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Abstract

In this paper, we analyze the low-SNR behavior of the cross-receiver mutual information (CMI) between two received signals
corrupted by uncorrelated, additive Gaussian noise. This framework has use in distributed, passive sensor applications, such as
passive radar and collaborative opportunistic navigation. For Gaussian and BPSK signaling, the CMI can be expressed in terms
of the effective input SNR between the receivers. On-off keying (OOK), while not optimal in terms of spectral efficiency for a
single-receiver channel, is shown to have greater CMI than Gaussian or BPSK signaling. This is in spite of the fact that, given
the same received SNRs, all three source distributions have the same linear correlation coefficient. This indicates that for OOK
sources, effective SNR and correlation coefficient are not meaningful descriptors for passive receivers.

A full version of this paper is accessible at: https://doi.org/10.36227/techrxiv.13710142

I. INTRODUCTION

The input-output mutual information I(X;Y ) between transmitted signal X and received signal Y has been well-studied

since Shannon [1] introduced the notion of channel capacity C, the maximum rate of reliable communication subject to an

average source power constraint, P . In particular, in the wideband, power-limited regime, the capacity-cost function C(P) can

be approximated as a second-order polynomial [2, (141)]:

C(P) = Ċ(0)P +
1

2
C̈(0)P2 + o(P2). (1)

The first-order coefficient Ċ(0) is referred to as the channel capacity per unit-energy [3] and represents the slope of the

capacity vs. source power curve at zero power. Together, the polynomial coefficients Ċ(0) and C̈(0) define the wideband slope

S0 of the spectral efficiency versus Eb

N0

curve, given by [2, Thm. 9]:

S0 =
2
[

Ċ(0)
]2

−C̈(0)
. (2)

These parameters of the communications channel X−Y have been used to analyze signaling distributions that are optimal in

terms of Ċ(0) (first-order optimality) and in terms of C̈(0) (second-order optimality). For example, on the real additive white

Gaussian noise (AWGN) channel, it has been shown that Gaussian signaling, binary phase-shift keying (BPSK), and on-off

keying (OOK) all achieve the channel capacity per unit-energy Ċ(0). However, of these source distributions, only Gaussian

signaling and BPSK are second-order optimal [2].

In contrast, less attention has been paid to the cross-receiver mutual information (CMI)1 I(Y1;Y2), between noisy received

signals Y1 and Y2 corresponding to the same transmitted signal, as shown in Fig. 1. While previous work (e.g., [9]–[11]) has

used CMI for differential time-delay estimation, there has not been any research into the low-SNR behavior of CMI. This

paper derives the first- and second-order Taylor series coefficients for the AWGN channel CMI at low SNR, for several source

distributions.

Mutual information captures arbitrary statistical relationships, making it a more general measure of dependence than Pearson’s

correlation coefficient, which measures the linear dependence between two random variables. Further, while signal processing

operations such as quantization may increase the cross-correlation between two received signals (e.g., see [12], [13]), no

secondary processing of Y1 and Y2 can improve the CMI I(Y1;Y2), due to the Data Processing Inequality. This suggests that

CMI is more fundamental than the cross-correlation. Intuitively, we expect that given the same levels of additive noise, source

distributions with greater CMI would perform better in passive receiver processing tasks, such as TDOA or FDOA estimation.

This paper assumes a particular source distribution (e.g., OOK) subject to average power constraint P and characterizes

the CMI I(Y1;Y2) as a function of P . The low-SNR asymptotics are obtained by letting P tend to zero, with receiver noise

powers fixed. This lens is useful for passive receiver applications, in which the receiver designer often has no choice in the

1The term cross-receiver mutual information is motivated by the cross-correlation between two noisy received signals, an operation commonly performed in
passive receiver applications such as radio interferometry [4, Ch. 8.1-8.4], radar, and collaborative opportunistic navigation [5]–[7]. Similarly, joint estimation
of time-difference-of-arrival (TDOA) and frequency-difference-of-arrival (FDOA) is commonly performed by computing the cross-ambiguity (or complex
ambiguity) function [8].
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Fig. 1. Signal model showing transmitted signal X , uncorrelated, additive noise Zi, and received signals Yi (i=1, 2).

design of the transmitted signal.2 We evaluate the low-SNR CMI of three source distributions that are known to be first-order

optimal for the respective single-receiver AWGN channels X−Yi (i=1, 2): Gaussian signaling, BPSK, and OOK. Notably,

the CMI per unit-energy İ1,2(0), defined precisely in Sec. IV, is shown to be zero for all three distributions. As a result,

CMI in the low-SNR regime is quadratic in source power, governed by the second-order CMI coefficient Ï1,2(0). We show

that while OOK is sub-optimal in terms of the single-receiver second-order coefficient, the second-order CMI coefficient of

fixed-amplitude OOK surpasses those of Gaussian signaling and BPSK. This is notable, given that for the same received SNRs,

all source distributions have the same linear correlation coefficient [13]. This indicates that the dependence between Y1 and

Y2 is non-linear for OOK.

The remainder of this paper is organized as follows: Sec. I-A discusses additional related literature. Sec. I-B introduces

relevant notation and Sec. II describes the additive noise model at each receiver. Sec. III reviews the low-SNR asymptotics

of single-receiver channel capacity. Sec. IV introduces the low-SNR asymptotic expansion of CMI, while Sec. V provides the

first- and second-order coefficients for specific sources on the AWGN channel: Gaussian signaling (Sec. V-A), BPSK signaling

(Sec. V-B), and OOK signaling (V-C, V-D, and V-E). Sec. VI concludes the paper.

A. Related Literature

Cross-correlator-based TDOA estimation was originally introduced in the passive sonar literature, in which the acoustic signal

of interest is commonly modeled as a Gaussian random process (e.g., [15]–[17]). While electromagnetic signals of interest tend

to be highly structured (e.g., radar or coded communications waveforms), the literature for TDOA estimation of electromagnetic

signals often assumes the signal is Gaussian as well. Fowler and Hu [18] showed, however, that differences in the acoustic

and electromagnetic signal structures lead to differences in Fisher information, Cramer-Rao bounds, and maximum-likelihood

estimators.

Following the work of Bell [19], which optimized radar signal detection by maximizing the mutual information between a

Gaussian target ensemble and the received signal, various authors have applied information-theoretic concepts to the analysis

and design of radar signals. This work includes the design of matched illumination waveforms [20], [21], analysis of the

radar information channel [22]–[24], the constant information radar [25], [26], and co-design of spectrally efficient joint radar-

communications waveforms [27]. However, the previous works cited above have analyzed the active sensor case, in which

the receiver knows the transmitted signal, rather than the passive sensor case considered here. Stein et al. [28], in contrast,

considered the universal delay estimation problem in discrete channels, for both the single-channel (active) case and the two-

sensor (passive) case. They showed that for large enough signal duration, the error exponent of the universal delay estimator

is equal to that of the maximum-likelihood estimator.

In distributed, passive receiver problems, sensor data is commonly communicated from the points of observation to a

centralized estimator. Recognizing that the sensor data is often compressed, Zhang and Berger [29] introduced the notion

of estimation from compressed information. In contrast to traditional rate-distortion theory that studies the distortion of a

reconstructed source subject to rate-constrained compression, [29] analyzed rate-distortion trade-offs in terms of compression

rate vs. estimator variance. A survey of statistical inference under rate-constrained multiterminal data compression is given

by Han and Amari [30]. The inference problems surveyed in [30] are categorized as hypothesis testing, parameter estimation

(e.g., [31]), or classification.

Vasudevan et al. [9]–[11] introduced the MaxMI method of discrete-time TDOA estimation, which computes the empirical

mutual information between received signals for each delay hypothesis and selects the delay with the maximum (cross-receiver)

mutual information. Further, to compress the received signals, [9]–[11] selected quantization thresholds that would maximize

CMI at the centralized estimator. In numerical examples with Gaussian sources, the MaxMI quantizer-detector in [9]–[11] was

shown to have lower error probability than a traditional approach using a minimum mean-squared error (MMSE) quantizer

and a correlation detector. In contrast to [9], which gave numerical examples with received SNRs as low as −1 dB, this paper

focuses on the low-SNR asymptotics of CMI. We do not, however, evaluate estimator performance for any particular application.

Rather, the low-SNR CMI analysis in this paper indicates that when designing multiterminal compression algorithms, particular

2Although the signal model shown in Fig. 1 bears similarity to that of the broadcast channel [14], the analysis in this paper is markedly different from the
broadcast channel literature. It is true that the physical signal X is assumed to be transmitted in a broadcast channel, in the sense that multiple geographically
separated sensors may receive it. However, this paper does not evaluate achievable rate regions for the two broadcast channel users, nor does it analyze channel
coding schemes, since the source distribution is assumed to be fixed from the receiver’s perspective.
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attention should be paid to the source distribution, as different sources can have extremely different CMI values at the distributed

receivers.

While [3] introduced the term capacity per unit-cost for general cost functions, the specific energy cost function b(x)=x2

was analyzed earlier by Prelov in [32] and [33], establishing an expression for the capacity per unit-energy two decades prior

to [3]. Asymptotic expressions for the capacity of channels with weak input signals were derived for scalar input signals in [34]

and for vector-valued input signals in [35], under both average and peak-power constraints. A formula for the second-order

expansion of input-output mutual information in Gaussian noise channels as SNR tends to zero is provided in [36]. Building

upon the connection between channel capacity per unit-cost and Fisher information observed in [3], a more general result in

[37], called the I-MMSE relationship, relates the derivative of mutual information as a function of SNR to the MMSE.

Various extensions to capacity per unit-energy have appeared in the literature. El-Halabi et al. [38], for example, extended

the concept of capacity per unit-energy [3] to secrecy capacity per unit-energy. Koch and Lapidoth [39] showed that while 1-bit

symmetric-threshold quantization degrades the capacity per unit-energy, at low SNR some of the capacity loss can be recovered

by doubling the sampling rate. Specifically, symmetric quantization of Gaussian sources and of equiprobable, antipodal binary

sources (e.g., BPSK) degrades the capacity per unit-energy by 2
π (−1.96 dB), whereas [40], [41] showed that an asymmetric

source distribution and an asymmetric-threshold quantizer can recover the capacity per unit-energy of the unquantized channel

[41, Thm. 2]. Further, they showed that in order for the quantized channel to achieve the capacity per unit-energy of the

unquantized channel, the source distribution must be flash signaling [41, Thm. 3], a class of binary distributions introduced in

[2, Def. 2]. Zhang et al. [42] studied the channel capacity per unit-energy for the single-receiver noncoherent OOK channel,

showing that noncoherent OOK is first-order optimal for both soft- and hard-decision decoding.

In [13], Williamson studied the impacts of additive Gaussian noise and 2-level quantization on the correlation coefficient of

correlated sources, considering both Gaussian sources and binary sources. In contrast to a classic analysis by Van Vleck [43],

[13] considered the effects of noise and quantization separately, showing that as source power tends to zero, symmetric-threshold

quantization of Gaussian sources and of equiprobable, antipodal binary sources degrades the correlation by 2
π . However, flash

OOK sources and receivers with asymmetric quantization can avoid the 2
π correlation penalty: in the limit of zero SNR,

the quantized signals’ correlation approaches the sources’ correlation. This has applications to cross-correlator-based TDOA

estimation for sparse OOK sources.

Low-duty OOK signaling can be accomplished by PPM, which along with overlapping PPM and multipulse PPM has a

long history within the optical communications literature [44]. Additional variants of PPM have been proposed in [45]–[48].

Recently, there has also been renewed interest in OOK for low-power RF communications, due to the reduced receiver hardware

requirements for noncoherent OOK, as compared to coherent modulations. For example, OOK is used as the Wake-Up Packet

modulation in IEEE 802.11 Wake-Up Radio.

B. Notation

We use capital letters to denote random variables and lowercase letters to denote their realizations: PX(x)=P [X=x] is the

probability that random variable X takes on value x ∈ X for alphabet X . The circumflex notation Ŷ denotes the output of a

quantizer with input Y . We write log x to denote the logarithm in an arbitrary base.

II. SIGNAL MODEL

As shown in Fig. 1, we consider the following signal model: source X∼PX is corrupted by additive noise at each of two

receivers (i=1, 2). The received signals are

Yi = X + Zi, (3)

where Zi∼N (0, σ2
i ) is zero-mean Gaussian noise with variance σ2

i>0. The noise terms Z1 and Z2 are mutually uncorrelated

and uncorrelated with X . The source X is subject to the power constraint

EPX
[X2] ≤ P, (4)

corresponding to a maximum SNR of γi=
P
σ2

i

at receiver i.

A common metric in TDOA applications is the effective input SNR γeff, defined as [49, (11)] 3 4 :

γeff =
γ1γ2

1 + γ1 + γ2
. (5)

When each of the received SNRs is small (γi≪1), the effective input SNR can be approximated as γeff≈γ1γ2. When additionally

the received SNRs are equal (γ1=γ2=γ≪1), the effective input SNR can be approximated as γeff≈γ2. For example, individual

input SNRs of −20 dB correspond to an effective input SNR of approx. −40 dB.

3Note that the definition of effective input SNR in [49] differs by a factor of two compared to the definition in [8].
4Estimation-theoretic bounds such as the Cramer-Rao lower bound on TDOA estimator variance are commonly expressed in terms of the effective output

SNR, which is equal to the effective input SNR multiplied by the processing gain (i.e., the time-bandwidth product) [49].
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Two related quantities are the equivalent noise σ2
eq and the equivalent SNR γeq of the two receivers, defined as

σ2
eq =

(

σ−2
1 + σ−2

2

)−1
, (6)

γeq = P/σ2
eq = γ1 + γ2. (7)

Note that γeff 6=γeq. When σ2
1=σ2

2=σ, we have σ2
eq=

1
2σ

2.

III. SINGLE-RECEIVER ASYMPTOTICS

This section reviews the low-SNR asymptotics of channel capacity for a single receiver. Expressed in terms of the cost

constraint P , the capacity-cost function Ci(P) of the single-receiver channel X−Yi is [3, Thm. 1]

Ci(P) = sup
PX :E[b(X)]≤P

I(X;Yi), (8)

where b:X→[0,∞) is a non-negative cost function.

A. First-Order Asymptotics: Ċi(0)

As shown in [3, Thm. 2], the first-order coefficient is

Ċi(0) = lim
P↓0

Ci(P)

P (9)

= sup
P>0

Ci(P)

P = sup
PX

I(X;Yi)

E[b(X)]
. (10)

When the cost is b(x)=x2, Ċi(0) is referred to as capacity per unit-energy. The main result of [3] is the following:

Theorem 1. [3, Thm. 3] If there is a free input symbol, i.e., b(0)=0, then the capacity per unit-cost of a memoryless channel

is equal to

Ċi(0) = sup
x∈X\0

D
(

PYi|X=x||PYi|X=0

)

b(x)
, (11)

where PYi|X=x denotes the distribution of Yi given that the input is x, and D(P ||Q) is the Kullback-Leibler divergence (i.e.,

relative entropy) between probability distributions P and Q:

D(P ||Q) =

{

∫

log
(

dP
dQ

)

dP, P ≪ Q

+∞, otherwise.
(12)

Whereas (10) requires optimization over input distributions PX in order to compute Ċi(0), (11) requires optimization only

over the non-zero input letters x∈X\0. Further, (11) requires evaluation of the divergence between two conditional output

distributions, which is often simpler to compute than the mutual information. An input distribution parameterized by P is said

to be first-order optimal if the ratio I(X;Yi)/P tends to Ċi(0) as P tends to zero [2, Def. 1]. Capacity-achieving distributions

are first-order optimal by definition. For the real AWGN channel with quadratic cost function b(x)=x2, we have

D(PYi|X=x||PYi|X=0) = (x2 log e)/2σ2
i , (13)

Ċi(0) = (log e)/2σ2
i . (14)

It is well known that Gaussian signaling, i.e., PX∼N (0,P), achieves the AWGN channel capacity Ci(P) and is therefore

first-order optimal. Additionally, the OOK distribution PX defined by

PX(x) =

{

α = P
a2 , x = a

1− α, x = 0
(15)

for any fixed a>0 is also first-order optimal [3]. That is, as power tends to zero by letting the on-probability α tend to zero,

binary inputs can closely approach channel capacity.

B. Second-order Asymptotics: C̈i(0)

The second-order term C̈i(0) is defined as

C̈i(0) = 2 lim
P↓0

Ci(P)− Ċi(0)P
P2

, (16)

which leads to the Taylor series representation (1) of the capacity-cost function for small P , which we re-write here with the

receiver index i made explicit:

Ci(P) = Ċi(0)P +
1

2
C̈i(0)P2 + o(P2). (17)
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IV. CROSS-RECEIVER MUTUAL INFORMATION

As defined earlier, I(Y1;Y2) is the CMI between received signals Y1 and Y2, and can be expressed as:

I(Y1;Y2) =I(X;Y1) + I(X;Y2)− I(X;Y1, Y2) (18)

=D
(

PY1Y2
||PY1Y2|X=0

)

(19)

−D
(

PY1
||PY1|X=0

)

−D
(

PY2
||PY2|X=0

)

,

where PY1Y2
is the joint distribution of Y1 and Y2, and PY1Y2|X=0=PY1|X=0PY2|X=0. The goal of this paper is characterize

I(Y1;Y2) at low SNR for different source distributions, which are assumed to be fixed from the receiver’s perspective. This

is a different objective than other multiuser information theory settings, such as the two-user broadcast channel, in which the

goal may be to determine the achievable rate region in two dimensions. For a given source PX parameterized by P , we define

the mutual-information-cost functions:

Ii(P) = I(X;Yi) i = 1, 2 (20)

I1,2(P) = I(Y1;Y2). (21)

Note that Ii(P) depends on the distribution PX and that Ii(P)≤Ci(P), with equality iff PX is a capacity-achieving input

distribution at power P . Further, there is no analogous term C1,2(P), since the cross-receiver “capacity” is not well-defined.

We define the following CMI series coefficients in the low-power regime:

İi(0) = lim
P↓0

Ii(P)

P (22)

Ïi(0) = 2 lim
P↓0

Ii(P)− İi(0)P
P2

(23)

İ1,2(0) = lim
P↓0

I1,2(P)

P (24)

Ï1,2(0) = 2 lim
P↓0

I1,2(P)− İ1,2(0)P
P2

. (25)

That is, the low-SNR CMI-cost function is approximated as

I1,2(P) = İ1,2(0)P +
1

2
Ï1,2(0)P2 + o(P2). (26)

As we will see in Sec. V, there are a number of source distributions for which İ1,2(0)=0. For these sources, the CMI-cost

function in (26) is

I1,2(P) =
1

2
Ï1,2(0)P2 + o(P2). (27)

V. CMI FOR THE GAUSSIAN NOISE CHANNEL

A. Gaussian Sources

This section considers Gaussian sources: X∼N (0,P). While the capacity per unit-energy is Ċi(0)=(log e)/2σ2
i for each

receiver (i= 1, 2), the CMI per unit-energy is zero:

Theorem 2. For the signaling model in Fig. 1 with Gaussian source X , the CMI per unit-energy between received signals Y1

and Y2 is zero:

İ1,2(0) = lim
P↓0

I(Y1;Y2)

P = 0. (28)

Proof. For Gaussian sources, we have

I(X;Y1, Y2) =
1

2
log (1 + γeq) . (29)

As P tends to zero, we have

lim
P↓0

I(X;Y1, Y2)

P = lim
P↓0

1
2 log

(

1 + P/σ2
eq

)

P (30)

= lim
P↓0

1/σ2
eq

2
(

1 + P/σ2
eq

) log e (31)

=
log e

2σ2
eq

, (32)
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where (31) is by L’Hopital’s rule. Thus, we have

lim
P↓0

I(Y1;Y2)

P = lim
P↓0

I(X;Y1)

P +
I(X;Y2)

P − I(X;Y1, Y2)

P (33)

=
1

2σ2
1

+
1

2σ2
2

−
[

1

2σ2
1

+
1

2σ2
2

]

(34)

= 0. (35)

Thm. 2 can be understood by expressing the Gaussian CMI in terms of the effective SNR defined in (5):

I(Y1;Y2) =
1

2
log (1 + γeff) . (36)

Because the effective SNR γeff can be approximated as γ1γ2=P2/σ2
1σ

2
2 at low SNRs, it follows that the P2 term inside the

log dominates the cost P in the denominator of (28). The non-zero second-order term Ï1,2(0) is:

Theorem 3. For the signaling model in Fig. 1 with Gaussian source X , the second-order term Ï1,2(0) is given by:

Ï1,2(0) = 2 lim
P↓0

I(Y1;Y2)

P2
= log e

∏

i=1,2

1

σ2
i

. (37)

Proof. Consider that

d

dP γeff =
d

dP

(

γ1γ2
1 + γ1 + γ2

)

(38)

=
d

dP

( P2

σ2
1σ

2
2 + P(σ2

1 + σ2
2)

)

(39)

=
2P
(

σ2
1σ

2
2 + P(σ2

1 + σ2
2)
)

− P2(σ2
1 + σ2

2)

[σ2
1σ

2
2 + P(σ2

1 + σ2
2)]

2 (40)

=
2Pσ2

1σ
2
2 + P2(σ2

1 + σ2
2)

[σ2
1σ

2
2 + P(σ2

1 + σ2
2)]

2 (41)

(42)

From (36), we have

lim
P↓0

I(Y1, Y2)

P2
= lim

P↓0

1
2 log (1 + γeff)

P2
(43)

=
log e

2
lim
P↓0

(1 + γ1 + γ2)
d
dP (γeff)

2P (1 + γ1 + γ2 + γ1γ2)
(44)

=
log e

2
lim
P↓0

[

σ2
1σ

2
2 + P(σ2

1 + σ2
2)
]

d
dP (γeff)

2P [σ2
1σ

2
2 + P(σ2

1 + σ2
2) + P2]

(45)

=
log e

2
lim
P↓0

2Pσ2
1σ

2
2 + P2(σ2

1 + σ2
2)

2P [σ2
1σ

2
2 + P(σ2

1 + σ2
2) + P2] [σ2

1σ
2
2 + P(σ2

1 + σ2
2)]

(46)

=
log e

2
lim
P↓0

2σ2
1σ

2
2 + P(σ2

1 + σ2
2)

2 [σ2
1σ

2
2 + P(σ2

1 + σ2
2) + P2] [σ2

1σ
2
2 + P(σ2

1 + σ2
2)]

(47)

=
log e

2σ2
1σ

2
2

, (48)

where (44) is by L’Hopital’s rule.

B. BPSK Sources

This section considers equiprobable, antipodal sources, such as BPSK. The output distribution is given by

PYi
=

1

2
PYi|X=+a +

1

2
PYi|X=−a, (49)

where a2=P . BPSK sources have the same first- and second-order expansion of CMI as Gaussian sources:
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Theorem 4. For the signaling model in Fig. 1 with equiprobable, antipodal source X (e.g., BPSK signaling), the first- and

second-order terms İ1,2(0) and Ï1,2(0) are given by:

İ1,2(0) = lim
P↓0

I(Y1;Y2)

P = 0. (50)

Ï1,2(0) = 2 lim
P↓0

I(Y1;Y2)

P2
= log e

∏

i=1,2

1

σ2
i

. (51)

Proof. Thm. 4 is proved in Appendix A.

C. OOK Sources, Fixed Amplitude

This section considers OOK sources with PX defined in (15). In particular, we fix a>0 and take P↓0 by letting the

on-probability α↓0. Again, the CMI per unit-energy İ1,2(0) is zero:

Theorem 5. For the signaling model in Fig. 1 with OOK source PX defined in (15), with fixed amplitude a>0, the CMI per

unit-energy between received signals Y1 and Y2 is zero:

İ1,2(0) = lim
P↓0

I(Y1;Y2)

P = 0. (52)

Proof. The proof of Thm. 5 uses the following lemma from [3]:

Lemma 1. [3, p. 1023] For any pair of probability measures P and Q such that P ≪ Q,

lim
δ↓0

D (δP + (1− δ)Q||Q)

δ
= 0. (53)

Consider that

PY1
= αPY1|X=a + (1− α)PY1|X=0 (54)

PY2
= αPY2|X=a + (1− α)PY2|X=0 (55)

PY1Y2
= αPY1|X=aPY2|X=a + (1− α)PY1|X=0PY2|X=0. (56)

Application of Lemma 1 gives the following limits:

lim
α↓0

D
(

PY1
||PY1|X=0

)

α
= 0 (57)

lim
α↓0

D
(

PY2
||PY2|X=0

)

α
= 0 (58)

lim
α↓0

D
(

PY1Y2
||PY1Y2|X=0

)

α
= 0. (59)

Putting these together, and observing that the on-probability α and source power P are related as P = αa2 with a>0 fixed,

we have

İ1,2(0) = lim
α↓0

I(Y1;Y2)

α a2
(60)

=
1

a2
lim
α↓0

1

α

{

D
(

PY1Y2
||PY1Y2|X=0

)

−D
(

PY1
||PY1|X=0

)

−D
(

PY2
||PY2|X=0

)}

(61)

=0, (62)

where (61) is from (19).

The main result of this section is Thm. 6, which together with Thm. 3 shows that, at low SNR, the CMI of fixed-amplitude

OOK sources exceeds the CMI of Gaussian sources.
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Theorem 6. For the signaling model in Fig. 1 with OOK source PX defined in (15), with fixed amplitude a>0, the second-order

term Ï1,2(0) is given by:

Ï1,2(0) = 2 lim
P↓0

I(Y1;Y2)

P2
= log e

∏

i=1,2

ea
2/σ2

i − 1

a2
. (63)

Proof. To prove Thm. 6, we will use the following lemma from [2]:

Lemma 2. [2, (162)] For any pair of probability measures P and Q such that P ≪ Q,

lim
δ↓0

D (δP + (1− δ)Q||Q)

δ2
=

log e

2
χ2(P ||Q), (64)

where χ2(P ||Q) is Pearson’s χ2-divergence 5:

χ2(P ||Q) = EQ

[

(

dP

dQ
− 1

)2
]

. (65)

Application of Lemma 2 gives the following limits:

lim
α↓0

D
(

PY1
||PY1|X=0

)

α2
=

log e

2
χ2(PY1|X=a||PY1|X=0) (66)

lim
α↓0

D
(

PY2
||PY2|X=0

)

α2
=

log e

2
χ2(PY2|X=a||PY2|X=0) (67)

lim
α↓0

D
(

PY1Y2
||PY1Y2|X=0

)

α2
(68)

=
log e

2
χ2(PY1|X=aPY2|X=a||PY1|X=0PY2|X=0).

Observing that χ2(P ||Q) = EP

(

dP
dQ

)

− 1, we have

χ2(P1P2||Q1Q2) = EP1P2

(

dP1

dQ1

dP2

dQ2

)

− 1 (69)

= EP1

(

dP1

dQ1

)

EP2

(

dP2

dQ2

)

− 1, (70)

where Pi ≪ Qi and P1P2 ≪ Q1Q2. Therefore,

χ2(P1P2||Q1Q2)− χ2(P1||Q1)− χ2(P2||Q2) (71)

=

[

EP1

(

dP1

dQ1

)

− 1

] [

EP2

(

dP2

dQ2

)

− 1

]

= χ2(P1||Q1)χ2(P2||Q2). (72)

Letting α tend to zero, we have

Ï1,2(0) =
2

a4
lim
α↓0

1

α2

{

D
(

PY1Y2
||PY1Y2|X=0

)

(73)

−D
(

PY1
||PY1|X=0

)

−D
(

PY2
||PY2|X=0

)}

=
log e

a4
χ2(PY1|X=a||PY1|X=0)χ2(PY2|X=a||PY2|X=0). (74)

For the real AWGN channel, the χ2-divergence and second-order term Ï1,2(0) are given by

χ2(PYi|X=x||PYi|X=0) = ex
2/σ2

i − 1, (75)

Ï1,2(0) = log e
∏

i=1,2

(

ea
2/σ2

i − 1
)

a2
. (76)

5The χ2-divergence in (64) has the arguments switched relative to (162) in [2]; [2] appears to have an error in the statement of the lemma, but not in the
proof. That (64) is correct can be verified by inspecting equations (164), (166), and (167) of [2].
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Remarks: Thm. 6 requires fixed amplitude a<∞. Although the ratio ÏOOK
1,2 (0)/ÏGaussian

1,2 (0) is unbounded as a→∞, letting

a→∞ would violate a lemma used in the proof of Thm. 6.

Corollary 1. For the signaling model in Fig. 1, the second-order term Ï1,2(0) of an OOK source PX defined in (15), with

fixed amplitude a>0, is greater than that of a Gaussian source, i.e.,

ÏOOK
1,2 (0) > ÏGaussian

1,2 (0). (77)

Proof. We start with the upper bound on the natural logarithm for x>0:

ln(1 + x) < x (78)

1 + x < ex (79)

x < ex − 1 (80)

a2

σ2
i

< ea
2/σ2

i − 1 (81)

1

σ2
i

<
ea

2/σ2

i − 1

a2
. (82)

Equation (82) is true for i=1, 2, for all positive σ2
i , proving (77) by comparing (63) and (37).

We have shown that Gaussian sources, which are capacity-achieving for single-receiver channels X−Yi, are not optimal in

terms of the second-order CMI coefficient Ï1,2(0). Because the CMI per unit-energy is zero, we have:

Corollary 2. For the signaling model in Fig. 1, as source power P tends to zero, the CMI I1,2(P) of an OOK source PX

defined in (15), with fixed amplitude a>0, is greater than that of a Gaussian source, i.e.,

lim
P↓0

IOOK
1,2 (P)

IGaussian
1,2 (P)

=
∏

i=1,2

ea
2/σ2

i − 1

a2/σ2
i

> 1. (83)

Remarks: While we have shown that Gaussian signaling and BPSK signaling are not optimal in terms of the CMI in the

low-SNR regime, we have not established that fixed-amplitude OOK is necessarily optimal. That is, there may be another

source distribution with CMI exceeding that of OOK.

D. OOK Sources, Fixed Duty Cycle, Vanishing Amplitude

In Sec. V-C, we analyzed OOK sources with fixed source amplitude a and let the average duty-cycle α tend to zero. In this

section, we analyze OOK sources and fix α∈(0, 1), letting power P tend to zero by letting the amplitude a tend to zero, which

is a better model for practical applications with a fixed transmit waveform (i.e., constant duty cycle). For example, received

power may vanish due to propagation loss as the transmitter-receiver distance increases.

Theorem 7. For the signaling model in Fig. 1 with OOK source PX defined in (15), with fixed on-probability α∈(0, 1), the

first- and second-order terms İ1,2(0) and Ï1,2(0) are given by:

İ1,2(0) = lim
P↓0

I(Y1;Y2)

P = 0, (84)

Ï1,2(0) = 2 lim
P↓0

I(Y1;Y2)

P2
= log e

∏

i=1,2

(1− α)

σ2
i

. (85)

Proof. Thm. 7 is proved in Appendix B.

Comparing to Thm. 3 for Gaussian sources, we see that fixed-duty OOK sources are strictly worse than Gaussian sources

in terms of the second-order coefficient, with the ratio ÏOOK
1,2 (0)/ÏGaussian

1,2 (0)=(1 − α)2<1. For sufficiently small α, however,

the difference is negligible. Numerical examples are provided in the next section.
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X
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Zi ෠𝑌𝑖
(a) Signal Model for Receiver i (i=1, 2) with 1-bit Quantization

෠𝑌1 ෠𝑌2Y
2

Y
1

X

(b) Markov Chain

Fig. 2. (a) Signal model showing additive noise and quantization at receiver i and (b) Markov chain representation of transmitted and received signals.

E. OOK Sources, Fixed Duty Cycle, Finite Amplitude

Sec. V-C has established the asymptotic superiority of fixed-amplitude OOK versus Gaussian signaling in terms of CMI,

while Sec. V-D has shown that fixed-on-probability OOK is strictly worse than Gaussian signaling. However, it’s not clear from

the asymptotic analysis how fixed-on-probability OOK and Gaussian signaling compare at small, but non-vanishing SNRs. This

section considers OOK sources with PX defined in (15), again with fixed on-probability α∈(0, 1
2 ), varying P by varying the

amplitude a. Numerical results in this section show that for a sufficiently small duty cycle (α≪1), there exist a wide range of

source powers P>0 such that IOOK
1,2 (P)>IGaussian

1,2 (P), in stark contrast to the asymptotic conclusion of Sec. V-D.

To facilitate numerical evaluation of the CMI at low SNR, instead of evaluating I(Y1, Y2), we evaluate the the CMI I(Ŷ1, Ŷ2)
of the 1-bit quantized signals Ŷ1 and Ŷ2, defined as

Ŷi =

{

1, Yi ≥ ∆i

0, Yi < ∆i,
(86)

where ∆i is a receiver-specific quantization threshold. For simplicity, we will assume that the quantization thresholds are

symmetric with respect to the source values 0 and a, i.e., ∆i=
a
2 . As a result, the conditional “error” probabilities ǫi of the

quantizers are symmetric:

ǫi = PYi|X=a(0) = PYi|X=0(1) = Q

(

a

2σi

)

, (87)

where Q(u)= 1√
2π

∫∞
u

e−
t2

2 dt is the tail of the standard normal distribution.6

Fig. 3 compares the CMI of Gaussian signaling with the CMI of OOK as a function of source power, for multiple values

of the OOK on-probability α. All curves in this figure assume σ2
1=1/100, σ2

2=1. For Gaussian sources, Fig. 3 includes the

single-receiver MI I(X;Yi) and the CMI I(Y1;Y2). For each OOK curve in the figure, corresponding to a different value of

α, the SNR γi=P/σ2
i=αa2/σ2

i is varied by adjusting the amplitude a. Note that the CMI is displayed on the vertical axis

using a logarithmic scale.

As the average power decays to zero, we observe that there is a wide range of powers P such that the 1-bit quantized OOK

CMI I(Ŷ1; Ŷ2) is approximately constant before dropping off, particularly for small values of α. For each α, denote γmin(α)
as the minimum SNR for which I(Ŷ1; Ŷ2) is approximately constant. Markers in the OOK curves indicate the power levels

for which SNR γi=γmin(α). For example, when α=10−6, I(Ŷ1; Ŷ2)≈2.1 × 10−5 for all SNRs above γmin(10
−6)≈−39 dB.

Approximations for this constant CMI level and the minimum SNR γmin(α) are described by the following proposition:

Similar to Fig. 3, Fig. 4 compares the CMI of Gaussian signaling with the CMI of OOK as a function of source power,

but with equal noise powers: σ2
1=σ2

2=1. For Gaussian sources, Fig. 4 additionally includes the 1-bit quantized CMI I(Ŷ1; Ŷ2)
corresponding to symmetric quantization thresholds ∆i=0.

Again, there is a wide range of powers P such that the 1-bit quantized OOK CMI I(Ŷ1; Ŷ2) is approximately constant. By

Prop. 1, as long as γi≥γOOK
min (α), I(Ŷ1; Ŷ2)≈HB(α).

Proposition 1. The CMI I(Ŷ1; Ŷ2) of an OOK source PX defined in (15), with fixed on-probability α≪1, can be approximated

as

I(Ŷ1; Ŷ2) ≈ HB(α), (88)

where HB(α) is the binary entropy:

HB(α) = −α logα− (1− α) log(1− α), (89)

6From the Markov chain Ŷ1−Y1−X−Y2−Ŷ2, we observe that I(Y1;Y2)≥I(Ŷ1; Ŷ2) by the Data Processing Inequality. Therefore, results in this section

using I(Ŷ1; Ŷ2) may be pessimistic, in the sense that the OOK CMI I(Y1;Y2) is not explicitly evaluated. Additionally, the symmetric-threshold restriction

may further degrade I(Ŷ1; Ŷ2) with respect to optimal quantization.
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Fig. 3. Comparison of cross-receiver mutual information (CMI) for Gaussian sources and OOK sources, assuming different noise variances: σ2

1
=1/100, σ2

2
=1.

OOK sources are parameterized by the on-probability α. Markers in the OOK curves indicate the minimum power POOK
min

(α) for which I(Ŷ1; Ŷ2)≈HB(α).

whenever the SNRs γi at each receiver (i=1, 2) are greater than or equal to γOOK
min (α):

γOOK
min (α) = −8α ln

α

r
, (90)

for some constant r ≫ 1.

Proof. Defining ti=α(1− 2ǫi) and t12=α(1− ǫ1 − ǫ2), the CMI of the 1-bit quantized signals Ŷ1 and Ŷ2 is

I(Ŷ1; Ŷ2) = H(Ŷ1) +H(Ŷ2)−H(Ŷ1, Ŷ2) (91)

=HB (ǫ1 + t1) +HB (ǫ2 + t2) (92)

+ [ǫ1ǫ2 + t12] log[ǫ1ǫ2 + t12]

+ [(1− ǫ1)(1− ǫ2)− t12] log[(1− ǫ1)(1− ǫ2)− t12]

+ [α(ǫ1 − ǫ2) + ǫ2(1− ǫ1)] log[α(ǫ1 − ǫ2) + ǫ2(1− ǫ1)]

+ [α(ǫ2 − ǫ1) + ǫ1(1− ǫ2)] log[α(ǫ2 − ǫ1) + ǫ1(1− ǫ2)].

Assume now that ǫi ≪ α for both i=1 and i=2. In this region, I(Ŷ1; Ŷ2) is dominated by the first four terms on the

right-hand size of (92); the final two terms vanish. We can approximate the CMI as

I(Ŷ1; Ŷ2) ≈HB (ǫ1 + t1) +HB (ǫ2 + t2) (93)

−HB (ǫ1ǫ2 + t12)

≈HB(α). (94)

Suppose we specifically have ǫi≤α
r for some r≫1, for both receivers (i=1, 2). What is the minimum SNR γOOK

min (α) required

to achieve ǫi≤α
r ? Consider that

ǫi = Q

(

a

2σi

)

(95)

= Q

(

1

2

√

γi
α

)

(96)

≤ e−γi/8α, (97)



12

where (97) is by the Chernoff bound for the Q-function. By setting γi greater than or equal to γOOK
min (α)=−8α ln α

r , we have

γi
8α

≥ − ln
α

r
(98)

e−γi/8α ≤ α

r
. (99)

By (97), we have guaranteed that ǫi ≤ α
r≪α. As a result, I(Ŷ1; Ŷ2)≈HB(α).

Since we require that γi≥γOOK
min (α) for both receivers in order for the approximation of Prop. 1 to be valid, the relationship

between the minimum SNR γOOK
min (α) and the minimum power POOK

min (α) is given by

POOK
min (α) = max{σ2

1 , σ
2
2} γOOK

min (α). (100)

The OOK markers in the figure indicate the minimum power POOK
min (α) at which OOK CMI can be approximated as

I(Ŷ1; Ŷ2)≈HB(α). Consider the curve formed by all coordinates (POOK
min (α), HB(α)) as α tends to zero, i.e., the envelope of

the individual OOK(α) CMI curves. Using the approximation for γOOK
min (α) in Prop. 1, it can be shown that the slope of this

envelope is equal to the slope of the Gaussian source input-output mutual information curve. (Note the figure uses a log-log

scale.) Gaussian sources are first-order optimal and in the low-power regime have input-output mutual information linear in

source power: Ii(P)=O(P). As a result, the envelope of the OOK CMI curves is also linear in source power, as shown in the

following proposition.

Proposition 2. The family of fixed-on-probability OOK sources parameterized by α has CMI curves I(Ŷ1; Ŷ2) vs. power P
whose envelope (POOK

min (α), I1,2(POOK
min (α)) as α tends to zero can be approximated as

I1,2
(

POOK
min (α)

)

= O
(

POOK
min (α)

)

. (101)

Before proving Prop. 2, we first state the following lemma:

Lemma 3. Let r > 0 be a constant. Then

lim
α↓0

HB(α)

−α ln α
r

= log e (102)

Proof.

lim
α↓0

HB(α)

−α ln α
r

= (log e) lim
α↓0

−α lnα− (1− α) ln(1− α)

−α lnα+ α ln r
(103)

= (log e) lim
α↓0

−1/α− 1/(1− α)

−1/α
(104)

= log e (105)

where (104) follows from applying L’Hopitals rule twice.

Proof of Prop. 2. To show that the OOK CMI curves’ envelope is linear in source power, we need to show that

lim
α↓0

I1,2(POOK
min (α))

POOK
min (α)

= c (106)

for some constant c>0. By the approximation in Prop. 1,

lim
α↓0

I1,2(POOK
min (α))

POOK
min (α)

≈ 1

max{σ2
1 , σ

2
2}

lim
α↓0

HB(α)

γOOK
min (α)

(107)

=
1

max{σ2
1 , σ

2
2}

lim
α↓0

HB(α)

−8α ln α
r

(108)

=
log e

8max{σ2
1 , σ

2
2}

, (109)

where (109) is by Lemma 3.

Thm. 7 shows that for a given on-probability α, OOK CMI in the low-power regime is quadratic in source power. Further,

the (1 − α)2 constant in Thm. 7 makes fixed-α OOK source worse than Gaussian sources in terms of CMI. Remarkably,

however, Prop. 2 shows that the family of fixed-α OOK CMI curves has an envelope that is linear in source power. Whereas
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the CMI of Gaussian sources can be described by the effective SNR γeff≈P2/σ2
1σ

2
2 as in (36), effective SNR is only an accurate

description of OOK CMI for a fixed α when the individual SNRs γ1 and γ2 are well below the minimum SNR γOOK
min (α).

Effective SNR is not meaningful when OOK SNRs are above γOOK
min (α).

The remainder of this section further compares the CMI of OOK and Gaussian sources. From Fig. 4, we see that although

there is a range of SNRs for which the OOK source CMI is greater than the Gaussian source CMI, as SNR increases, eventually

the Gaussian source CMI surpasses the OOK CMI. What is the minimum SNR γGaussian
min (α) for a Gaussian source to outperform

an OOK(α) source in terms of CMI? Since IOOK(Ŷ1; Ŷ2)≈HB(α), we must figure out when IGaussian(Y1;Y2)≥HB(α). That

is, we define the minimum SNR γGaussian
min (α) as

γGaussian
min (α) = min{γ > 0 : IGaussian

1,2 (P) ≥ HB(α)}. (110)

where we’ve assumed equal receiver SNRs: γ1=γ2=γ. Note that while the statistics of the Gaussian source do not depend on

α, the term γGaussian
min (α) is parameterized by α because it is comparing the Gaussian source relative to the OOK(α) source.

From Thms. 2 and 3 in Sec. V-A, the Gaussian-source CMI is approximated in the low-SNR regime as

IGaussian
1,2 (P) ≈ log e

2σ2
1σ

2
2

P2 (111)

=
log e

2
γ2. (112)

when γ1=γ2= γ. We set the minimum SNR according to

log e

2

(

γGaussian
min (α)

)2
= HB(α) (113)

γGaussian
min (α) =

√

2
HB(α)

log e
. (114)

Therefore, as long as γi≥γGaussian
min (α), we have IGaussian

1,2 (P)≥HB(α)≈IOOK
1,2 (P).

The following proposition describes the relationship between γGaussian
min (α) and γOOK

min (α) as α tends to zero:

Proposition 3. We observe the following scaling of the minimum SNRs as the on-probability α tends to zero:

lim
α↓0

γGaussian
min (α)

γOOK
min (α)

= ∞ (115)

lim
α↓0

(

γGaussian
min (α)

)2

γOOK
min (α)

=
1

4
. (116)

Remarks: Prop. 3 indicates that as the on-probability vanishes, Gaussian signaling requires infinitely greater SNR to match

or outperform OOK in terms of CMI. However, the ratio of the squared minimum Gaussian-source SNR to the minimum OOK

SNR is constant.

Proof. Consider that as α tends to zero, we have

HB(α) = (log e) [−α lnα− (1− α) ln(1− α)] (117)

≈ −(log e)α lnα. (118)

To prove (115), we have

lim
α↓0

γGaussian
min (α)

γOOK
min (α)

= lim
α↓0

√

2HB(α)/ log e

−8 α ln α
r

(119)

=

√
2

8
lim
α↓0

√

HB(α)/ log e

−α ln α
r

(120)

=

√
2

8
lim
α↓0

√
−α lnα

−α ln α
r

(121)

= +∞. (122)

Thus, as α tends to zero, the ratio γGaussian
min (α)/γOOK

min (α) behaves as
√
2/(8

√
−α lnα).

To prove (116):

lim
α↓0

(

γGaussian
min (α)

)2

γOOK
min (α)

=
1

4
lim
α↓0

HB(α)/ log e

−α ln α
r

(123)

=
1

4
. (124)
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sources are parameterized by the on-probability α. Markers in the OOK curves indicate the minimum power POOK
min

(α) for which I(Ŷ1; Ŷ2)≈HB(α).

where in (124) we have used Lemma 3.

VI. CONCLUSION

Motivated by distributed, passive receiver applications with low-SNR, we defined the CMI-cost function I1,2(P) in terms of

its first- and second-order series coefficients. Focusing on the AWGN channel, we evaluated these coefficients for three source

distributions: Gaussian, BPSK, and OOK sources. For all three distributions, the first-order CMI coefficient is zero, indicating

that CMI is quadratic in the source power P . Gaussian and BPSK sources have the same second-order coefficient, which is

less than the second-order coefficient for fixed-amplitude OOK sources, regardless of amplitude. For OOK sources with fixed

on-probability, however, the asymptotic analysis indicates that the CMI of OOK sources is less than that of Gaussian sources. At

small but non-zero SNRs, fixed-on-probability OOK sources have approximately constant CMI vs. SNR, which for sufficiently

small on-probability can be much greater than the CMI of Gaussian sources. Further, in the limit of zero on-probability, the

envelope of all fixed-on-probability OOK CMI curves is linear in source power, instead of quadratic. This indicates that the

effective input SNR, while common in the TDOA estimation literature for Gaussian sources, may be misleading for OOK

sources, depending on the individual receivers’ SNRs. Due to the ability of CMI to capture arbitrary statistical dependences,

CMI-based receiver processing techniques should be investigated for specific distributed inference problems.
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APPENDIX

A. Proof of Thm. 4

This section proves Thm. 4, which establishes the first- and second-order series coefficients İ1,2(0) and Ï1,2(0) for equiprob-

able, antipodal signaling (e.g., BPSK).
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Proof. BPSK signaling on the Gaussian channel has the following KL divergences:

D(PYi
||PYi|X=0) =EPYi

[

log
1
2dPYi|X=+a +

1
2dPYi|X=−a

dPYi|X=0

]

=EPYi

[

log cosh
aYi

σ2
i

]

− a2

2σ2
i

(125)

D(PY1Y2
||PY1Y2|X=0) =EPY1Y2

[

log cosh a

(

Y1

σ2
1

+
Y2

σ2
2

)]

− a2

2σ2
1

− a2

2σ2
2

. (126)

To compute the KL divergences, consider the following Taylor series expansions:

cosh ab = 1 +
1

2
a2b2 +

1

4!
a4b4 + o(a4) (127)

= 1 + f(a) + o(a4) (128)

loge cosh ab =

∞
∑

k=1

(−1)k+1

k
[cosh ab− 1]

k
(129)

=

∞
∑

k=1

(−1)k+1

k

[

f(a) + o(a4)
]k

(130)

= [f(a) + o(a)]− 1

2

[

f(a) + o(a4)
]2

+ o(a4) (131)

= f(a)− 1

2
f(a)2 + o(a4) (132)

=
1

2
a2b2 − 1

12
a4b4 + o(a4), (133)

where in (128) we have defined f(a)= 1
2a

2b2 + 1
4!a

4b4, and where in (131)-(133) we have included only the terms that are of

order 4 or less in a. With some algebra, it can be shown that

D(PYi
||PYi|X=0) = (log e)

a4

4σ4
i

+ o(a4), (134)

D(PY1Y2
||PY1Y2|X=0) = (log e)

a4

4σ4
eq

+ o(a4), (135)

where

1

σ4
eq

=

(

1

σ2
1

+
1

σ2
2

)2

(136)

=
1

σ4
1

+
1

σ4
2

+
2

σ2
1σ

2
2

(137)

Therefore, the CMI is given by

I(Y1;Y2) = (log e)

(

a4

4σ4
eq

− a4

4σ4
1

− a4

4σ4
2

+ o(a4)

)

(138)

= (log e)

(

a4

2σ2
1σ

2
2

+ o(a4)

)

(139)

Taking the limit of (139) as a2=P tends to zero, we obtain the CMI series coefficients:

İ1,2(0) = lim
a↓0

I(Y1;Y2)

a2
(140)

= 0 (141)

Ï1,2(0) = 2 lim
a↓0

I(Y1;Y2)

a4
(142)

=
log e

σ2
1σ

2
2

. (143)



16

B. Proof of Thm. 7

This section proves Thm. 7, which establishes the first- and second-order series coefficients İ1,2(0) and Ï1,2(0) for OOK

with fixed on-probability α ∈ (0, 1) and vanishing amplitude a.

Proof. Consider a random vector Y=(Y1, . . . , Yn) distributed according to

QY = αQa + (1− α)Q0, (144)

where we have denoted the conditional probability distribution QY |X=x=Qx. Using the Taylor series expansion for the natural

logarithm:

loge(1 + x) =

∞
∑

k=1

(−1)k+1xk

k
, |x| < 1. (145)

we can write the KL divergence D(Q||Q0) in nats as

D(Q||Q0) = EQY

[

loge

(

1 + α

(

Qa(Y )

Q0(Y )
− 1

))]

(146)

= EQY

[ ∞
∑

k=1

(−1)k+1

k
αk

(

Qa(Y )

Q0(Y )
− 1

)k
]

(147)

=

∞
∑

k=1

(−1)k+1

k
αkEPY

(

Qa(Y )

Q0(Y )
− 1

)k

(148)

=
∞
∑

k=2

(−1)k+1

k

(

αk+1χk+1(Qa||Q0) + αkχk(Qa||Q0)
)

(149)

=

∞
∑

k=2

(−1)kαk

k(k − 1)
χk(Qa||Q0), (150)

where (149) is from the following observation:

EPY

(

Qa(Y )

Q0(Y )
− 1

)k

(151)

=α EQa

(

Qa(Y )

Q0(Y )
− 1

)k

+ (1− α) EQ0

(

Qa(Y )

Q0(Y )
− 1

)k

=α χk+1(Qa||Q0) + χk(Qa||Q0). (152)

The chi-divergence χk(Qa||Q0) can be expressed in terms of the moment-generating function as follows:

χk(Qa||Q0) = EQ0

(

Qa(Y )

Q0(Y )
− 1

)k

(153)

=

k
∑

ℓ=0

(

k

ℓ

)

(−1)k−ℓEQ0

(

Qa(Y )

Q0(Y )

)ℓ

(154)

= (−1)k+1(k − 1) +
k
∑

ℓ=2

(

k

ℓ

)

(−1)k−ℓEQ0

(

Qa(Y )

Q0(Y )

)ℓ

(155)

= (−1)k+1(k − 1) +

k
∑

ℓ=2

(

k

ℓ

)

(−1)k−ℓEQa

(

Qa(Y )

Q0(Y )

)ℓ−1

, (156)

where (155) follows because EQ0

(

Qa(Y )
Q0(Y )

)ℓ

= 1 for ℓ=0, 1.
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Conditioned on the source value x, the joint conditional probability distribution Qx can be written as a product of marginal

conditional probability distributions:

Qx =

n
∏

i=1

QYi|X=x (157)

Qa(Y )

Q0(Y )
=

n
∏

i=1

QYi|X=a(Yi)

QYi|X=0(Yi)
(158)

=

n
∏

i=1

e−a2/2σ2

i eayi/σ
2

i (159)

(

Qa(Y )

Q0(Y )

)ℓ

=

n
∏

i=1

e−ℓa2/2σ2

i eℓaYi/σ
2

i , (160)

where (159) is the ratio of conditional densities particularized to the Gaussian channel: QYi|X=x ∼ N (x, σ2
i ).

Because the Yi are independent when conditioned on X=a, the expectation with respect to Qa can be written as the product

of expectations with respect to QYi|X=a:

EQa

(

Qa(Y )

Q0(Y )

)ℓ

=
n
∏

i=1

EQYi|X=a

(

e−ℓa2/2σ2

i eℓaYi/σ
2

i

)

(161)

=
n
∏

i=1

e−ℓa2/2σ2

i EQYi|X=a

(

eℓaYi/σ
2

i

)

(162)

=

n
∏

i=1

e−ℓa2/2σ2

i MQYi|X=a

(

ℓa

σ2
i

)

(163)

=

n
∏

i=1

exp

{

− ℓa2

2σ2
i

+
ℓa2

σ2
i

+
ℓ2a2

2σ2
i

}

(164)

=

n
∏

i=1

exp

{

a2

σ2
i

ℓ(ℓ+ 1)

2

}

(165)

= exp

{

ℓ(ℓ+ 1)

2

n
∑

i=1

a2

σ2
i

}

, (166)

where the individual expectations have been expressed in (163) in terms of the moment-generating function M(t):

MQYi|X=a
(t) = EQYi|X=a

(

etYi
)

(167)

= eateσ
2

i t
2/2. (168)

Putting this together with (156), we have

χk(Qa||Q0) =(−1)k+1(k − 1) + (169)

k
∑

ℓ=2

(

k

ℓ

)

(−1)k−ℓ exp

{

ℓ(ℓ− 1)

2

n
∑

i=1

a2

σ2
i

}

.

Application of (169) to the distributions PY1,Y2
, PY1

, and PY2
yields the following result:

χk(PY1,Y2|X=a||PY1,Y2|X=0) (170)

− χk(PY1|X=a||PY1|X=0)− χk(PY2|X=a||PY2|X=0)

=(−1)k(k − 1)

+

k
∑

ℓ=2

(

k

ℓ

)

(−1)k−ℓ(rℓ − 1), (171)

=

k
∑

ℓ=2

(

k

ℓ

)

(−1)k−ℓrℓ, (172)
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where in (171) we have defined

rℓ =1 + exp

{

ℓ(ℓ− 1)

2

(

a2

σ2
1

+
a2

σ2
2

)}

(173)

− exp

{

ℓ(ℓ− 1)

2

a2

σ2
1

}

− exp

{

ℓ(ℓ− 1)

2

a2

σ2
2

}

=
∏

i=1,2

(

exp

{

ℓ(ℓ− 1)

2

a2

σ2
i

}

− 1

)

(174)

=
∏

i=1,2

(

exp
{

cℓ,ia
2
}

− 1
)

, (175)

where in (175) we have defined cℓ,i=
ℓ(ℓ−1)
2σ2

i

.

Substituting (172) into (150) and using an arbitrary base for the logarithm, we have

I(Y1;Y2) = D(PY1,Y2
||PY1,Y2|X=0) (176)

−D(PY1
||PY1|X=0)−D(PY2

||PY2|X=0)

=(log e)
∞
∑

k=2

(−1)kαk

k(k − 1)

k
∑

ℓ=2

(

k

ℓ

)

(−1)k−ℓrℓ, (177)

=(log e)

∞
∑

k=2

k
∑

ℓ=2

(−1)ℓαk

k(k − 1)

(

k

ℓ

)

rℓ, (178)

Fixing α ∈ (0, 1), we can take the limit as P ↓ 0 by letting a ↓ 0. The first- and second-order terms can be expressed in

terms of the following:

İ1,2(0) = lim
a↓0

I(Y1;Y2)

αa2
(179)

Ï1,2(0)

2
= lim

a↓0

I(Y1;Y2)− İ1,2(0)αa
2

α2a4
. (180)

Introducing the index m to cover the cases that m=1, 2, we obtain the following limit:

lim
a↓0

I(Y1;Y2)

αma2m
= lim

a↓0
log e

∞
∑

k=2

k
∑

ℓ=2

(−1)ℓαk−m

k(k − 1)a2m

(

k

ℓ

)

rℓ (181)

= log e lim
a↓0

∞
∑

k=2

k
∑

ℓ=2

(−1)ℓαk−m

k(k − 1)

(

k

ℓ

)

∏

i=1,2

ecℓ,ia
2 − 1

am
(182)

= log e

∞
∑

k=2

k
∑

ℓ=2

(−1)ℓαk−m

k(k − 1)

(

k

ℓ

)

lim
a↓0

∏

i=1,2

ecℓ,ia
2 − 1

am
, (183)

= log e

∞
∑

k=2

k
∑

ℓ=2

(−1)ℓαk−m

k(k − 1)

(

k

ℓ

)

∏

i=1,2

lim
a↓0

ecℓ,ia
2 − 1

am
, (184)

where the individual limits for receiver i are

lim
a↓0

ecℓ,ia
2 − 1

am
=

{

0, m = 1

cℓ,i, m = 2.
(185)

As a result, the first-order term (using m=1) is İ1,2(0)=0, so we can ignore the İ1,2(0) term in (180). The second-order
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term (using m=2) is

Ï1,2(0)

2 log e
=

∞
∑

k=2

k
∑

ℓ=2

(−1)ℓαk−2

k(k − 1)

(

k

ℓ

)

∏

i=1,2

cℓ,i (186)

=
1

σ2
1σ

2
2

∞
∑

k=2

k
∑

ℓ=2

(−1)ℓαk−2

k(k − 1)

(

k

ℓ

)(

ℓ

2

)2

(187)

=
1

σ2
1σ

2
2

4
∑

k=2

(−1)kαk−2

k(k − 1)

k
∑

ℓ=2

(−1)k−ℓ

(

k

ℓ

)(

ℓ

2

)2

(188)

=
1

σ2
1σ

2
2

(

1

2
− 6α

6
+

6α2

12

)

(189)

=
(1− α)2

2σ2
1σ

2
2

(190)

Ï1,2(0) =
(1− α)2

σ2
1σ

2
2

log e, (191)

where (188) is due to the following fact, from [50, (3)]

k
∑

ℓ=2

(−1)k−ℓ

(

k

ℓ

)(

ℓ

2

)2

= 0, k > 4, (192)

since
(

ℓ
2

)2
is a polynomial in ℓ of degree 4.

It is also interesting to note that fixed-α OOK is not first-order optimal on the Gaussian noise channel. It can be shown using

the above approach that İi(0)=(1−α) log e
2σ2

i

, which is strictly less than Ċi(0)=
log e
2σ2

i

, since α>0. Still, the first-order coefficient

of the CMI is zero: İ1,2(0)=0.
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