K is still the

best one for system with reduced number of users. In particular

we can see that the two approaches lead to similar high values

of power efficiency in the low populated scenario, but MC-S is

gradually outperformed by the MS-S algorithm as we increase
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Fig. 8. Power efficiency as a function of K in a Multipath scenario with Np =
2 and Pt = 15dBm.

the number of users. This is due to the fact that the interference

among users, which is optimized by MS-S, becomes more rele-

vant as the scenario gets more populated. When we apply the

algorithms with the η=95% approach we can see that the MC-S

technique starts outperforming all the others after the number

of users increases to K ≈ 35. This can be easily explained by

the high values of spectral efficiency this transmission scheme

leads to.

In the end it is worth noticing how the values of power

efficiency obtained by the MM-S criterion rapidly decrease

with the number of users in the scenario, because of the lower

capacities obtained with such approach when the effects of

scattering and multipath increase.

In Figs. 7 and 8 we focused our attention on high SNR re-

gime, in a SNR = 15dB scenario. However, from Figs. 3 and 4,

we can infer that the benefits of the proposed techniques extend

also to low SNR scenarios, as the performance gap in terms of

spectral efficiency in comparison with the full system is still

narrow and the hardware complexity savings are not affected

by the SNR. Moreover, as shown in Fig. 2, the losses of the

proposed techniques in comparison with the full system de-

crease together with the SNR. As a consequence, this suggests

that the performance trends in terms of power efficiency are not

affected by the SNR.

In Fig. 9 we can see the dependence of the efficiency on the

transmitted power. In particular, we use a scenario where K =40

and SNR=15dB. As in the previous figures, we can see that the

η=95% approach with MC-S outperforms all the others. As

we would expect, performances decrease with higher values of

transmitted power, because the RF-chain term in (51) becomes

less relevant. In the same figure it is visible how the MM-S

technique performs poorly compared to the others because of

the low values of spectral efficiency and higher number of

beams used. The N =40 strategy provides better performances

than the full system when Pt ≤26dBm for MC-S, and when Pt ≤
34dBm for MS-S. Even though with a fixed number of beams

N both the capacity and the SINR selection perform better than

the system with no selection, it is interesting to notice how the

MS-S is characterized by an additional ∼6[bits/s/Hz/W] gain.

Fig. 9. Power efficiency as a function of Pt .

VII. CONCLUSION

In this paper, we have introduced several beam selection

techniques for B-MIMO that allow to reduce the RF complexity

of mm-wave transmitters while obtaining near-optimal perfor-

mances, in both line of sight and multipath environments. The

transmission schemes showed in our studies are particularly

interesting for mm-wave systems because of their characteristic

high-dimensionality which makes the RF chain costs and power

consumption important.

In particular, our analytical and simulation results prove

that with beam selection algorithms it is possible to achieve

higher power efficiencies than a full system while reducing the

transceiver RF complexity according to the number of MSs.

We also demonstrated that beam selection algorithms with a

channel power approach can lead to near-optimal performances

in both a LoS and MP scenario, while still achieving significant

RF complexity reductions.
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