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Low-Sensitivity, Low-Power ActivaRC Allpole
Filters Using Impedance Tapering

George S. Moschytziellow, IEEE

Abstract—A procedure for the design of allpole filters with low are at a premium, and the required filter selectivity and
sensitivity to component tolerance is presented. The filters are precision is relatively modest, one very useful filter candidate
based on resistance—capacitand&C)ladder structures combined g 1ha single-amplifiernth-order allpole filter. Unfortunately,

with single operational amplifiers. It is shown that by the use of . . . . .
impedance tapering, in which L-sections of theRC ladder are the design equations for filters of higher than third order

successively impedance-scaled upwards, from the driving source Pecome unwieldy, if not unsolvable. Thus, the combination
to the amplifier input, the sensitivity of the filter characteristicsto  of cascadable low-sensitivity second- and third-order filter
component tolerances can be significantly decreased. Impedancesections (“bi-quads” and, for lack of a better word, “bi-

tapering is achieved by the appropriate choice of component . . - : ] - o
values. The design procedure, therefore, adds nothing to the cos&rIpIetS ) can be used to obtain low-power tolerance-insensitive

of conventional circuits; component count and topology remain high-order activeRCfilters. This is the type of filter discussed
unchanged, whereas the component values selected for impedancdiere.
tapering account for the considerable decrease in component- It is known (and briefly shown here) that the amplitude and

tolerance sensitivity. phase sensitivity to coefficient variations is directly propor-
Index Terms— Allpole filters, biquadratic active filters, tional to the pole Q’'s and, therefore, to the passband ripple
impedance tapering, low-sensitivity active filters, third-order specified by the filter requirements. The smaller the required
active filters. ripple, the lower the pole Q’s. Similarly, the highest pole Q of a
filter will increase with the filter order. Thus, the conventional
|. INTRODUCTION (and economical) wisdom of keeping the filter order as low

. . . h ifications will permit (rather than might hav
N SPITE of the large variety of available modern fllteraSt e specifications pert t.(at er tha » as mig t ave

, L . " seemed reasonable, overdesign in order to minimize sensitiv-
techniques there are situations in whiikcrete-component

active resistance—capacitance (RC) filtéwave a distinct edge ity) is entirely JUStIerd,' also from a sen§|t|V|ty point of view.
ST . o Note, however, that this last statement is true only for the type
over their hi-tech competitors. These situations are char

%(f_active RCfilters considered here. F&C and simulated.C

terized, among othe_r things, by_ the following requ'r_ement%dder filters, increasing the order decreases the component
1) fast turn-around time for design and manufacture; 2) low ™~ "~ . .
power (e.g., only one opamp per filter) and low cost (i esenS|t|V|ty. This is a consequence of what has come to be

o “'Known as Orchard’s Theorem [1].

no need for analog-to-digital or digital-to-analog converters, " . ' .
g 9 9 9 Using the allpole low-pass filter as the most representative

nti-aliasing filter D; moder fr n lectivi . . . .
anti-aliasing filters, etc.); 3) moderate frequency select .t hd important of the allpole filters, we discuss the sensitiv-

i.e.,, pole Q’s less than, say, five; 4) moderate size, i. Y of the t fer-functi fficients t iati f th
smaller than inductance—capacitan@eC) filters but larger 'ty of the transier-iunction coetlicients 1o variations of the
ﬁomponents (i.e., resistors, capacitors, and amplifier gain). We

than integrated circuit (IC) chips; and 5) relatively smal trate that. wh h litud d oh it
guantities and a diversity of filter specifications, which prohibﬂemons rate that, whereas the amplitude and phase sensitivity

a high-runner modular approach to the design of the filtertg coefficient variations depends entirely on the transfer func-
PQ” itself, the coefficient sensitivity to component variations

For situations such as these, single-amplifier allpole filte . . . ) .
of varying order should be considered. However, to maintafiin be influenced directly by the design of the filter circuit. In-

their cost effectiveness relative to other filter techniques, SUF%%ucmg the Ic(:onceé)t ompedancitapﬁ rng)r thehlnputh
discrete-component actiiRC filters must be manufacturable'29%€" network, we demonstrate that the larger the impedance-

with relatively wide-toleranc&C components, and yet with notapering factop can be made, the less sensi.tive the circuit Wi|.|
need for filter tuning. In other words, their filter characteristic?,e to component tolerances_. quever, the |mpedance-taper|ng
e.g., frequency response, must be as insensitive to compo QHE‘_” cannot b? made arbltrarll_y large. It is shoyvn that the
tolerances as possible. maximum possible degree of impedance tapering depends
Since the application of discrete-component acR@filters directly on the value of the transfer function coefficients.

is generally limited to systems in which power and cofounds on the impedance-tapering factor as a function of
the transfer function coefficients are given, both for second-
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simply requires a judicious choice of component values. Since, \
as is initially shown, the component sensitivity also depends
on the specified ripple, order, and pole Q of the filters, it is 13 1 L Tipple 3dB
demonstrated here that the filter designer essentially has three ., | ‘
factors to consider, when designing low sensitivity aciR@ /

allpole filters. These are the following. 1 S B
1) The component sensitivity increases with inband ripple. 10 4
Thus, the specifications should be geared toward a 0]
low ripple (or, if possible, maximally-flat) amplitude
s ’ Pole o | 4 . 1dB
response. This, in turn, decreases the pole Q’s. o 8 K .

2) The component sensitivity increases with the filter |

order; the latter should, therefore, be held as low as S ~ 0548

possible. Fortunately, this is standard practice in filter ~ ©] /,"

design and minimizes filter cost. 54 / g L 0L1dB
3) By using the newly introduced concept of impedance | S

tapering, the circuit can be directly and significantly ./

desensitized with respect to component tolerances at 3 1 » ,x”

no extra cost. Nothing but an appropriate choice of | |
component values is required.

In this paper, particularly the third step is described in
detail for second- and third-order low-pass filters. Since the ‘ . . ‘ .
impedance-tapering facter cannot be chosen arbitrarily, but - :
depends on the transfer function coefficients, a detailed and Filter Order n
exact Qe5|gn p_rocedure is required, and_ 1S pr_esente_d here. E§€1. Highest pole Q for Butterworth filters of increasing orderand
extension to high-pass and bandpass filters is straightforwatebyshev filters of increasing orderand ripple, in decibels.
and will be published shortly.

Because of the complexity of the design equations (whic ' .
are nonlinear) for anything higher than second-order fiItePQ)Ies [ie., roots off)(s)] in the s plane. For example, the

S . . . .
. : . . ! -poles of a sixth-order Butterworth low-pass filter will lie on
(i.e., “biquads”), even conventional third-order filters have, |R b
the past, been considered only for special cases, e.g., unj

a semicircle about the origin in the left half plane, and those
gain [2] and equal-valued resistors or capacitors [3], wit&

ltya Chebyshev filter on an ellipse. The larger the ripple of
7 . : o . ) .. .. the Chebyshev filter, the smaller the eccentricityi.e., the
little attention given to sensitivity considerations. Sens't'v'%loser they pol\éslwill be to thew axis andthel r:;iyéher the

to component toIerances h_as been d_e(_a\!t with only in r"?‘thceorrresponding pol&’s [7]. Note howe'ver that the slope of
general terms, and with a view to the initial transfer functlor%he asymptotic response of the two allpole filters of equal order

e.g., [4]. In what follows, we demonstrate that |mpedancneWiII be the same, irrespective of the inband ripple.

tapering V.Vi" decrease.the sensitivity 1o f:omponent toIeranceaNith therelative sensitivityof a functionZ'(x) to variations
also of higher-than-third-order allpole filters. Unfortunately fea variablez defined as

analytical design equations for these filters become intracta

and are, in fact, mostly unobtainable in closed form. Neverthe- gr@) _ @/F _ dF(z) @ _ dlln F'(2)] 2.2)
less, tabulated values for special-case allpole low-pass filters * de/x der  F(x) d[ln z]

for up to the sixth order are available [5], [6]. Starting os.%

ith th | desi timizati i b e obtain the relative change @f(s) as given in (2.1)—to
with these values, a design-optimization routine can be use % variations of its coefficients;, as
find impedance-tapered components that meet the permissible

amplitude and phase tolerances specified. However, describing AT (s) ~ 7(s) Aa
such routines goes beyond the scope of this paper. T(s) - Z Sa, a; (2.3)
=0
Il. SENSITIVITY TO COEFFICIENT VARIATIONS Thus, with (2.1)
Consider the transfer functidfi(s) of annth-order, allpole ST (s)y=1- o (2.4)
low-pass filter ! D(s)
N and fori # 0
D(S) ST(S) _CLZ‘SZ 25
- Pao _ (21 D)’ 29
OnS™ 4+ Ap_18" L4 a8+ -a18 4+ ag .
Letting
The frequency response of the filter depends on the coefficients ;
a; of the polynomialD(s). These are available from any filter Fy(s) = —22 i=1,2 -, n (2.6)

handbook or CAD program and determine the location of the D(s)’
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Fig. 2. Generalnth-order single-amplifier low-pass filter.

and, with (2.4) frequently conflicts with cost, since the lower the ripple, for
a4, 5" + @y 15"+ ays a given filter specification, the higher the required order will
- n (2.7) be. A Butterworth filter, with its “maximally flat” amplitude
D(s) response corresponds to the limit case of no ripple in the filter
we obtain passband and, compared to a Chebyshev filter of equal order,
" invariably has lower pole Q’s. This is shown in Fig. 1, where
Ac(w) = Re{z Fi(jw)Aai} (2.8) the highest pole Q of second- to 6th-order Butterworth and

Fo(s) =

i Chebyshev filters of varying ripple is shown. The figure clearly
indicates that in order to keep the pole Q’s at a minimum for
the sake of low filter sensitivity to coefficient variations, it is
T(8)|smjo = [T(jw)| - 7 (2.9) desirable to design the filter with as low ripple and as low
order as consistent with the filter specifications. Whereas this
is common practice in conventional filter design, it may not
In T(jw) = In |T(jw)| +jd(w) = a(w) + j¢(w). (2.10) pe obvious that an infringement of this practice violates not
only the requirements of economy and performance (in terms
of the inband ripple) but in terms of filter sensitivity as well.

=0

where

and

a(w) is the amplitude response in Nepers, giid) the phase
response, e.g., in degrees.

Recalling two important properties of the coefficientsof
D(s), namely: 1) the coefficients; of D(s) [and N (s)] must
be real and 2) the coefficients of D(s) must be positive, it ~ As pointed out in the introduction, for reasons of low
follows that theAa, /a; terms in (2.8) are real, so that we carcost, low power, and fast turnaround time, single-amplifier
rewrite this expression as allpole activeRCfilters designed with discrete components are

" " often used in high-tech signal-processing and communications-
Ac(w) :Z RE{E(jw)}Aai :Z fi(w)A“i (2.11) oriented applications, even when the brunt of the signal-
pard a; par a; processing is carried out by “megatransistor” integrated system
chips. Our discussion is therefore focused on such filters, and

in particular on those with relatively low order, i.en = 2"
—a;s* and “3.” As we shall see, it is possible to extrapolate from these
Jilw) :Re{ D(s) } , (2.12) results, and to derive design guidelines for single-amplifier

P allpole activeRCfilters of arbitrary order. However, a more
practical, and immediately applicable method of designing a
}szjw

I1l. COEFFICIENT SENSITIVITY TO COMPONENT TOLERANCES

where, fori = 1,2, ---. n

and

(2.13) filter of any order is to cascade low-sensitivity single-amplifier
filters of second and third order. As will be shown, the required

The functionsf; (w) are frequency-dependent multiplicand®OWer is still low, and 'Fhe_ individual second- and third-order
of the coefficient variationg\a; /a; which cause the amplitude filters have a low sensitivity to component tolerances.
deviation Aa(w). They depend only on the initial transfer_ The representatlveth—ordergengral allpole_smgle-amphf!er
functionT(s) of a given filter, i.e., on the filter specificationsfilter structure to be used for our discussion is shown in Fig. 2
and on the required filter order, and demonstrate a dirdel: [6]- This is a low-pass filter, but any other (e.g., high-
dependence of sensitivity on the Q’s of the transfer functid}fSS or bandpass) applies equally well. The transfer function
poles: the higher the pole Q's the higher the sensitivity. Thd this filter has the form of (2.1). The amplitude variation due
dependence will appear again in the next section when \;\gbcoefnqent varlat|ons_ is given by (2.8.). The coefhme_ms
discuss coefficient-to-component sensitivity. We therefore c&ff functions of the resistors, the capacitors and the gaji
already conclude here that for low sensitivity of a filter to itd US, with (2.2), the coefficient variations can be expressed in
component tolerances, the filter with the lowest possible pdfée form
Q’s (consistent with the filter specifications) should be used. Aa; <~ ., AR N . AC,
Thus, for example, with respect to sensitivity, a Butterworth —,~ — > Sk, R L) S ot S B 3.1)
filter is always preferable to a Chebyshev filter and, likewise, # v
a low-ripple Chebyshev filter is always preferable to a Cheby- In general the individual resistor®,,, capacitorsC,, and
shev filter with higher ripple. Unfortunately, this preferencgain-determining resistors will be characterized by their mean

Folw) :Re{l - %

AB

=1
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TABLE |
SENSITIVITY OF @1 TO COMPONENT VARIATIONS
OF SECOND-ORDER LOW-PAss FILTER

Aor ——o
_ Lt
V] V: X 9 <
R, =R;C, =C
Rp=R(B-D) T n=p
i R, =rR;C, =—
P
Fig. 3. Second-order low-pass filter with ideal opamp and voltage @ain R R,C, E 1
YRC, Ve

p, and standard deviation,,,, wherez in turn represents e -
each of the component types (e.g., resistors or capacitors) The” RG 1+ Sp \jE(I—B%? 1B+
0! mp ypes (e.g., pacttors). VG T :

coefficient variationsAa;/a; will then be random variables
whose statistical behavior is a function of the components on .

. RG, R,G, ’Z ._1_ I+—
which they depend. RC HRE Vo o

In what follows, we derive the coefficient-to-component
sensitivity analytically for the second-, third-, amdh-order G RC (1_g) 45(1—;5) (1-)
allpole filters. The resulting expressions provide insight into
methods of deterministically reducing this sensitivity. The
efficacy of these methods can be tested by Monte Carlo

analysis using given component statistics. It is shown that thgriances. Since the sensitivity @f to all RC components is
methods introduced to minimize the sensitivity of filters of the-1 (and to the gairg, it is zero), Aag/ao can be decreased

kind shown in Fig. 2 are very effective in reducing frequencynly technologically, i.e., by prescribing the quality, precision,

response variations due to component tolerances. temperature coefficient, aging behavior, etc., of the resistors
and capacitors. This is true for all filters of the type shown in
A. Second-Order Allpole Filters Fig. 2, irrespective of their ordes.

Consider the second-order low-pass filter shown in Fig. 3.For the sensitivity ofa; to the tolerances of the passive
The voltage gain3 is obtained with an ideal noninvertingcomponents, we readily obtain the expressions given in the
opamp. The voltage transfer function for this circuit (knowfirst column of Table I. Furthermore, sinag, is independent
as class 4 or Sallen and Key [6]) expressed in terms of tAE /4, we obtain
coefficientsa; [see (2.1)] is given by

Kao §o = _st — _<q_,, - ) 3.6)
T(s) = —— 3.2 8 B 5 .
O P 3.2) 4
and in terms of the pole frequenay, and pole b : .
P quenay pole Qq, by where we denote the pole Q of the passive network (i.e.,

Tley — Kuw? 33 8 = 0) by 4.
(s) = 9, Wp 9 (3-3) Note that the coefficient sensitivities are all proportional to
ap the pole Q,g,. Thus, as mentioned earlier, in deciding on a
filter type for a given application, one does well to select the

where & = /3 and one yielding the lowest pole Q’s. This means a preference for

ao =w? = 1 low ripple or maximally flat filters if possible, and as low a
P RIRyC1Cy filter degreen as the specifications will allow.
g =Y R(CL+ C2) + RyCy — BRLCy From (3.6) it follows that the coefficient (a,-) sensitivity
L @Q» R{R,C1Cs to the gain is inversely proportional to the passR@ pole Q,
VR RO Oy 4. Thus g should be as large as possibl_e. Since a pgsR'(\?e
ap = ROy + RoCs + RiCy — BRLCL (3.4) network can have only negative-real single poles, it follows

o o - ~ thatg is limited to less than 0.5 [8]. It can be shown [6] that
Considering the overall variation of coefficiemt, we readily  of a two-sectionRC ladder structure can be maximized by

obtain impedance scaling the second L-section of the ladder such as
Aag 2 AR, 2 AC, to minimize the loading on_the first. _F(_)r example, referring
— = + Z (3.5) to Fig. 3, the second L-section comprisif& andC, can be
ao — R, — C, . ) A ;
n=1 v=1 impedance-scaled upwards such as to minimize the loading on

Note that Aw,/w, = 0.5Aao/ao. Furthermore, the meanthe first, i.e.,R; and C;. Referring to Fig. 3 and letting

of Aag/ag will equal the negative sum of the means of all
R, andC,,, and the variance will be the positive sum of their R, =R; C,=C; Ry=7r-R;, Cy=C/p (3.7)



MOSCHYTZ: LOW-SENSITIVITY, LOW-POWER ACTIVERC ALLPOLE FILTERS 1013

q the sensitivities are already decreased significantly, and for
05 - p = r = 10, even more so. Conversely, when=r = 0.1,
the high sensitivity of the circuits renders them practically

0.4 7 e useless. We do not show curves here fot£ p since, in

P general, second-order circuits do not require this added design
’ flexibility. However, in Section IV, we shall deal with this

more general case, as required for various special situations.
, Incidentally, it can be shown that the sum of the sensitivities
o d 7 of a; to all resistors and capacitors must equal minus one,
2 respectively, i.e.,

T T T T T T T
0 0.5 1.0 1.5 2.0 25 3.0 10.0 p

2 2
Fig. 4. Plot ofg versus impedance-scaling factor Zl 5?31“ = Zl 5S¢, =1 (3.9
n= v=

we obtain withg,, given in (3.4) Expressions of this kind are often referred tosasisitivitiy

N invariants They are a result of the so-callédmogeneityof

i=q(=0)=—""—— (3.8a) the function in question, the function in this case being the
L+r+p coefficienta, (R;, C;) [8].

and forr = p

p B. Third-Order Allpole Filters
= 0.5. (3.8b)

T 1+2 p—roo The third-order version of thesth-order low-pass filter
shown in Fig. 2 is shown in Fig. 6. The voltage transfer
function is given by

K>

Thus, impedance scaling, and C, by a value ofp > 1,
¢ will approach 0.5 and the sensitivity af (or ¢,) to 3 will,
according to (3.6), be minimized. Actually,does not have to Bag
be that much Ia_rger than un_lty to be effecﬂ_ve, as the pIc_rj of I(s) = 3+ aps? + a5+ ag (3.10)
versusp shows in Fig. 4. This is fortunate since, in practice, a
largep may caus&’, to decrease into the range of the parasitier, in terms of the pole frequencieg and~ and the pole Qg,
capacitances of the circuit. From Fig. 4, it is apparent that a

2
value of p between 2 and 3 will already bring close to its T(s) = Pwpy . (3.11)
upper boundary of 0.5, i.e., between 0.4 and 0.43, respectively. (5 +7) <S2 L w2>
The question is now whether impedance scaling with a factor ap r

p > 1 will also decrease the other coefficient sensitivities, given ,

in the first column of Table Inserting the expressions in (3.7)Note that~ is equal tow, for a Butterworth, and to the
we obtain the sensitivity relations given in the second arfRfcenticitye times w, for a Chebyshev third-order low-
third column of Table I. Although proper impedance scaling2SS filter. The coefficients df'(s) in terms of the circuit
requires that- — p, this may not always be possible, since £°MPonents are given by

given design may require two independent degrees of freedom ) 1

i.e., p andr. Taking this into account, both sets of expressions, Qo = YW, = Ry RaR3C,CaC5 (3.12)
namely those forr = p andr # p, are given. It is apparent

from these expressions that impedance scaling (in which ca#eere in terms of the eccentricityy = ew,,, anda,, and a,

p = r > 1) also reduces the coefficient sensitivities to thare shown in (3.13) and (3.14), at the bottom of the next page.
other components, as well as to the gainif » is required  With (3.1) and (3.12) we obtain

to be unequal ta (for reasons of design flexibility), then

increasing only the capacitor ratip will also reduce the ﬂ _ > AR, +§: AC, (3.15)
sensitivities. Although some of the expressions include a term ag — R, o’ c, |’ '
(p/m)%(1 = ), this term will be small since the gajf will .

generally be in the range between unity and, say, 2.5. For the case of a Butterworth filter, whete= w,,, it follows

To demonstrate the effect dimpedance taperingi.e., thatAw,/w, = Aag/3a9. The sensitivity ofa; andas to all
impedance scaling by = » > 1, Fig. 5 shows Monte Carlo the circuit components follows from (3.1), and we obtain the
runs of the circuit in Fig. 3 forp values ranging from 0.1 expressions given in Table II.
to 10, andg, values from 1 to 5. Comparing Fig. 5(a)—(c) These analytical expressions for the coefficient sensitivity
for p = » = 1, the influence of the pole Q on componento individual component tolerances indicate that impedance
sensitivity for nonimpedance-scaled circuits is shown (note teealing the ladder network of asth-order filter, as shown in
vertical scale). As the pole Q is increased, the circuits becorfig. 2, with a scaling factor such as to increase the impedance
increasingly sensitive to component variations. The lattevel from left to right, L-section by L-section, has an effect
are uniformly distributed with zero mean and 5% toleranceimilar to that in the simple second-order case. It reduces the
Impedance scaling by a factor of three (i.p.= » = 3), overall sensitivity of the network to all component tolerances.
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Fig. 5. Monte Carlo response plots of impedance-tapered second-order low-pass filters, with tapering fatging from 0.1 to 10 and pole Q’s
from 1 to 5. (@¢g = 1. (b) ¢ = 3. (c) ¢ = 5.

For the third-order network, this results in the circuit showhy a factorr;, and decrease each capacit@r by a factor
in Fig. 6, where we increase each resisirfrom left to right p; . Ideally, »; should be equal t@; for proper impedance

Ri(CL 4+ Co + C3) + Ro(Cor + C3) + R3C3 — BC2(Ry + Ry)
(1 s B 3.13
“ ”f’( M Ry Ry RsC1.0sCh (3.13)

and
(3.14)

- —w 1 o) = RiRyC1(Cy + C3) + RiR3C3(CL + Ca) + RaR3CoCs — SR R C1Ch
2T - Ry RyR3C; CyCs
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i C TABLE 1l
C,= 0 SENSITIVITY OF @1 TO COMPONENT VARIATIONS
i OF THIRD-ORDER LOW-PASS FILTER
R,=R  R,=r,R|Ry=r,R
O——AA AAA——AAN p —0
. a1
J~CI:C J;szc x a, RC
P3
I I General Impedance Separate Impedance Ideal Impedance
Scaling Tapering Tapering
Fig. 6. Impedance tapering a third-order low-pass filter By and
Piyt = 2, 3. .ri,pi rl=rH,. p‘=pn—1 ri:Pi:piA
i=2,3 i=2,3 i=2,3
TABLE 1 R, L 1
SENSITIVITY OF a1 AND @3 TO COMPONENT VARIATIONS rz,[H&[HLaJ_B} 1[1_[“_(1”)} 2_B+E
OF THIRD-ORDER Lowpass FILTER Pl Pl T P p
a |1 a a, 1
T e Ok - x R,
x a, RC, 3 RGCG, 2 1+i(1—B)+i(1+r3) 1+1(17[3)+ 12(1+r2) :>_+1(1—B)+i2
P2 Ps P P p p
R,C, (.. C  RG, R,C,
1+-—=+ -
R RC [ ¥ G RG P RG Ry 1 1 1-g 1 1) 1
1+(1+r2)|:—(1—[3)+—:! 1+(1+r)|:—+—2:| (2—3){“—}—2
1+&(17ﬁ)+& 1+ % R*C%(Cl“‘CZJ P P PP Pl P
Rz 1 Cx R1 RZ CICZ
= 1 17 1, 1+r 1) r 1Y, 1
R, YC, c, (1—B)+& (1+r1,) p—(l—B)+; +; e 1_B+E +;)~z 1+E 1+‘;—B +1
R, 1+ I+—! a(lgﬁ) < C, 2 3 3
C 1 1 11
RIS G R.C, RG, R1+Rij : 1+— (1+r +r ) 1+*(1+r+r2) 2+—+—
2 =2 fhuck B B et bt kN et M
© |:(l " R, ][ o ( ﬁ)+ G " R,C, G, RR; Ps S pz p PZ
C, R,+R, G (Rz + R;)
G el _R ‘ R,C, C 1+r
3
: ! [H—rzj(l—ﬁhl —1-p)+1 [1+1)(1—ﬁ)+1
c P, p p
R
SR -0
B
E(1+ r,) B[H_r] ﬁ(l*' lj
6 BC, [1 LR ] 8 P P P
Cl Rl

result. Finally, forideal impedance taperingwe have the
scaling. However, for third and higher order filters, in ordegondition of (3.17), which results in the third column of
to maintain a sufficient number of degrees of freedom, thigbles 11l and IV. Before interpreting these results, it is useful
condition cannot, in general, be satisfied exactly. Neverthelegs point out their adherence to the property of the coefficient
because we are still gradually increasing the impedance levg@nsitivity invariants as given for the second-order network in
L-section by L-section, from left to right, we still refer herg3.9). It can be shown that for asth-order network
to “impedance tapering of the ladder network.” By impedance . .
tapering, we may be increasing the impedance of only the Qi _ @i _ .
resistors, capacitors, or both, from left to right. Referring to z_:l SRH N Vz:_l S¢, = (3.19)
Fig. 6 for ideal tapering, we require that - B

as can readily be verified for the expressions given in

e e o 2
2=p2=p T3=P3=P (3-16) Tables Il and IV. Furthermore, in general, the coefficient
and for the generalth-order network in Fig. 2, we require thatSensitivity of the impedance-tapered filter has the form
Ti = pPi = pi_lv = 27 37 IAERLE (317) Sgi = _@(Rc)if(Tﬁb? pl/) (320)
a;

Inserting the general impedance-scaling factgrandp; as

. ) 7 wherez is any resistor, capacitor, or gain element of the cir-
in Fig. 6, i.e., y b g

cuit. For ideal impedance tapering, it follows thagt RC) = 1

B =R; Ry=mR; 3=k and 53 = f(p)/a;.

CL=C; Co=CJpy; Cs=Clps (3.18) _ Whereas the coefficients; are given by the filter spec-

ifications, the functionf(p) can be minimized by making

into the sensitivity expressions given in Table Il, we obtaip > 1. Here again, as with the second-order filter, a value
the expressions listed in the first column of Tables Il and I\Nof p between two and five will already reduce the coefficient
Tapering the resistors and capacitors separately; by »*~*  sensitivity appreciably. The same applies to the nonideally
and p; = p'~!, respectively, the sensitivity expressions iapered circuits for which the coefficient sensitivities are given
column 2 eparate impedance taperingf the two tables in the first two columns of Tables Il and IV.
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TABLE IV IV. DESIGN EQUATIONS FOR SECOND- AND THIRD-ORDER

SENSITIVITY OF a2 TO COMPONENT VARIATIONS IMPEDANCE-TAPERED ALLPOLE FILTERS
FOR THIRD-ORDER Low-PAss FILTER

In this section we present the design equations for tapered

a1, second- and third-order filters. Unfortunately, the equations
x 3, R*C* ™ for higher-order filters still defy a satisfactory closed-form
General Impedance Scparate Impedance | Ideal Impedance solution. However, the combination of impedance-tapered
Scaling Tapering Tapering second-and third-order sections, which can be cascaded to
provide any desired filter order, is already a great improvement
-5;"3‘, r=r";p=p" L=p =p"" in terms of component sensitivity, compared to a nontapered
s =23 =23 equivalent filter, while remaining modest in terms of required
R |z, IS 1 power. Thus, for example, up to sixth-order filters can be
PaPs o realized with two, up to ninth-order with three, twelfth-order
with four, fifteenth-order with five amplifiers, and so on.
Rs h[].,_lj é(1+lJ 1+=
Pl P PR P A. Second-Order Allpole Filters
R . We start out with the second-order low-pass filter shown in
r{pi(l—ﬁhﬂ g[H%—Bj 1+o-P Fig. 3. Its transfer function is given by (3.2) to (3.4). With the
tapering factors in (3.7) and with
Cl Iy 1‘2 1 1
-y (1+1,) 1+ e Wo = T (4.1)
o | . L we obtain for the coefficients df’(s)
?(r2+r3) ?(1+r) 1+E
3 1 -
ao =w, = P =2 :w03<1+ a —/3)
Cy r ( ) r( ) 1-B " £ " P
“2(1-p —(1-B 1 . 1 ,
P P B4t __\/Z 4.2)
p B\ P
B 2 p . .
B;—Z Bé In practice, K, ag, and a; or, equivalently, K, w, and
g, Will be given by the filter specifications. From these

guantities, and possibly some additional constraints, such

as input resistance level, maximum or minimum acceptable

For third-order filters, the specifications generally do n%pacitor values, etc., we must determing p, =, and 3.
permit ideal impedance tapering, in which case just the capacfrom (4.2), we obtain

itors may be tapered and the resistor values will be determined )

by the filter design equations. By inspection of the “separate = “0 (4.3)
impedance tapering” columns of Tables Ill and IV, it follows (a1 —wo)wo +ao(f —1)

that the resistor tapering factor should actually be held as smaarﬁd rao ao

as possible, or typically close to unity, while the capacitor p= w—g = (a1 — wo)wo + ao(B—1) (4.4)

tapering factorp should be as large as possible, in order to
minimize coefficient sensitivity. We shall later see that wheh@ndp must both be positive, and, which is, in general, the
ideal tapering for filter orders higher than two is not possiblg,aln of a noninverting opamp, must obey the constraint
the optimum solution is to make thevalues equal, (i.e., for 8> 1. (4.5)
the third-order caser; = 73) and p as large as possible. In
general ap value between 2 and 5 is sufficient to provide ahus, the denominator of (4.3) and (4.4) must be larger than
significant degree of insensitivity to all component tolerance&er0: resulting in the constraint that

In Fig. 7, amplitude response curves for a third-order But- a a
terworth and Chebyshev filter are shown. The capacitor scaling wo < o +4[ tao(B—1). (4.6)
factor p. was varied from 1 to 5. The resistor scaling factor . .
could not be freely chosen: it was determined by the dg_ecause of (4.5), the expression under the square root will

. . . . . ﬁl1ways be positive.
sign equations. Just how the design equations constrain @s we shall see below impedance tapering may be only one

resistive scalllng factor W'I! bg d|§cussed in Section !V' Montg,nsideration necessary for the minimization of active filter
Carlo runs with 5% flat-distribution, zero-mean resistors a%nsitivity, namely that of minimizing for sensitivity p@assive
capacitors were carried out. Clearly, the circuits with tapergémponents. Minimizing sensitivity tactive elements in the
capacitors (i.e.p. = 3 and p. = 5) are considerably lessfilter circuit has been shown to require the minimization of the
sensitive to component tolerances than the nontapered circug@in-sensitivity producf6], [7]. This and other considerations
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Fig. 7. Monte Carlo response plots of impedance-tapered third-order Butterworth and Chebyshev low-pass filters. Capacitors are tapered by tapering

factor p.; resistor values follow from design equations.

may result in only partial, as opposed to ideal, impedance tainimization of a filter circuit. The resulting different cases

30KHz 100KHz 300KHz

Frequency

pering being the best strategy for the comprehensive sensitivaie discussed briefly in what follows.
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1) Ideal Impedance Taperingtn this caser = p. From TABLE V
(4.1) and (4.2), we obtain COMPONENT VALUES OF SECOND-ORDER FILTERS AS IN
' Fic. 3 (ResISTORS INKS2, CAPACITORS IN pF)
1
Wo =wp = —= =+/ag 4.7) Rl R o |GG p | Royg
RC
1) Impedance 37 [148] 4 | soo| 125 4 | 100|205
and Tapered
1 1 2) Non-tapered 3.7 3.7 1 500 | 500 1 10 2.8
f=24-—-—. (4.8)
P 4p 3) C-tapered 54| 10 | 185|500 | 125 | 4 10 | 1.58
and Min.GSP
Thus, the required gaip¥ increases with increasing, and 4y Parialy I U T O O R R
decreases with increasing t(apelr)ed
=

In general, rather than having the amplifier g&rn the
numerator ofl’(s), a more general factdk is used [see (3.2)]
which, in the case of a low-pass filter, is essentially the g ;- js equal to 1.85. Referring to Fig. 3, we obtain
forward gain. Clearly, KX will be proportional tos3, but may
well have a different value. Thus, if the specified gain factor wo = 1
does differ from the3 value obtained in (4.8), then additional R Cy
circuit techniques, discussed in 4) below, must be applied to £ _ “_g —916

=3.70 - 10°; ap = w} = 29.198 - 10*°

obtain the required¥. oW
. . . . 14y )
Consider the following practical example. Suppose that oy = Wp _ woB <1 n +r /3> —11.10°
p T p
W, = wp = 27 - 86 kHz; =5 C=500pF (4.9 1+r 1 [7
P = @0 t PF. (49) B=14 1" _ —\F: 1.58. (4.10)
p oV P

From (4.7) we obtairR = 3.7 kQ2. Assuming an impedance- ) ) o
tapering factorp = 4, we obtain from (4.8)3 = 2.05. These values correspond to those given in the third line of

Referring to Fig. 3, the resulting filter has the values givef@ble V.
in line 1 of Table V. For the equivalent circuit with = 1 Monte Carlo runs were carried out for this circuit and
and, consequently, with much higher sensitivity to componeg@mpared with those of an ideally impedance-tapered circuit
tolerances, we obtai? = 2.8 and the values given in designed for the same specifications (i.e., line 1, Table V). The
line 2. results for the latter, i.e., the circuit with capacitive impedance
2) Combining Gain-Sensitivity-Product Minimization withtaperingand minimum gain sensitivity product, were some-
Partial Impedance Taperingit is well known that in order to what better than those of the former. However, the difference
minimize the sensitivity of filter characteristics to toleranceg not very large, particularly when compared with the much
of the gain elements, thegain-sensitivity produc(GSP) of inferior nontapered circuit (Table V, line 2). From this and
the filter should be minimized [6], [7]. In [7], well-proven gther examples, it appears that ideal impedance tapering,
biquadratic filter circuits (*biquads”) and the corresponding,q capacitive impedance tapering with GSP minimization,

design flow-chart listings are given. In the design programs,qq,ce approximately the same improvement, although the
the specifications in terms of pole and zero frequencies and ’ﬁer is to be preferred if the choice is available

is admitted as input, and the C|rgu|t .W'th the minimum GSP 3) Partial Impedance Tapering with Equal Resistors
results as output. In most of the circuits, one additional degr e _ 1)

of freedom is available, namely the values and ratio of t ’ : be desirable simply t |
(or three) capacitors. In the present context this permits theln somg cases., |t.may -e e;lra € simply 0. use equa
implementation ofpartial impedance taperingnamely with resistors in the circuit of Fig. 3, i.es; = 1. For this case,
respect to the capacitors of the circuit) while, at the same tinf4¢ nave from (4.2)

minimizing the GSP. The latter will rarely, if ever, permit ideal 1 ) ) Wy 9

impedance tapering (i.ep, = 7); since the resistor values arewo = RO 0T Wp = pWoi a1 = = plo <1 + ra /3>

selected such as to minimize the GSP they will only rarely 5 1 b

coincide with the condition for ideal impedance tapering. Thus,g —1 4+ 2 — —, /=, (4.11)

the resulting circuits will, in general, haye> 1 andr # p. P GV P

Let us now reexamine the previous example from this poip}om (4.3), we obtain the value of, by settingr = 1, namely

of view. o ’
Referring to [7], we use the so-called low-pass medium-Q ay @ a

(LP-MQ) circuit, which essentially corresponds to the circuit wo =1 +4/ 6 + ?(/3 —1). (4.12)

in Fig. 3 (see [7, p. 52]). With the specifications (4.9), we
let p = 4 and obtain (with the program in the handbook) th& comparison with (4.6) shows that (4.12) is guaranteed to
circuit component values given in line 3 of Table V. The valueemain below the upper bound. With the specifications in (4.9),
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and with p = 4, we obtain Y,
Voo—{ 1
ap =29.198 - 10%%; @y =10.8.10*
wo = iwp =270-10°; B=14 (4.13) v o_é__o
VP : lv
and with C = 0.5 nF we obtainR = (weC)~! = 7.4 k. f
The resulting circuit values are given in line 4 of Table V. i
Comparing Monte Carlo runs for this circuit with those defined (@)
by the values in line 3, very little difference was found.
In fact, if anything, ther = 1-circuit was found to be {i
somewhat superior to that of line 3. This is not surprising, V,0 1
if we reconsider the general sensitivity expressions given in v
Table I. Since some of the sensitivities are proportional to S
r, others tor~!, settingr = 1 is an optimum compro- Y, LI o+
mise. Thusjn summary, for the general second-order allpole va--b v & "
low-pass filter of Fig. 3, capacitive impedance tapering with oM o -
either equal resistorr = 1), or resistor values selected j
for GSP-minimization, provide circuits with minimum sensi- (b)

tivity to the component tolerances of the CII?CLlIt can be Fig. 8. Output voltage-level transform, such that input levels remain un-
shown that the same strategy for desensitization to componétzinged, while output voltage is increased by
tolerances holds also for all other allpole filters, e.g., high-

pass and bandpass filters. It also holds for biquads Wihe two resistors are larger than the origidal but their

finite zeros; there, however, the tapering must be carrigd| e can be reduced by introducing a resisitiento the
out on so-calledbotentially-symmetricabridged-T or twin-T network, such that only a part @t is transformed (see [6]).

circuits [6], [8]. _ _ Consider now the impedance-tapered filter in Fig. 3, whose
4) The Gain Factork: As pointed out above, the dc for-gain 3 s equal to 2.05 (see Table V, line 1). Assuming that
ward gain K of the filter transfer function, as in (3.2), will o gesire a dc gail =4, i.e., = K = 4/2.05 = 1.95 we
generally not coincide with the amplifier gaifi required qpain the corresponding circuit shown in Fig. 10. Note that
to obtainw, and ¢,. The gain factorK’ may be specified ~ _ Ci(1—1/p) = 244 pF;, O = Cy/u = 256 pF, and
by the filter designer, but the amplifier gain is determine@itot — 500 pF. 7 ’
by the general expression fo¥ [see (4.2)] or, for ideal  apgther closely related method of obtainipg> 1 is by
impedance tapering (i.ep = T)’_b.y (4.8). Thus, the value gimply using a reasonably low-impedance voltage divider at
of § cannot be freely chosen; it depends on the scalifge ampiifier output such that/, times the output voltage
factorsr andp, and on the specified pole @, whereas the ¢4 pe tapped off and fed back into the circuit [see Fig. 9(c)].
overall dc filter gaini’ may very likely be required to have agjnce the amplifier's output impedance is roughly equal to

different value. Fortunately, there are various schemes for the, Thevenin-equivalent output impedance divided by the
decoupling of" and /3 [6], one of which will be presented in o4 gain, the driving capability of the amplifier will not be

what follows. _ o o significantly affected as long as the loop gain is sufficiently
Consider the partial output circuit shown in Fig. 8(a). Th%rge. However, the open loop gain is now decreased by a
output voltage levelV; is determined by the output voltagegacior of 1/4, so that the error introduced by finite amplifier

source, which also determines the voltagesand V; at the  gain is increased. Consequently, this scheme should be used
ends of two arbitrary admittance$ andY;. Assume now that g1y for relatively smally values, corresponding to a gain

we wish fco have a-times larger output voltage, while leavinge,nancement of, say, less than 10 dB. If the desired yaige

the terminal voltaged; and V; unchanged. In terms of our|ggs than unity, i.e/3 > X, then a resistive voltage divider can

filter, this implies that be inserted at the input of the network, as shown in Fig. 11.
K In this case

= ﬁ (4.14) . R, R\ R

7
TE+R M RAR

where . > 1. A glance at Fig. 8(b) shows that with the , . ) L .

addition of two admittances this can readily be achieved; th&- £ = £/ and RN = /(1 —p). Sincey is, in this

loading on terminalsV; and V; remains unchanged, whilstcaS€: 1€ss than unity7;’ is always positive.

the resulting voltage dividers require atimes larger output . ,

voltage. By definition,. > 1 and the additional componentsB- Third-Order Allpole Filters

are positive. Applying this transform to tHeC output con- Here we consider a third-order low-pass filter as shown in

figuration shown in Fig. 9(a), we obtain the configuration ifig. 6. The transfer function is given by (3.10) and (3.11);

Fig. 9(b). Note that, although the number of capacitors is general the amplifier gai# in the numerator should be

increased by one, the total capacitance remains unchangeglaced by the more general. The coefficients in terms of

1
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Fig. 9. \oltage-level transform applied tRC output feedback network. (a) Original circuit. (b) Transformed circuit. (c) Alternative circuit with
output voltage divider.

coefficients, tapering factors, design frequengy and gain

C’; = 256pf
|
! 3 P2P3
ag =Wy
ToT3
3.7kQ 14.8kQ r
. 1 1 1 1 T
oW W . o a; =w2 20 <1+—+—)+r2<—+—>+—3
= Tor3 | P2 o3 P2 o3 o3
C=244pf == 125pf 147
30k P2
10k r
1 1 T 1 ror
a2 =w0p2p3 7’2(— + —) + —3<1 + —) + 23
273 | P2 P3 P3 P2 P2pP3
Fig. 10. Circuit of Table V, line 1, transformed for loop gain= 2.05, dc a2
gain K = 4, andpy = 1.95. ﬁpj' (4'15)

As we shall see belowy is an important design parameter,
C whose value determines the realizability of a third-order filter.
' Before going to the ideal impedance-tapering case, i.e., the

I
R, case for whichr, = p, 73 = p%, p2 = p, and p3 = p?, we
Ri= g R, shall solve the general case in whiBh C, p2, ps, ao, a1, az,
O—MW ANAY . .
l +—0 and K are given, and-, r3, and3 must be found. It is useful
R, ¢ to normalize the coefficients; with respect to the design

— —1
o frequencywy = (RC)™1, thus

ao a1 az
i Qg = —%, d1 = —5; Qg = — (416)
Wy Wy wo

Fig. 11. Biquad circuit with loop gair#, dc gainK, andp = K/3 < 1. and in general
i=0,1, -, n—1 (4.17)

the circuit components are given by (3.12)—(3.14). With the
tapering expressions shown in Fig. 6 and with= (RC)™", wheren is the order of the filter transfer functidfi(s). After
we obtain the following relations between the transfer-functisome calculation, we obtain the following three equations for
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TABLE VI
SUMMARY OF SPECIFICATIONS AND COEFFICIENTS FORFILTER DESIGN EXAMPLES

1) Butterworth (Fig. 3-6) £ a 2 w, Wy 0 max
1018 102 10 10° 108 10
Loss [dB]
25
0.364 1.02 1.43 7.154 7.154 7.154
0SE—— kHz
80 300
2) Chebyshev
Loss [dB}
—E— 0.33 091 1.2 6.0 6.0 6.0
0.04 —ISO 0 kHz
3) Chebyshev (Fig. 3-6)
Loss{dB) 38
0.0749 0.341 0.59 2.949 2.949 2.949
0.5
s 300
4) Bessel
Loss [dB]
1.36 3.02 2.69 1.0457 1.1231 1.0457
15
1.0
75 300 ke
the unknown quantities, namely fen also be less than a second boundary frequengy. Thus the
ar? +bry+c=0 (4.18) upper bound onw, for Condition | is the smaller of the two

design frequenciesy, andwp,
where ind ) 4.23)
W0 max = MIN{We, WP, f. .
a=aopta—a;—1; b=as—2; c=—(1+4p2). 0 ' D.
Should, for some reason;y be required to be larger than

For 13, we obtain wa, then the coefficient is negative, and Condition Il is valid.

r3 = % (4.19) As shown in [9], this condition is far more confining than
2% Condition | and should, if possible, be avoided.
and for 5 A realizability condition for the produet,r3 is also derived
B=1+ Pz _ T3 (ap — 1) — L+ p2 ) (4.20) in [9]. This product is shown to also dependw,,,.., Namely
P3  pP3 T2

3
. . . . . Tar3 wO max
Sincer, must be positive and real, it follows that the discrim- aps < Tan (4.243)

inant D of the quadratic equation (4.18) must be greater thajys congition implies that for ideal impedance tapering, in
zero, thus which casersrs = paps, we must have
D =¥’ — 4ac 3

w0 max
—= > 1. 4.24b
:(042 - 2)2 + 4(060 + oo — v — 1)(1 + pg) > 0. (4.21) ag - ( )

In [9], it is shown that the necessary and sufficient conditio¥hether, and how, these conditions can be fulfilled depends

for 5 to be real and positive result from (4.21) in the form ofntirely on the coefficients; of the specified filter.
an upper—and in some rare cases also lower—bound on th&inally, in [9], bounds ony guaranteeing both that be

design frequencys,. Thus real and positive, and that the gaihbe larger than or equal
1 to unity, are shown to be
RO = wo < W0 max- (4.22) T g —1 1 ) 1
The upper boundug .. depends mainly on the polarity p2p31+p2 { 2o EJ ST 7’2aop2p3 (4-29)

of the coefficienta in (4.18), and to some extent also orwhere it is understood that the, contained incy and «-

the polarity of the coefficienth. The main results of the obeys the inequality in (4.22).

realizability conditions for an impedance-tapered third-order Design Examplesin what follows, we go through some
low-pass filter are summarized in [9, Table I]. Two mairilter design examples that are summarized in Table VI.
conditions are derived in [9]. The first (Condition I) requires Consider the amplitude tolerance limits of the third-order
that the coefficients = ag + a2 — a1 — 1 > 0. This results Chebyshev low-pass filter, and the coefficients of the third-
in the requirement that the design frequengy= (RC)~* is order transfer function satisfying these specifications (see
less than an upper-bound frequengy Furthermorewy must Table VI, line 3).
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TABLE VII
COMPONENT VALUES OF THIRD-ORDER FILTERS AS IN
Fic. 6 (ResIsTORs INkS), CAPACITORS IN pF)

1) %})aiclzé‘g‘i;en in R, R, R, I, I3 C, C, C, P P, R, B |w, 10°

2) Chebyshev: line 3* | 579 | 5.41 | 15.76 | 0.93 | 2.72 900 300 100 3 9 10 2 1.916

3) Butterworth: 10 30 90 3 9 213 20 23 10.56 | 8.99 10 4 4.69
line 1

4) Chebyshev: line 2 10 30 90 3 9 235 21 23 11.14| 104 10 4 4.25

5) Chebyshev: line 3 8.88 3.4 ]16.36 3 9 900 300 100 3 9 10 2.7 1.25

*The line number refers to Table VI.

For reasons given in [9], we restrict ourselves to using Coarder to verify thatag = (R; R2R3C1C>C3)~! and that the
dition | wherever possible. In doing so, we obtain essentialgbtained gain3 = K.
the same value fow,andwp,, so that the upper bound on 2) Impedance Tapering of the Resistolst the preceding
Wa & Wp, = Wo max = 4ao/(4a; — a3) = 294.91 - 10® rad. examples, we considered impedance tapering of the capacitors
Note thatwg’mx/ao = 0.342. Thus, with (4.24b), it follows by starting out with values op. (i.e., p2 and ps in Fig. 6)
that for the filter given by the coefficients in Table VI, (lineand then calculating the resistor values by computingnd
3), ideal impedance tapering is not possible. This is because These depend on the choice of the design frequency
ideal impedance tapering requires thats = paps, in which  wy = (R;C1)~1, which must always be smaller thap ...
case, according to condition (4.241))o max)®/ao Must be The latter depends on the desired filter transfer function and
larger than unity. its coefficients. As was pointed out earlier, impedance tapering
We now go through the step-by-step design for the thiréboth the capacitors and the resistors for filters of higher than
order Chebyshev low-pass filter satisfying the specificatiosecond order is possible only in rare cases, since the degrees of
given in Table VI, line 3, while at the same time obeyingreedom necessary to satisfy a given set of filter specifications
different types of impedance-tapering criteria. permit only the capacitors or the resistors to be tapered. The
1) Impedance Tapering of the CapacitorBor a capac- preceding examples have demonstrated that impedance taper-
itively impedance-tapered filter, the step-by-step desigmg only the capacitors provides a significant improvement of

proceeds as follows: the insensitivity to component tolerances. We shall now show
i) Calculatewp max: From [9, Table 1], we obtainy, =~ that the alternative procedure, i.e., tapering only the resistors,
WD, = Wo max = 4ao/(da; — a3) = 2.9491 - 10° rad/s. is effective in the same way. To show this, we consider the But-

i) Selectps, p3, wo: The selection of these valuesterworth filter specified in line 1 of Table VI. The frequency re-
is influenced by the upper bound given by (4.24a), thisponse of this filter for various capacitive-impedance-tapering
Tor3/paps < Wi nax/00 = 0.342. Letting po = 3 and values and component tolerances was given in Fig. 7. For this
ps = 9 it follows that rars < popswd max/@0 = 9.246. example we seleck = 4. In what follows, we show how to
For practical reasons (e.g., in terms of component values), design this filter, but with tapering of the resistors rather than
chosewy = 1.916 - 10°. the capacitors. The degree of desensitization to component

iii) Calculate «p, 1, and az and a, b, and c of (4.18): tolerances obtained with this resistively-tapered filter is similar
With wy = 1.916 - 10°, we obtainay = ag/wi = 10.649, to that of the capacitively-tapered version shown in Fig. 7.

a1 = a1 /wd =9.289, ay = az/wo = 3.079, and therefore i) Calculatewp max: From [9], we have w, pax =
dag/(4a; — a3); thuswg max = 7.1544 - 10°.
a=aot+ay—o1—1=3439 b=ay-2=1079 ii) Selectrs, 73, andwy: From (4.24a), we obtain
c=—1—py=—4 rors/p2ps < 1.006. Letting »» = 3 andrz = 9, we find

. . . ~ paps > 27/1.006 =~ 27. For practical reasons (in terms of

iv) Calculater, andr3: Solving the quadratic equat'oncomponent values), we selecg = (R;C1)~! = 4.695 - 10°.
(4.18) forry, we obtainry = 0.933. From (4.19), we have iii) Calculate o, a1, and ao, and a, b, and ¢ of (4.18):
rars = p2p3/ag = 2.535 and with (4.30)r; = 2.718. From (4.16), we obtainy, = 3.5176, oy = 4.6276, ap =

v) Select”; and compute,, Ry, andRs: We  select 3046, and therefores = ag + as — ay — 1 = 0.936, b =
C; = 900 pF, thusR; = (chl)_l = 5.799 kQ and, o — 2 =1.046,c = —1 — py

with (4.30) and (4.31),Ry = 72 - R = 541 kQ and iv) Calculatepsps: Solving (4.18) forp,, where we in-
Rg :.%3 . R1 = 15.76 kQ2 . serte = _(1 + p2)’ we obtain

vi) Compute = K: From (4.20), we obtaing =
1.999 ~ 2. po = ars +bro — 1 (4.26)

Referring to Fig. 6, the component values for the resulting
circuit are given in line 2 of Table VII. A simple first-orderwhich is a first-order equation, in contrast to the quadratic
check for the correctness of these results is to use (3.12)eiquation forr, [see (4.18)] which must be solved for capac-
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itance tapering. With the values given in step iii) above, we TABLE VIII
obtainpy = 10.562 and, with (4.19)p3 = rorsao/pe = 8.99. DEPENDENCE OFgESIGNSEARAMETERS ra, 13, 13 /12
Note that the condition in (4.24a) is automatically satisfied if AND 77 ON SELECTION OF o
wo < WO max- Filter -(;)85 [(;fl-] [15(111 P, Py 93 Iy 14T, )
v) SelectR; and compute”,, Cy, andC5: We  select o 11 w00 1o » s Tomse 17 5o [5s
Ry = 10 k@, thus C1 = (woRy) ™" = 213 pF, C; = ® | 125 900 | 888 | 3 9 | 0382 1.84 | 481 | 271
Ci/p2 = 20.1 pF, andC3 = Cy/ps = 23.7 pF. % L5 900 | 7.4 3 9 |0544 | 224 | 412 | 243
H _ . H H _ ~ 1.75 900 6.35 3 9 0.754 | 2.56 34 217
vi) Compute3 = K: With (4.20) we obtains = 3.98 = ® | 20 | 900 | s6 3 o |10t | 277 | 266 | 192
4, ® 225 900 4.94 3 9 1.455 | 2.82 1.94 1.69
i ; in @ 2.5 900 | 4.44 3 9 215 | 262 | 122 | 1.48
The res_ultlng co_mponent values are summarlgeq in 26 | oo | 527 | 3 o | 2s0a | 2aa | 094 | 1a1
Table VII line 3. Similarly, for the filter characteristics ® | 275 { 900 | 404 | 3 9 13806 | 197 | 052 | 1.35
depicted in line 2 of Table VI, we obtain the Chebyshev filter ® [ 29 | %0 | 383 | 3 9 858 | 103 012§ 127

coefficientsag = 3.30 - 107, a; = 0.91-10'2, ap = 1.2- 105,
The resulting component values are given in Table VIl, line 4.
Finally, consider a third-order Bessel low-pass filter with iii) Calculate ro andrs: From (4.18), we have20.2448
loss of 1 dB at 75 kHz, and 15 dB at 300 kHz (see line 42 T 2-72r2 —4 = 0, which gives the positive real root
Table V1) With the filter coefficients given in Table VI, we "2 = 0-3824 and, with (4.19)rs = p2pa/r2cvo = 1.84.
proceed as follows: iv) SelectC; and calculateR;, R, R3, C5, C3: We se-
i) Calculatewo yax: From [9, Condition I, we obtain €Ct €1 = 900 pF, thusk, = (woC1)™" = 8.88 K, Ry =
we = 1.046 - 10° andwp, = 1.123 - 105, Thus, it follows 7240 =34 kQ, Ry =73k = 16.36 k@2, O = C1/py = 300
that wo max = we = 1.046 - 10°. pPF, andCs = Cy/ps = 100 pF. _
ii) Selectrs, 13, andwy: With  (4.24a) we obtain We can verify these results to a first order [see (3.12)] since

— -1 _ 15
rar3/paps < 0.842. Letting 7o = 3 andrz = 9, we find %0 = (B1 Ry R3C1 C02C3) - 74.9 - 107.
p2 > 27/0.842 ~ 32 and selectyy = 0.8 - 106. v) Calculateg = K: With (4.19) and (4.20), we have

i) Calculate g, a1, 2 and a, b, and c¢ of (4.18)We obtain P2 P2 14 ps
(o = 2.6563, oy = 4.7188, andap = 3.3625, and therefore, 7 =1+ == o Tlar—1- % =2.712. (4.27)
a=ar+a—a;—1=03,0=a —2 = 13625, and A
c = —1— po. 3

iv) Calculatep, and p3: We obtainpy = ar3+br2—1 = This results in the circuit values given in Table VI, line 5.
5.788 and, with step iii) aboveps = rar300/p2 = 12.39. Going through the five design steps above for ten different

v) Selecti; and compute”; Co, andCs: We  select values ofw, (all of which must, of course, be less thag ,ax),

Ry = 5KQ, thus Oy = (woRy) + = 250 pF, C; = 43.2  we obtained the ten different third-order circuits determined by
pF andCs; = 20.2 pF. the design values listed in Table VIII. The resulting functions
vi) Computes = K: With (4.20), 8 = 1.39. of r4, r3, (r3/72), andp3 versus the ten values of, are plotted
Note that for this filterw, < wpi. Had we selected amo  in Fig. 12. Monte Carlo runs of the ten resulting third-order
value larger thanv, (but smaller thansp;) we would not |ow-pass filters showed that the deviation from the ideal filter

have obtained a realizable filter. response becomes smallest for the valueu@fin the region

3) Influence of the Design Frequenoy: We have shown of 2.6 - 10°. A glance at Fig. 12 shows that this corresponds
that in order to find a realizable third-order filter circuitg g ratio of rs/r2 ~ 1, ie., for the case that, = rs.
capable of satisfying given filter requirements we must selagkerestingly enough, this is similar to the conclusion arrived
wo = (R1C1)™" < Wo max Wherewo max is given in terms of at with second-order networkEor example, the second-order
the filter coefficients as in (4.23). The question to be answerggler with » = 1 seemed equally good, and possibly even
now is: what influence does the choiceuaf have on the filter slightly better than the filters designed for ideal impedance
design, assuming, of course, that it is chosen lessdbai:? tapering (i.e.,» = p). The reason given there, which is

To find the influence of the choice af on the component aiso valid here, is that because some of the sensitivities are
sensitivity of a given circuit, we proceed as follows. Usingroportional tor and others ta-—*, settingr = 1 provides
the coefficients of the Chebyshev third-order transfer functigth optimum compromise. This corresponds, in the third-order
given in line 3, Table VI as an illustrative example, th%ase, to making>2 =73 = 7. Thus, we conclude from this

procedure can be summarized by the following steps: and other examples that the, value to be selected is the one
i) Selectps, p3 andwy < wo max: For the given coeffi- for which », = 3. Whether this is always true is difficult
cients, we haveup max = 2.9491 - 10° rad/s. Seleclp, = (o tell. Nevertheless, experiments with numerous other third-
3,p3 =9, wo = 1.25-10°. order low-pass filters with capacitively tapered impedances,
ii) Calculate g, a1, iy @nda, b, ande: g = ag/wi = and the design frequency, selected such that, = 73,
38.3488; cy = 21.824; oy = 4.72; a = a9 + 2 —a1 —1 = have invariably produced similar results. Presumably this is
20248 b=y —2=272%c= —py— 1= —4. true only when “ideal-tapering” cannot take place, which is

enerally the case (i.e., whene < ag). In any event,
INote that with an equivalent third-order Chebyshev low-pass filter, a Iogs h y h ( . .d\@?ma" . 0) . y . h
of less than 0.5 dB at 75 kHz, and of at least 38 dB at 300 kHz, can E%het er the one case ("e" laea te}perlng) 'S_ superior to the
obtained (see line 3, Table VI). other does not seem very relevant, since the difference between
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In order to guarantee a minimum degree of resistive tapering,

T T3 Ty B we require that > 1. The lower bound onvg, i.€., wo min,
47 3 is then obtained for = 1, i.e.,
W \ /3
W0 min = < 0 ) . (430)
P203

- Thus, with Table VI, line 3, we havey i, = (0.749 -

: 10Y7/27)1/3 = 1.405 - 10° rad/s.

iii) Selectwy betweenvg i, and wg wmax and calculaters;

I and r3 from (4.18) and (4.19), respectively.

iv) Repeat Step iii) with new, until 7, ~ 73 = 7 is
vz found: These two steps were already carried out for this
: example under 3) above. The value waf = 2.6 - 10° rad/s
was found, for whichry = 2.594 andrs = 2.44.

: The results of this design are listed in Table VIII under (8).
It was found that this design yielded the best results, i.e., the
: lowest sensitivity to component tolerances.

| v) Select’; and calculateR;, R,, Rs, C>, C3: We select

i C; = 900 pF and obtainR; = (woC1)™t = 4.27 kQ, Ry =

i 7’2R1 = 11.07 kQ, Rg = 7’3R1 = 10.42 kQ, 02 = Cl/pg =

2.949. 1 300 pF, C3 = Cy/p3 = 100 pF.
N vi) Calculate 3: With (4.20), we obtain3 = 1.41.
A0 Note that for the component calculations, we must use the
Fig. 12. Design parameters, r3, r3/rs, and3 as a function ofo,. actualr, andrz values obtained in step iv). The fact that they

are close to each other is important and determines the value

the two appears to be minimal, and ideal tapering is rare®y wo used in the final circuit design.

possible. Thus, the obvious choice is to take the simpler of The steps outlined above can readily be carried out by
the two alternativesThis choice which, more to the point, iscomputer. A MATLAB program going through these steps
generally realizable, is to make, = r5 = 7. has been developed. Using this program (TAPERCAL @)

4) Impedance Tapering of the Capacitors with~ r5 = 7 values ofrsy, r3, and 3 are calculated for a variety of filters.
As discussed above, the design equations (4.18)—(4.20) &fE each filterwo min and wo max are calculated according
implemented by selecting the design parameteysp., and t0 (4.30) and (4.23), respectively, and thg value found for
ps and then computing the remaining design parameterss, which ro = r3 = r. This is obtained at the intersection of
andg. This is done by following the six-step design procedur&€ r2(wo) andrs(wo) curves, a typical example of which is
outlined under 1) and 2) above. If we now fet=r3 = r, and Plotted as a function ok, in Fig. 13.
select tapering values fgr, andps, we can use (4.18)—(4.20) Monte Carlo runs for foutwg values for each of the filters
to computewy, r, and 5. We cannot compute these valuedsted in Table VI were carried out. The first and second
explicitly, however, because the resulting polynomial equé-e., lowest and highest) value of, designated by, and
tions in wo or » are of sixth order, and therefore, are novox, respectively, was within 10% 0&o min and wo max;
directly solvable. Instead, we can compute the bounds:pn respectively. The thirdy, value, designated, (r; = 1), was
and then iteratively solve the equations until we have, mot@e wo value for whichr is equal to unity. Thisuy value is
or less,r» &~ r5 = r. “More or less” is quite sufficient here, readily calculated from (4.18). Thus, fos = 1, we obtain
since the optimum for which the component sensitivities are b1 po
minimum is relatively broad. The resulting design procedure 1+-—=-=——==0. (4.31)
is summarized in the following design steps. As in one of . )
the previous illustrative examples, we shall again use th¥th (4.17) and (4.18), this can be expressed as a third order
specifications for the third-order Chebyshev filter specified RPlynomial in wo, namely
line 3 of Table VI.

3 2
) . 4 -2 —ag=20 4.32
i) Calculatewy max: From [9], we obtain wold + p2) = 20205 + arwo — ao (4.32)

_ dao 5 the real root of which isvy (2 = 1). The fourthw, value
Womax =y a 2:9491 - 107 rad/s (4.28) used for the Monte Carlo analysis was our “optimum” value
i . ; . designated®o = wg(r2 = r3), i.e., the one for which
ii) Selectp,, p3, and calculatevg min: As in the previ- 0 0 ' '
ous examples, we selegt = 3andps = 9. With rp = 73 = 7, rs/72 Nl L, aﬁ fo,l\J/lnd by(t:heITAPERSAALChprog(;arr?. For allll the
we have from (4.16) and (4.19) examples, the Monte Carlo runs for, showed the smallest
13 sensitivity to component tolerances. These were followed
2
,
wo = <a0 ) . (4.29) 2This program was written by H. P. Schmid of the Institute for Signal
P203 Processing, @rich, Switzerland.
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Fig. 13. Implicit and graphical method of finding, for the case that, =~ r3. Example: Chebyshev low pass (0.04/25 dB; 80/300 kHz).

by those for@gy which provided similarly good results. input, the sensitivity of the filter characteristics to component
As pointed out above, the optimum range fo§ seems to tolerances can be significantly decreased. Various schemes
be relatively wide, i.e., in the range betweep and wor. for this newly introduced concept of impedance tapering
However, since the radian frequenéy = wo(r2 = 73) iS are presented. Detailed design equations for second- and
invariably smaller thanwog, it is the recommended value tothird-order low-pass filters are given. The extension to other
use. This is because it is generally desirable for the desi%es of allpole filters, i.e., high-pass and bandpass, follows
valuew, to be as small as possible, since this permits a larggyfecisely the same principles as those presented here, and will
inputRCproduct, i.e. K C1, to be used. A largefR, provides pe reported on shortly. Although the concept of impedance
a higher input impedance to the filter, which is generallyhering for allpole filters of the same topology, but higher
advantageous; a larg€r, permits larger tapering factor® han third order, is perfectly valid and will have the same

and s to be used, withouls = C'1/ps becoming so small o eficig| results, closed-form design equations cannot be
Eﬂgt CI:'ErLSUi(t:omparabIe in value to the parasitic capacitance (9Zrived for higher than third-order-filters. Equi-valued resistor
' and capacitor filter circuits for Butterworth and Chebyshev

filters up to sixth-order have, in fact, been published, but their

V. CONCLUSION desensitization to component tolerances by impedance tapering

A procedure for the design of allpole filters with lowc@n be accomplished only by iterative procedures. However,
sensitivity to component tolerances has been presented. i the design methods presented here, higher order low-
filters are based oRC ladder structures combined with singleSensitivity allpole filters can be obtained by cascading second-
operational amplifiers. The filter amplifier provides a lov@nd third-order low sensitivity (i.e., impedance-tapered) fil-
output impedance and supplies positive feedback in ordgf circuits. Since practical experience has shown that in
to obtain pole Q's larger than 0.5, i.e., complex-conjugate large segment of applications, the required filter order is
poles. It is shown that by the use of impedance tapering, ietween two and, say, five, the design methods outlined
which L-sections of th&kCladder are successively impedancehere should be broadly applicable. This all the more, since
scaled upwards, from the driving source to the amplifiehe circuit topology of the filters dealt with are basically



1026 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—II: ANALOG AND DIGITAL SIGNAL PROCESSING, VOL. 46, NO. 8, AUGUST 1999

conventional. Indeed, it is merely by the judicious choice 0f8] G. S. Moschytz,Linear Integrated Networks: FundamentalsNew
i i i i York: Van Nostrand, 1974.

component Y?’lues such that |r_npedance tapering Is aChlersﬁ —, “Realizability constraints for third-order impedance-tapered
that _the S|gn|f|cant_ desensitization to component tOIe_ranceS allpole filters,” Trans. Circuits Systthis issue, pp. 1073-1077.
obtained. The design procedure therefore adds nothing to the
cost of conventional circuits; component count and topology
remain unchanged, whereas the component values, selected for
impedance tapering, account for the considerable decrease in o S. MoschyMB5-SM'77_F'78) ed

_ [ eorge S. MoschytAM'65-SM'77—-F’ receive
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