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Low-Sensitivity, Low-Power Active-RC Allpole
Filters Using Impedance Tapering

George S. Moschytz,Fellow, IEEE

Abstract—A procedure for the design of allpole filters with low
sensitivity to component tolerance is presented. The filters are
based on resistance–capacitance(RC) ladder structures combined
with single operational amplifiers. It is shown that by the use of
impedance tapering, in which L-sections of theRC ladder are
successively impedance-scaled upwards, from the driving source
to the amplifier input, the sensitivity of the filter characteristics to
component tolerances can be significantly decreased. Impedance
tapering is achieved by the appropriate choice of component
values. The design procedure, therefore, adds nothing to the cost
of conventional circuits; component count and topology remain
unchanged, whereas the component values selected for impedance
tapering account for the considerable decrease in component-
tolerance sensitivity.

Index Terms— Allpole filters, biquadratic active filters,
impedance tapering, low-sensitivity active filters, third-order
active filters.

I. INTRODUCTION

I N SPITE of the large variety of available modern filter
techniques there are situations in whichdiscrete-component

active resistance–capacitance (RC) filtershave a distinct edge
over their hi-tech competitors. These situations are charac-
terized, among other things, by the following requirements:
1) fast turn-around time for design and manufacture; 2) low
power (e.g., only one opamp per filter) and low cost (i.e.,
no need for analog-to-digital or digital-to-analog converters,
anti-aliasing filters, etc.); 3) moderate frequency selectivity,
i.e., pole Q’s less than, say, five; 4) moderate size, i.e.,
smaller than inductance–capacitance(LC) filters but larger
than integrated circuit (IC) chips; and 5) relatively small
quantities and a diversity of filter specifications, which prohibit
a high-runner modular approach to the design of the filters.
For situations such as these, single-amplifier allpole filters
of varying order should be considered. However, to maintain
their cost effectiveness relative to other filter techniques, such
discrete-component activeRC filters must be manufacturable
with relatively wide-toleranceRCcomponents, and yet with no
need for filter tuning. In other words, their filter characteristics,
e.g., frequency response, must be as insensitive to component
tolerances as possible.

Since the application of discrete-component activeRCfilters
is generally limited to systems in which power and cost

Manuscript received November 13, 1997; revised May 4, 1999. This paper
was recommended by Associate Editor F. Kub.

The author was with GlobeSpan Technologies Inc., Red Bank, NJ 07701
USA. He is now with the Swiss Federal Institute of Technology, CH-8092,
Zurich, Switzerland.

Publisher Item Identifier S 1057-7130(99)06534-9.

are at a premium, and the required filter selectivity and
precision is relatively modest, one very useful filter candidate
is the single-amplifier th-order allpole filter. Unfortunately,
the design equations for filters of higher than third order
become unwieldy, if not unsolvable. Thus, the combination
of cascadable low-sensitivity second- and third-order filter
sections (“bi-quads” and, for lack of a better word, “bi-
triplets”) can be used to obtain low-power tolerance-insensitive
high-order activeRCfilters. This is the type of filter discussed
here.

It is known (and briefly shown here) that the amplitude and
phase sensitivity to coefficient variations is directly propor-
tional to the pole Q’s and, therefore, to the passband ripple
specified by the filter requirements. The smaller the required
ripple, the lower the pole Q’s. Similarly, the highest pole Q of a
filter will increase with the filter order. Thus, the conventional
(and economical) wisdom of keeping the filter order as low
as the specifications will permit (rather than, as might have
seemed reasonable, overdesign in order to minimize sensitiv-
ity) is entirely justified, also from a sensitivity point of view.
Note, however, that this last statement is true only for the type
of activeRC filters considered here. ForLC and simulatedLC
ladder filters, increasing the order decreases the component
sensitivity. This is a consequence of what has come to be
known as Orchard’s Theorem [1].

Using the allpole low-pass filter as the most representative
and important of the allpole filters, we discuss the sensitiv-
ity of the transfer-function coefficients to variations of the
components (i.e., resistors, capacitors, and amplifier gain). We
demonstrate that, whereas the amplitude and phase sensitivity
to coefficient variations depends entirely on the transfer func-
tion itself, the coefficient sensitivity to component variations
can be influenced directly by the design of the filter circuit. In-
troducing the concept ofimpedance taperingfor the inputRC
ladder network, we demonstrate that the larger the impedance-
tapering factor can be made, the less sensitive the circuit will
be to component tolerances. However, the impedance-tapering
factor cannot be made arbitrarily large. It is shown that the
maximum possible degree of impedance tapering depends
directly on the value of the transfer function coefficients.
Bounds on the impedance-tapering factor as a function of
the transfer function coefficients are given, both for second-
and third-order low-pass filters. Sensitivity expressions and
design equations are also given for these filters, and Monte
Carlo simulations demonstrate the effectiveness of impedance
tapering as a means of reducing filter sensitivity to component
tolerances. This desensitization comes at no additional cost; it
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simply requires a judicious choice of component values. Since,
as is initially shown, the component sensitivity also depends
on the specified ripple, order, and pole Q of the filters, it is
demonstrated here that the filter designer essentially has three
factors to consider, when designing low sensitivity activeRC
allpole filters. These are the following.

1) The component sensitivity increases with inband ripple.
Thus, the specifications should be geared toward a
low ripple (or, if possible, maximally-flat) amplitude
response. This, in turn, decreases the pole Q’s.

2) The component sensitivity increases with the filter
order; the latter should, therefore, be held as low as
possible. Fortunately, this is standard practice in filter
design and minimizes filter cost.

3) By using the newly introduced concept of impedance
tapering, the circuit can be directly and significantly
desensitized with respect to component tolerances at
no extra cost. Nothing but an appropriate choice of
component values is required.

In this paper, particularly the third step is described in
detail for second- and third-order low-pass filters. Since the
impedance-tapering factor cannot be chosen arbitrarily, but
depends on the transfer function coefficients, a detailed and
exact design procedure is required, and is presented here. The
extension to high-pass and bandpass filters is straightforward
and will be published shortly.

Because of the complexity of the design equations (which
are nonlinear) for anything higher than second-order filters
(i.e., “biquads”), even conventional third-order filters have, in
the past, been considered only for special cases, e.g., unity
gain [2] and equal-valued resistors or capacitors [3], with
little attention given to sensitivity considerations. Sensitivity
to component tolerances has been dealt with only in rather
general terms, and with a view to the initial transfer function,
e.g., [4]. In what follows, we demonstrate that impedance
tapering will decrease the sensitivity to component tolerances
also of higher-than-third-order allpole filters. Unfortunately,
analytical design equations for these filters become intractable
and are, in fact, mostly unobtainable in closed form. Neverthe-
less, tabulated values for special-case allpole low-pass filters
for up to the sixth order are available [5], [6]. Starting out
with these values, a design-optimization routine can be used to
find impedance-tapered components that meet the permissible
amplitude and phase tolerances specified. However, describing
such routines goes beyond the scope of this paper.

II. SENSITIVITY TO COEFFICIENT VARIATIONS

Consider the transfer function of an th-order, allpole
low-pass filter

(2.1)

The frequency response of the filter depends on the coefficients
of the polynomial . These are available from any filter

handbook or CAD program and determine the location of the

Fig. 1. Highest pole Q for Butterworth filters of increasing ordern, and
Chebyshev filters of increasing ordern and ripple, in decibels.

poles [i.e., roots of ] in the plane. For example, the
poles of a sixth-order Butterworth low-pass filter will lie on
a semicircle about the origin in the left half plane, and those
of a Chebyshev filter on an ellipse. The larger the ripple of
the Chebyshev filter, the smaller the eccentricityi.e., the
closer the poles will be to the axis, andthe higher the
corresponding poleQ’s [7]. Note, however, that the slope of
the asymptotic response of the two allpole filters of equal order

will be the same, irrespective of the inband ripple.
With the relative sensitivityof a function to variations

of a variable defined as

(2.2)

we obtain the relative change of as given in (2.1)—to
the variations of its coefficients as

(2.3)

Thus, with (2.1)

(2.4)

and for

(2.5)

Letting

(2.6)
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Fig. 2. Generalnth-order single-amplifier low-pass filter.

and, with (2.4)

(2.7)

we obtain

(2.8)

where

(2.9)

and

(2.10)

is the amplitude response in Nepers, and the phase
response, e.g., in degrees.

Recalling two important properties of the coefficientsof
namely: 1) the coefficients of [and ] must

be real and 2) the coefficients of must be positive, it
follows that the terms in (2.8) are real, so that we can
rewrite this expression as

(2.11)

where, for

(2.12)

and

(2.13)

The functions are frequency-dependent multiplicands
of the coefficient variations which cause the amplitude
deviation . They depend only on the initial transfer
function of a given filter, i.e., on the filter specifications
and on the required filter order, and demonstrate a direct
dependence of sensitivity on the Q’s of the transfer function
poles: the higher the pole Q’s the higher the sensitivity. This
dependence will appear again in the next section when we
discuss coefficient-to-component sensitivity. We therefore can
already conclude here that for low sensitivity of a filter to its
component tolerances, the filter with the lowest possible pole
Q’s (consistent with the filter specifications) should be used.
Thus, for example, with respect to sensitivity, a Butterworth
filter is always preferable to a Chebyshev filter and, likewise,
a low-ripple Chebyshev filter is always preferable to a Cheby-
shev filter with higher ripple. Unfortunately, this preference

frequently conflicts with cost, since the lower the ripple, for
a given filter specification, the higher the required order will
be. A Butterworth filter, with its “maximally flat” amplitude
response corresponds to the limit case of no ripple in the filter
passband and, compared to a Chebyshev filter of equal order,
invariably has lower pole Q’s. This is shown in Fig. 1, where
the highest pole Q of second- to 6th-order Butterworth and
Chebyshev filters of varying ripple is shown. The figure clearly
indicates that in order to keep the pole Q’s at a minimum for
the sake of low filter sensitivity to coefficient variations, it is
desirable to design the filter with as low ripple and as low
order as consistent with the filter specifications. Whereas this
is common practice in conventional filter design, it may not
be obvious that an infringement of this practice violates not
only the requirements of economy and performance (in terms
of the inband ripple) but in terms of filter sensitivity as well.

III. COEFFICIENT SENSITIVITY TO COMPONENT TOLERANCES

As pointed out in the introduction, for reasons of low
cost, low power, and fast turnaround time, single-amplifier
allpole activeRCfilters designed with discrete components are
often used in high-tech signal-processing and communications-
oriented applications, even when the brunt of the signal-
processing is carried out by “megatransistor” integrated system
chips. Our discussion is therefore focused on such filters, and
in particular on those with relatively low order, i.e., “ ”
and “ .” As we shall see, it is possible to extrapolate from these
results, and to derive design guidelines for single-amplifier
allpole activeRCfilters of arbitrary order . However, a more
practical, and immediately applicable method of designing a
filter of any order is to cascade low-sensitivity single-amplifier
filters of second and third order. As will be shown, the required
power is still low, and the individual second- and third-order
filters have a low sensitivity to component tolerances.

The representativeth-order general allpole single-amplifier
filter structure to be used for our discussion is shown in Fig. 2
[5], [6]. This is a low-pass filter, but any other (e.g., high-
pass or bandpass) applies equally well. The transfer function
of this filter has the form of (2.1). The amplitude variation due
to coefficient variations is given by (2.8). The coefficients
are functions of the resistors, the capacitors and the gain.
Thus, with (2.2), the coefficient variations can be expressed in
the form

(3.1)

In general the individual resistors capacitors and
gain-determining resistors will be characterized by their mean
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Fig. 3. Second-order low-pass filter with ideal opamp and voltage gain�.

and standard deviation , where in turn represents
each of the component types (e.g., resistors or capacitors). The
coefficient variations will then be random variables
whose statistical behavior is a function of the components on
which they depend.

In what follows, we derive the coefficient-to-component
sensitivity analytically for the second-, third-, andth-order
allpole filters. The resulting expressions provide insight into
methods of deterministically reducing this sensitivity. The
efficacy of these methods can be tested by Monte Carlo
analysis using given component statistics. It is shown that the
methods introduced to minimize the sensitivity of filters of the
kind shown in Fig. 2 are very effective in reducing frequency
response variations due to component tolerances.

A. Second-Order Allpole Filters

Consider the second-order low-pass filter shown in Fig. 3.
The voltage gain is obtained with an ideal noninverting
opamp. The voltage transfer function for this circuit (known
as class 4 or Sallen and Key [6]) expressed in terms of the
coefficients [see (2.1)] is given by

(3.2)

and in terms of the pole frequency and pole Q by

(3.3)

where and

(3.4)

Considering the overall variation of coefficient, we readily
obtain

(3.5)

Note that . Furthermore, the mean
of will equal the negative sum of the means of all

and and the variance will be the positive sum of their

TABLE I
SENSITIVITY OF a1 TO COMPONENT VARIATIONS

OF SECOND-ORDER LOW-PASS FILTER

variances. Since the sensitivity of to all RC components is
1 (and to the gain it is zero), can be decreased

only technologically, i.e., by prescribing the quality, precision,
temperature coefficient, aging behavior, etc., of the resistors
and capacitors. This is true for all filters of the type shown in
Fig. 2, irrespective of their order.

For the sensitivity of to the tolerances of the passive
components, we readily obtain the expressions given in the
first column of Table I. Furthermore, since is independent
of we obtain

(3.6)

where we denote the pole Q of the passive network (i.e.,
) by .

Note that the coefficient sensitivities are all proportional to
the pole Q, . Thus, as mentioned earlier, in deciding on a
filter type for a given application, one does well to select the
one yielding the lowest pole Q’s. This means a preference for
low ripple or maximally flat filters if possible, and as low a
filter degree as the specifications will allow.

From (3.6) it follows that the coefficient (or -) sensitivity
to the gain is inversely proportional to the passiveRC pole Q,
. Thus should be as large as possible. Since a passiveRC

network can have only negative-real single poles, it follows
that is limited to less than 0.5 [8]. It can be shown [6] that

of a two-sectionRC ladder structure can be maximized by
impedance scaling the second L-section of the ladder such as
to minimize the loading on the first. For example, referring
to Fig. 3, the second L-section comprising and can be
impedance-scaled upwards such as to minimize the loading on
the first, i.e., and . Referring to Fig. 3 and letting

(3.7)
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Fig. 4. Plot of q̂ versus impedance-scaling factor�.

we obtain with given in (3.4)

(3.8a)

and for

(3.8b)

Thus, impedance scaling and by a value of
will approach 0.5 and the sensitivity of (or ) to will,

according to (3.6), be minimized. Actually,does not have to
be that much larger than unity to be effective, as the plot of
versus shows in Fig. 4. This is fortunate since, in practice, a
large may cause to decrease into the range of the parasitic
capacitances of the circuit. From Fig. 4, it is apparent that a
value of between 2 and 3 will already bring close to its
upper boundary of 0.5, i.e., between 0.4 and 0.43, respectively.

The question is now whether impedance scaling with a factor
will also decrease the other coefficient sensitivities, given

in the first column of Table I. Inserting the expressions in (3.7),
we obtain the sensitivity relations given in the second and
third column of Table I. Although proper impedance scaling
requires that this may not always be possible, since a
given design may require two independent degrees of freedom
i.e., and . Taking this into account, both sets of expressions,
namely those for and are given. It is apparent
from these expressions that impedance scaling (in which case

) also reduces the coefficient sensitivities to the
other components, as well as to the gain. If is required
to be unequal to (for reasons of design flexibility), then
increasing only the capacitor ratio will also reduce the
sensitivities. Although some of the expressions include a term

this term will be small since the gain will
generally be in the range between unity and, say, 2.5.

To demonstrate the effect ofimpedance tapering, i.e.,
impedance scaling by Fig. 5 shows Monte Carlo
runs of the circuit in Fig. 3 for values ranging from 0.1
to 10, and values from 1 to 5. Comparing Fig. 5(a)–(c)
for the influence of the pole Q on component
sensitivity for nonimpedance-scaled circuits is shown (note the
vertical scale). As the pole Q is increased, the circuits become
increasingly sensitive to component variations. The latter
are uniformly distributed with zero mean and 5% tolerance.
Impedance scaling by a factor of three (i.e., ),

the sensitivities are already decreased significantly, and for
even more so. Conversely, when

the high sensitivity of the circuits renders them practically
useless. We do not show curves here for since, in
general, second-order circuits do not require this added design
flexibility. However, in Section IV, we shall deal with this
more general case, as required for various special situations.

Incidentally, it can be shown that the sum of the sensitivities
of to all resistors and capacitors must equal minus one,
respectively, i.e.,

(3.9)

Expressions of this kind are often referred to assensitivitiy
invariants. They are a result of the so-calledhomogeneityof
the function in question, the function in this case being the
coefficient [8].

B. Third-Order Allpole Filters

The third-order version of the th-order low-pass filter
shown in Fig. 2 is shown in Fig. 6. The voltage transfer
function is given by

(3.10)

or, in terms of the pole frequencies and and the pole Q,

(3.11)

Note that is equal to for a Butterworth, and to the
eccentricity for a Chebyshev third-order low-
pass filter. The coefficients of in terms of the circuit
components are given by

(3.12)

where in terms of the eccentricity and and
are shown in (3.13) and (3.14), at the bottom of the next page.

With (3.1) and (3.12) we obtain

(3.15)

For the case of a Butterworth filter, where it follows
that . The sensitivity of and to all
the circuit components follows from (3.1), and we obtain the
expressions given in Table II.

These analytical expressions for the coefficient sensitivity
to individual component tolerances indicate that impedance
scaling the ladder network of anth-order filter, as shown in
Fig. 2, with a scaling factor such as to increase the impedance
level from left to right, L-section by L-section, has an effect
similar to that in the simple second-order case. It reduces the
overall sensitivity of the network to all component tolerances.
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Fig. 5. Monte Carlo response plots of impedance-tapered second-order low-pass filters, with tapering factor� varying from 0.1 to 10 and pole Q’s
from 1 to 5. (a) q = 1. (b) q = 3. (c) q = 5.

For the third-order network, this results in the circuit shown
in Fig. 6, where we increase each resistorfrom left to right

by a factor and decrease each capacitor by a factor
. Ideally, should be equal to for proper impedance

(3.13)

and

(3.14)
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Fig. 6. Impedance tapering a third-order low-pass filter byri and
�i; i = 2; 3.

TABLE II
SENSITIVITY OF a1 AND a2 TO COMPONENT VARIATIONS

OF THIRD-ORDER LOWPASS FILTER

scaling. However, for third and higher order filters, in order
to maintain a sufficient number of degrees of freedom, this
condition cannot, in general, be satisfied exactly. Nevertheless,
because we are still gradually increasing the impedance level,
L-section by L-section, from left to right, we still refer here
to “impedance tapering of the ladder network.” By impedance
tapering, we may be increasing the impedance of only the
resistors, capacitors, or both, from left to right. Referring to
Fig. 6 for ideal tapering, we require that

(3.16)

and for the generalth-order network in Fig. 2, we require that

(3.17)

Inserting the general impedance-scaling factorsand as
in Fig. 6, i.e.,

(3.18)

into the sensitivity expressions given in Table II, we obtain
the expressions listed in the first column of Tables III and IV.
Tapering the resistors and capacitors separately by
and respectively, the sensitivity expressions in
column 2 (separate impedance tapering) of the two tables

TABLE III
SENSITIVITY OF a1 TO COMPONENT VARIATIONS

OF THIRD-ORDER LOW-PASS FILTER

result. Finally, for ideal impedance tapering,we have the
condition of (3.17), which results in the third column of
Tables III and IV. Before interpreting these results, it is useful
to point out their adherence to the property of the coefficient
sensitivity invariants as given for the second-order network in
(3.9). It can be shown that for anth-order network

(3.19)

as can readily be verified for the expressions given in
Tables III and IV. Furthermore, in general, the coefficient
sensitivity of the impedance-tapered filter has the form

(3.20)

where is any resistor, capacitor, or gain element of the cir-
cuit. For ideal impedance tapering, it follows that
and .

Whereas the coefficients are given by the filter spec-
ifications, the function can be minimized by making

. Here again, as with the second-order filter, a value
of between two and five will already reduce the coefficient
sensitivity appreciably. The same applies to the nonideally
tapered circuits for which the coefficient sensitivities are given
in the first two columns of Tables III and IV.
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TABLE IV
SENSITIVITY OF a2 TO COMPONENT VARIATIONS

FOR THIRD-ORDER LOW-PASS FILTER

For third-order filters, the specifications generally do not
permit ideal impedance tapering, in which case just the capac-
itors may be tapered and the resistor values will be determined
by the filter design equations. By inspection of the “separate
impedance tapering” columns of Tables III and IV, it follows
that the resistor tapering factor should actually be held as small
as possible, or typically close to unity, while the capacitor
tapering factor should be as large as possible, in order to
minimize coefficient sensitivity. We shall later see that when
ideal tapering for filter orders higher than two is not possible,
the optimum solution is to make the-values equal, (i.e., for
the third-order case: ) and as large as possible. In
general a value between 2 and 5 is sufficient to provide a
significant degree of insensitivity to all component tolerances.

In Fig. 7, amplitude response curves for a third-order But-
terworth and Chebyshev filter are shown. The capacitor scaling
factor was varied from 1 to 5. The resistor scaling factor
could not be freely chosen; it was determined by the de-
sign equations. Just how the design equations constrain the
resistive scaling factor will be discussed in Section IV. Monte
Carlo runs with 5% flat-distribution, zero-mean resistors and
capacitors were carried out. Clearly, the circuits with tapered
capacitors (i.e., and ) are considerably less
sensitive to component tolerances than the nontapered circuits.

IV. DESIGN EQUATIONS FOR SECOND- AND THIRD-ORDER

IMPEDANCE-TAPERED ALLPOLE FILTERS

In this section we present the design equations for tapered
second- and third-order filters. Unfortunately, the equations
for higher-order filters still defy a satisfactory closed-form
solution. However, the combination of impedance-tapered
second-and third-order sections, which can be cascaded to
provide any desired filter order, is already a great improvement
in terms of component sensitivity, compared to a nontapered
equivalent filter, while remaining modest in terms of required
power. Thus, for example, up to sixth-order filters can be
realized with two, up to ninth-order with three, twelfth-order
with four, fifteenth-order with five amplifiers, and so on.

A. Second-Order Allpole Filters

We start out with the second-order low-pass filter shown in
Fig. 3. Its transfer function is given by (3.2) to (3.4). With the
tapering factors in (3.7) and with

(4.1)

we obtain for the coefficients of

(4.2)

In practice, and or, equivalently, and
will be given by the filter specifications. From these

quantities, and possibly some additional constraints, such
as input resistance level, maximum or minimum acceptable
capacitor values, etc., we must determine and .

From (4.2), we obtain

(4.3)

and

(4.4)

and must both be positive, and which is, in general, the
gain of a noninverting opamp, must obey the constraint

(4.5)

Thus, the denominator of (4.3) and (4.4) must be larger than
zero, resulting in the constraint that

(4.6)

Because of (4.5), the expression under the square root will
always be positive.

As we shall see below, impedance tapering may be only one
consideration necessary for the minimization of active filter
sensitivity, namely that of minimizing for sensitivity topassive
components. Minimizing sensitivity toactive elements in the
filter circuit has been shown to require the minimization of the
gain-sensitivity product[6], [7]. This and other considerations
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Fig. 7. Monte Carlo response plots of impedance-tapered third-order Butterworth and Chebyshev low-pass filters. Capacitors are tapered by tapering
factor �c; resistor values follow from design equations.

may result in only partial, as opposed to ideal, impedance ta-

pering being the best strategy for the comprehensive sensitivity

minimization of a filter circuit. The resulting different cases

are discussed briefly in what follows.
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1) Ideal Impedance Tapering:In this case . From
(4.1) and (4.2), we obtain

(4.7)

and

(4.8)

Thus, the required gain increases with increasing and
decreases with increasing.

In general, rather than having the amplifier gainin the
numerator of , a more general factor is used [see (3.2)]
which, in the case of a low-pass filter, is essentially the dc
forward gain. Clearly, will be proportional to but may
well have a different value. Thus, if the specified gain factor
does differ from the value obtained in (4.8), then additional
circuit techniques, discussed in 4) below, must be applied to
obtain the required .

Consider the following practical example. Suppose that

kHz pF (4.9)

From (4.7) we obtain k . Assuming an impedance-
tapering factor we obtain from (4.8) .
Referring to Fig. 3, the resulting filter has the values given
in line 1 of Table V. For the equivalent circuit with
and, consequently, with much higher sensitivity to component
tolerances, we obtain and the values given in
line 2.

2) Combining Gain-Sensitivity-Product Minimization with
Partial Impedance Tapering:It is well known that in order to
minimize the sensitivity of filter characteristics to tolerances
of the gain elements, thegain-sensitivity product(GSP) of
the filter should be minimized [6], [7]. In [7], well-proven
biquadratic filter circuits (“biquads”) and the corresponding
design flow-chart listings are given. In the design programs,
the specifications in terms of pole and zero frequencies and Q’s
is admitted as input, and the circuit with the minimum GSP
results as output. In most of the circuits, one additional degree
of freedom is available, namely the values and ratio of two
(or three) capacitors. In the present context this permits the
implementation ofpartial impedance tapering(namely with
respect to the capacitors of the circuit) while, at the same time,
minimizing the GSP. The latter will rarely, if ever, permit ideal
impedance tapering (i.e., ); since the resistor values are
selected such as to minimize the GSP they will only rarely
coincide with the condition for ideal impedance tapering. Thus,
the resulting circuits will, in general, have and .
Let us now reexamine the previous example from this point
of view.

Referring to [7], we use the so-called low-pass medium-Q
(LP-MQ) circuit, which essentially corresponds to the circuit
in Fig. 3 (see [7, p. 52]). With the specifications (4.9), we
let and obtain (with the program in the handbook) the
circuit component values given in line 3 of Table V. The value

TABLE V
COMPONENT VALUES OF SECOND-ORDER FILTERS AS IN

FIG. 3 (RESISTORS IN k
, CAPACITORS IN pF)

of is equal to 1.85. Referring to Fig. 3, we obtain

(4.10)

These values correspond to those given in the third line of
Table V.

Monte Carlo runs were carried out for this circuit and
compared with those of an ideally impedance-tapered circuit
designed for the same specifications (i.e., line 1, Table V). The
results for the latter, i.e., the circuit with capacitive impedance
taperingand minimum gain sensitivity product, were some-
what better than those of the former. However, the difference
is not very large, particularly when compared with the much
inferior nontapered circuit (Table V, line 2). From this and
other examples, it appears that ideal impedance tapering,
and capacitive impedance tapering with GSP minimization,
produce approximately the same improvement, although the
latter is to be preferred if the choice is available.

3) Partial Impedance Tapering with Equal Resistors
( ):

In some cases, it may be desirable simply to use equal
resistors in the circuit of Fig. 3, i.e., . For this case,
we have from (4.2)

(4.11)

From (4.3), we obtain the value of by setting namely

(4.12)

A comparison with (4.6) shows that (4.12) is guaranteed to
remain below the upper bound. With the specifications in (4.9),
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and with we obtain

(4.13)

and with nF we obtain k .
The resulting circuit values are given in line 4 of Table V.
Comparing Monte Carlo runs for this circuit with those defined
by the values in line 3, very little difference was found.
In fact, if anything, the -circuit was found to be
somewhat superior to that of line 3. This is not surprising,
if we reconsider the general sensitivity expressions given in
Table I. Since some of the sensitivities are proportional to

others to setting is an optimum compro-
mise. Thus,in summary, for the general second-order allpole
low-pass filter of Fig. 3, capacitive impedance tapering with
either equal resistors( ), or resistor values selected
for GSP-minimization, provide circuits with minimum sensi-
tivity to the component tolerances of the circuit. It can be
shown that the same strategy for desensitization to component
tolerances holds also for all other allpole filters, e.g., high-
pass and bandpass filters. It also holds for biquads with
finite zeros; there, however, the tapering must be carried
out on so-calledpotentially-symmetricalbridged-T or twin-T
circuits [6], [8].

4) The Gain Factor : As pointed out above, the dc for-
ward gain of the filter transfer function, as in (3.2), will
generally not coincide with the amplifier gain required
to obtain and . The gain factor may be specified
by the filter designer, but the amplifier gain is determined
by the general expression for [see (4.2)] or, for ideal
impedance tapering (i.e., ), by (4.8). Thus, the value
of cannot be freely chosen; it depends on the scaling
factors and and on the specified pole Q, whereas the
overall dc filter gain may very likely be required to have a
different value. Fortunately, there are various schemes for the
decoupling of and [6], one of which will be presented in
what follows.

Consider the partial output circuit shown in Fig. 8(a). The
output voltage level is determined by the output voltage
source, which also determines the voltagesand at the
ends of two arbitrary admittances and . Assume now that
we wish to have a -times larger output voltage, while leaving
the terminal voltages and unchanged. In terms of our
filter, this implies that

(4.14)

where . A glance at Fig. 8(b) shows that with the
addition of two admittances this can readily be achieved; the
loading on terminals and remains unchanged, whilst
the resulting voltage dividers require a-times larger output
voltage. By definition, and the additional components
are positive. Applying this transform to theRC output con-
figuration shown in Fig. 9(a), we obtain the configuration in
Fig. 9(b). Note that, although the number of capacitors is
increased by one, the total capacitance remains unchanged.

(a)

(b)

Fig. 8. Output voltage-level transform, such that input levels remain un-
changed, while output voltage is increased by�.

The two resistors are larger than the original but their
value can be reduced by introducing a resisitiveinto the
network, such that only a part of is transformed (see [6]).
Consider now the impedance-tapered filter in Fig. 3, whose
gain is equal to 2.05 (see Table V, line 1). Assuming that
we desire a dc gain i.e., we
obtain the corresponding circuit shown in Fig. 10. Note that

pF pF and
pF.

Another closely related method of obtaining is by
simply using a reasonably low-impedance voltage divider at
the amplifier output such that times the output voltage
can be tapped off and fed back into the circuit [see Fig. 9(c)].
Since the amplifier’s output impedance is roughly equal to
the Thevenin-equivalent output impedance divided by the
loop gain, the driving capability of the amplifier will not be
significantly affected as long as the loop gain is sufficiently
large. However, the open loop gain is now decreased by a
factor of so that the error introduced by finite amplifier
gain is increased. Consequently, this scheme should be used
only for relatively small values, corresponding to a gain
enhancement of, say, less than 10 dB. If the desired valueis
less than unity, i.e., then a resistive voltage divider can
be inserted at the input of the network, as shown in Fig. 11.
In this case

and

i.e., and . Since is, in this
case, less than unity, is always positive.

B. Third-Order Allpole Filters

Here we consider a third-order low-pass filter as shown in
Fig. 6. The transfer function is given by (3.10) and (3.11);
in general the amplifier gain in the numerator should be
replaced by the more general. The coefficients in terms of
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(a) (b)

(c)

Fig. 9. Voltage-level transform applied toRC output feedback network. (a) Original circuit. (b) Transformed circuit. (c) Alternative circuit with
output voltage divider.

Fig. 10. Circuit of Table V, line 1, transformed for loop gain� = 2:05, dc
gain K = 4, and� = 1:95.

Fig. 11. Biquad circuit with loop gain�, dc gainK, and� = K=� < 1.

the circuit components are given by (3.12)–(3.14). With the
tapering expressions shown in Fig. 6 and with
we obtain the following relations between the transfer-function

coefficients, tapering factors, design frequency and gain

(4.15)

As we shall see below, is an important design parameter,
whose value determines the realizability of a third-order filter.

Before going to the ideal impedance-tapering case, i.e., the
case for which and we
shall solve the general case in which ,
and are given, and , and must be found. It is useful
to normalize the coefficients with respect to the design
frequency thus

(4.16)

and in general

(4.17)

where is the order of the filter transfer function . After
some calculation, we obtain the following three equations for
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TABLE VI
SUMMARY OF SPECIFICATIONS AND COEFFICIENTS FORFILTER DESIGN EXAMPLES

the unknown quantities, namely for

(4.18)

where

For we obtain

(4.19)

and for

(4.20)

Since must be positive and real, it follows that the discrim-
inant of the quadratic equation (4.18) must be greater than
zero, thus

(4.21)

In [9], it is shown that the necessary and sufficient conditions
for to be real and positive result from (4.21) in the form of
an upper—and in some rare cases also lower—bound on the
design frequency . Thus

(4.22)

The upper bound depends mainly on the polarity
of the coefficient in (4.18), and to some extent also on
the polarity of the coefficient . The main results of the
realizability conditions for an impedance-tapered third-order
low-pass filter are summarized in [9, Table I]. Two main
conditions are derived in [9]. The first (Condition I) requires
that the coefficient . This results
in the requirement that the design frequency is
less than an upper-bound frequency. Furthermore, must

also be less than a second boundary frequency. Thus the
upper bound on for Condition I is the smaller of the two
design frequencies, and

(4.23)

Should, for some reason, be required to be larger than
then the coefficient is negative, and Condition II is valid.

As shown in [9], this condition is far more confining than
Condition I and should, if possible, be avoided.

A realizability condition for the product is also derived
in [9]. This product is shown to also depend on namely

(4.24a)

This condition implies that for ideal impedance tapering, in
which case we must have

(4.24b)

Whether, and how, these conditions can be fulfilled depends
entirely on the coefficients of the specified filter.

Finally, in [9], bounds on guaranteeing both that be
real and positive, and that the gainbe larger than or equal
to unity, are shown to be

(4.25)

where it is understood that the contained in and
obeys the inequality in (4.22).

Design Examples:In what follows, we go through some
filter design examples that are summarized in Table VI.

Consider the amplitude tolerance limits of the third-order
Chebyshev low-pass filter, and the coefficients of the third-
order transfer function satisfying these specifications (see
Table VI, line 3).
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TABLE VII
COMPONENT VALUES OF THIRD-ORDER FILTERS AS IN

FIG. 6 (RESISTORS IN k
, CAPACITORS IN pF)

*The line number refers to Table VI.

For reasons given in [9], we restrict ourselves to using Con-
dition I wherever possible. In doing so, we obtain essentially
the same value for and so that the upper bound on

rad.
Note that . Thus, with (4.24b), it follows
that for the filter given by the coefficients in Table VI, (line
3), ideal impedance tapering is not possible. This is because
ideal impedance tapering requires that in which
case, according to condition (4.24b), must be
larger than unity.

We now go through the step-by-step design for the third-
order Chebyshev low-pass filter satisfying the specifications
given in Table VI, line 3, while at the same time obeying
different types of impedance-tapering criteria.

1) Impedance Tapering of the Capacitors:For a capac-
itively impedance-tapered filter, the step-by-step design
proceeds as follows:

i) Calculate : From [9, Table I], we obtain
rad s.

ii) Select : The selection of these values
is influenced by the upper bound given by (4.24a), thus

. Letting and
it follows that .

For practical reasons (e.g., in terms of component values), we
chose .

iii) Calculate , , and and a, b, and c of (4.18):
With we obtain

and therefore

iv) Calculate and : Solving the quadratic equation
(4.18) for we obtain . From (4.19), we have

and with (4.30) .
v) Select and compute , , and : We select

pF, thus k and,
with (4.30) and (4.31), k and

k
vi) Compute : From (4.20), we obtain

.
Referring to Fig. 6, the component values for the resulting

circuit are given in line 2 of Table VII. A simple first-order
check for the correctness of these results is to use (3.12) in

order to verify that and that the
obtained gain .

2) Impedance Tapering of the Resistors:In the preceding
examples, we considered impedance tapering of the capacitors
by starting out with values of (i.e., and in Fig. 6)
and then calculating the resistor values by computingand

. These depend on the choice of the design frequency
which must always be smaller than .

The latter depends on the desired filter transfer function and
its coefficients. As was pointed out earlier, impedance tapering
both the capacitors and the resistors for filters of higher than
second order is possible only in rare cases, since the degrees of
freedom necessary to satisfy a given set of filter specifications
permit only the capacitors or the resistors to be tapered. The
preceding examples have demonstrated that impedance taper-
ing only the capacitors provides a significant improvement of
the insensitivity to component tolerances. We shall now show
that the alternative procedure, i.e., tapering only the resistors,
is effective in the same way. To show this, we consider the But-
terworth filter specified in line 1 of Table VI. The frequency re-
sponse of this filter for various capacitive-impedance-tapering
values and component tolerances was given in Fig. 7. For this
example we select . In what follows, we show how to
design this filter, but with tapering of the resistors rather than
the capacitors. The degree of desensitization to component
tolerances obtained with this resistively-tapered filter is similar
to that of the capacitively-tapered version shown in Fig. 7.

i) Calculate : From [9], we have
thus .

ii) Select , , and : From (4.24a), we obtain
. Letting and we find

. For practical reasons (in terms of
component values), we select .

iii) Calculate , and , and a, b, and c of (4.18):
From (4.16), we obtain

and therefore

iv) Calculate : Solving (4.18) for where we in-
sert we obtain

(4.26)

which is a first-order equation, in contrast to the quadratic
equation for [see (4.18)] which must be solved for capac-
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itance tapering. With the values given in step iii) above, we
obtain and, with (4.19), .
Note that the condition in (4.24a) is automatically satisfied if

.
v) Select and compute , , and : We select

k thus pF
pF and pF.

vi) Compute : With (4.20) we obtain
.
The resulting component values are summarized in

Table VII line 3. Similarly, for the filter characteristics
depicted in line 2 of Table VI, we obtain the Chebyshev filter
coefficients .
The resulting component values are given in Table VII, line 4.

Finally, consider a third-order Bessel low-pass filter with a
loss of 1 dB at 75 kHz, and 15 dB at 300 kHz (see line 4,
Table VI).1 With the filter coefficients given in Table VI, we
proceed as follows:

i) Calculate : From [9, Condition I], we obtain
and . Thus, it follows

that .
ii) Select , , and : With (4.24a) we obtain

. Letting and we find
and select .

iii) Calculate and a, b, and c of (4.18):We obtain
and and therefore,

and
.

iv) Calculate and : We obtain
and, with step iii) above, .

v) Select and compute , and : We select
K thus pF,

pF and pF.
vi) Compute : With (4.20), .

Note that for this filter . Had we selected an
value larger than (but smaller than ) we would not
have obtained a realizable filter.

3) Influence of the Design Frequency: We have shown
that in order to find a realizable third-order filter circuit
capable of satisfying given filter requirements we must select

where is given in terms of
the filter coefficients as in (4.23). The question to be answered
now is: what influence does the choice of have on the filter
design, assuming, of course, that it is chosen less than ?

To find the influence of the choice of on the component
sensitivity of a given circuit, we proceed as follows. Using
the coefficients of the Chebyshev third-order transfer function
given in line 3, Table VI as an illustrative example, the
procedure can be summarized by the following steps:

i) Select and : For the given coeffi-
cients, we have rad/s. Select

.
ii) Calculate and , and :

.

1Note that with an equivalent third-order Chebyshev low-pass filter, a loss
of less than 0.5 dB at 75 kHz, and of at least 38 dB at 300 kHz, can be
obtained (see line 3, Table VI).

TABLE VIII
DEPENDENCE OFDESIGN PARAMETERS r2; r3; r3=r2

AND � ON SELECTION OF !0

iii) Calculate and : From (4.18), we have
which gives the positive real root

and, with (4.19) .
iv) Select and calculate : We se-

lect pF, thus k ,
k k ,

pF, and pF.
We can verify these results to a first order [see (3.12)] since

.
v) Calculate : With (4.19) and (4.20), we have

(4.27)

This results in the circuit values given in Table VII, line 5.
Going through the five design steps above for ten different

values of (all of which must, of course, be less than ),
we obtained the ten different third-order circuits determined by
the design values listed in Table VIII. The resulting functions
of and versus the ten values of are plotted
in Fig. 12. Monte Carlo runs of the ten resulting third-order
low-pass filters showed that the deviation from the ideal filter
response becomes smallest for the value ofin the region
of . A glance at Fig. 12 shows that this corresponds
to a ratio of i.e., for the case that .
Interestingly enough, this is similar to the conclusion arrived
at with second-order networks.For example, the second-order
filter with seemed equally good, and possibly even
slightly better than the filters designed for ideal impedance
tapering (i.e., ). The reason given there, which is
also valid here, is that because some of the sensitivities are
proportional to and others to setting provides
an optimum compromise. This corresponds, in the third-order
case, to making . Thus, we conclude from this
and other examples that the value to be selected is the one
for which . Whether this is always true is difficult
to tell. Nevertheless, experiments with numerous other third-
order low-pass filters with capacitively tapered impedances,
and the design frequency selected such that
have invariably produced similar results. Presumably this is
true only when “ideal-tapering” cannot take place, which is
generally the case (i.e., whenever ). In any event,
whether the one case (i.e., ideal tapering) is superior to the
other does not seem very relevant, since the difference between
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Fig. 12. Design parametersr2; r3; r3=r2, and� as a function of!o.

the two appears to be minimal, and ideal tapering is rarely
possible. Thus, the obvious choice is to take the simpler of
the two alternatives.This choice which, more to the point, is
generally realizable, is to make .

4) Impedance Tapering of the Capacitors with :
As discussed above, the design equations (4.18)–(4.20) are
implemented by selecting the design parameters and

and then computing the remaining design parameters
and . This is done by following the six-step design procedure
outlined under 1) and 2) above. If we now let and
select tapering values for and we can use (4.18)–(4.20)
to compute and . We cannot compute these values
explicitly, however, because the resulting polynomial equa-
tions in or are of sixth order, and therefore, are not
directly solvable. Instead, we can compute the bounds on
and then iteratively solve the equations until we have, more
or less, . “More or less” is quite sufficient here,
since the optimum for which the component sensitivities are
minimum is relatively broad. The resulting design procedure
is summarized in the following design steps. As in one of
the previous illustrative examples, we shall again use the
specifications for the third-order Chebyshev filter specified in
line 3 of Table VI.

i) Calculate : From [9], we obtain

rad/s (4.28)

ii) Select , , and calculate : As in the previ-
ous examples, we select and . With
we have from (4.16) and (4.19)

(4.29)

In order to guarantee a minimum degree of resistive tapering,
we require that . The lower bound on i.e.,
is then obtained for i.e.,

(4.30)

Thus, with Table VI, line 3, we have
rad/s.

iii) Select between and and calculate
and from (4.18) and (4.19), respectively.

iv) Repeat Step iii) with new until is
found: These two steps were already carried out for this
example under 3) above. The value of rad/s
was found, for which and .

The results of this design are listed in Table VIII under (8).
It was found that this design yielded the best results, i.e., the
lowest sensitivity to component tolerances.

v) Select and calculate : We select
pF and obtain k

k k
pF pF.

vi) Calculate : With (4.20), we obtain .
Note that for the component calculations, we must use the

actual and values obtained in step iv). The fact that they
are close to each other is important and determines the value
of used in the final circuit design.

The steps outlined above can readily be carried out by
computer. A MATLAB program going through these steps
has been developed. Using this program (TAPERCALC),2 the
values of and are calculated for a variety of filters.
For each filter, and are calculated according
to (4.30) and (4.23), respectively, and the value found for
which . This is obtained at the intersection of
the and curves, a typical example of which is
plotted as a function of in Fig. 13.

Monte Carlo runs for four values for each of the filters
listed in Table VI were carried out. The first and second
(i.e., lowest and highest) value of designated by and

respectively, was within 10% of and
respectively. The third value, designated ( ), was
the value for which is equal to unity. This value is
readily calculated from (4.18). Thus, for we obtain

(4.31)

With (4.17) and (4.18), this can be expressed as a third order
polynomial in namely

(4.32)

the real root of which is ( ). The fourth value
used for the Monte Carlo analysis was our “optimum” value
designated , i.e., the one for which

as found by the TAPERCALC program. For all the
examples, the Monte Carlo runs for showed the smallest
sensitivity to component tolerances. These were followed

2This program was written by H. P. Schmid of the Institute for Signal
Processing, Z̈urich, Switzerland.
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Fig. 13. Implicit and graphical method of finding!o for the case thatr2 � r3. Example: Chebyshev low pass (0.04/25 dB; 80/300 kHz).

by those for which provided similarly good results.
As pointed out above, the optimum range for seems to
be relatively wide, i.e., in the range between and .
However, since the radian frequency is
invariably smaller than it is the recommended value to
use. This is because it is generally desirable for the design
value to be as small as possible, since this permits a larger
input RCproduct, i.e., to be used. A larger provides
a higher input impedance to the filter, which is generally
advantageous; a larger permits larger tapering factors
and to be used, without becoming so small
that it is comparable in value to the parasitic capacitance of
the circuit.

V. CONCLUSION

A procedure for the design of allpole filters with low
sensitivity to component tolerances has been presented. The
filters are based onRC ladder structures combined with single
operational amplifiers. The filter amplifier provides a low
output impedance and supplies positive feedback in order
to obtain pole Q’s larger than 0.5, i.e., complex-conjugate
poles. It is shown that by the use of impedance tapering, in
which L-sections of theRC ladder are successively impedance-
scaled upwards, from the driving source to the amplifier

input, the sensitivity of the filter characteristics to component
tolerances can be significantly decreased. Various schemes
for this newly introduced concept of impedance tapering
are presented. Detailed design equations for second- and
third-order low-pass filters are given. The extension to other
types of allpole filters, i.e., high-pass and bandpass, follows
precisely the same principles as those presented here, and will
be reported on shortly. Although the concept of impedance
tapering for allpole filters of the same topology, but higher
than third order, is perfectly valid and will have the same
beneficial results, closed-form design equations cannot be
derived for higher than third-order-filters. Equi-valued resistor
and capacitor filter circuits for Butterworth and Chebyshev
filters up to sixth-order have, in fact, been published, but their
desensitization to component tolerances by impedance tapering
can be accomplished only by iterative procedures. However,
with the design methods presented here, higher order low-
sensitivity allpole filters can be obtained by cascading second-
and third-order low sensitivity (i.e., impedance-tapered) fil-
ter circuits. Since practical experience has shown that in
a large segment of applications, the required filter order is
between two and, say, five, the design methods outlined
here should be broadly applicable. This all the more, since
the circuit topology of the filters dealt with are basically
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conventional. Indeed, it is merely by the judicious choice of
component values such that impedance tapering is achieved
that the significant desensitization to component tolerances is
obtained. The design procedure therefore adds nothing to the
cost of conventional circuits; component count and topology
remain unchanged, whereas the component values, selected for
impedance tapering, account for the considerable decrease in
component-tolerance sensitivity.
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