NASA Technical Memorandum 87656

NASA-TM-87656 19860013081

Low-Speed Wind-Tunnel Tests of Single- and Counter-Rotation Propellers

Dana Morris Dunham, Garl L. Gentry, Jr., and Paul L. Coe, Jr.

LIDRARY COPY

APRIL 1986

LANGLEY RESEARCH CENTER LIDRARY, NASA HAMPTON, ADDINA

NOT TO BE TAKEN FROM THIS BOOM

Low-Speed Wind-Tunnel Tests of Single- and Counter-Rotation Propellers

Dana Morris Dunham, Garl L. Gentry, Jr., and Paul L. Coe, Jr. Langley Research Center Hampton, Virginia

and Space Administration

Scientific and Technical Information Branch

SUMMARY

A low-speed (Mach 0 to 0.3) wind-tunnel investigation was conducted to determine the basic performance, force and moment characteristics, and flow-field velocities of single- and counter-rotation propellers. The results for advance ratios from 0.7 to 2.3 show that the maximum efficiency for the eight-blade single-rotation propeller occurred when the propeller blade-section angle of attack was between 7.5° and 9.6°. Compared with the eight-blade, single-rotation propeller, a four- by four- (4×4) blade counter-rotation propeller with the same blade design produced substantially higher thrust coefficients for the same blade angles and advance ratios. The results further indicated that ingestion of the wake from a supporting pylon for a pusher configuration produced no significant change in the propeller thrust performance for either the single- or counter-rotation propellers.

Comparisons of the normal and side forces produced by the propeller systems inclined at an angle of attack relative to the free-stream flow show that the counter-rotation propeller produced much lower values of side force and substantially higher values of normal force than the single-rotation propeller.

A two-component laser velocimeter (LV) system was used to make detailed measurements of the propeller flow fields. Results show increasing slipstream velocities with increasing blade angle and decreasing advance ratio. Flow-field measurements for the counter-rotation propeller show that the rear propeller turned the flow in the opposite direction from the front propeller and, therefore, could eliminate the swirl component of velocity, as would be expected.

INTRODUCTION

Several aircraft design studies have shown that advanced turboprop-powered aircraft have the potential for significant fuel savings when compared with turbofanpowered aircraft operating under similar conditions (ref. 1). These studies have indicated that both wing- and aft-fuselage-mounted turboprop configurations appear feasible, but that there are many technical uncertainties associated with these designs.

An important design consideration is the selection of either single- or counterrotation propellers. Counter-rotation propellers are of interest for both pusher and tractor configurations because of their potential for higher efficiency due to recovery of the energy lost to slipstream swirl. Propeller configuration selection will depend on trade-offs between acoustics, weights, and aerodynamics of the engine installation.

Although there have been decades of experience with propeller-driven aircraft, this experience has been obtained for configurations that operated at lower cruise speeds and used propellers having significantly lower power loadings than those presently being considered. Aside from the questions of propeller performance and efficiency, there is considerable uncertainty regarding the impact of a high-diskloading turboprop installation on aircraft stability and control during the takeoff, climb, and approach phases of flight. This investigation was conducted to provide baseline information regarding the performance, force and moment characteristics, and flow fields of isolated singleand counter-rotation turboprop/nacelles over an angle-of-attack range from 0° to 20° for a range of advance ratios from 0.7 to 2.3. The tests were conducted in the Langley 4- by 7-Meter Tunnel for a range of Reynolds numbers (based on propeller blade chord) from 0.15×10^6 to 0.48×10^6 .

SYMBOLS

All data have been reduced to coefficient form and are presented in the body axis system shown in figure 1. Symbols used for computerized data listings are given in parentheses.

C _N	(CNF)	normal-force coefficient, $F_N/q_{\infty}S$
	(CPM)	pitching-moment coefficient, $M_{ m Y}/q_{\infty}^{}Sd$
c _n	(CYM)	yawing-moment coefficient, $M_{ m Z}/q_{\infty}^{ m Sd}$
CP	(CP)	power coefficient, $P/\rho n^3 d^5 = 2\pi C_Q$
c _Q		torque coefficient, $Q/\rho n^2 d^5$
	(CRM)	rolling-moment coefficient
C _T	(CT)	thrust coefficient, $T/\rho n^2 d^4$
с _ұ	(CSF)	side-force coefficient, $F_{Y}/q_{\infty}S$
d		propeller diameter, ft
F _N		normal force, lbf
FY		side force, lbf
J	(J)	propeller advance ratio, V_{∞} /nd
м _Y		pitching moment, ft-lbf
MZ		yawing moment, ft-lbf
n		propeller rotational speed, rps
P		power, hp
Q		torque, ft-lbf
d^{∞}		free-stream dynamic pressure, psf
R		propeller radius, d/2, ft
r		radial distance measured from axis of rotation
S		propeller disk area, ft ²
2		

т	thrust force, lbf
u	axial velocity, fps
V _∞	free-stream velocity, fps
v	radial velocity, fps
w	tangential velocity, fps
x	axial distance
^a b.75	blade-section local angle of attack at station 0.75R
α_n (Alpha)	angle of attack of nacelle, deg
^β .75	geometric blade angle defined at station 0.75R, deg
β _n	angle of sideslip of nacelle, deg
η	propeller efficiency, JC _T /C _P
ρ	free-stream density, slugs/ft ³
φ	<pre>swirl angle, tan⁻¹(w/u), deg</pre>
^{\$,75}	geometric swirl angle defined at station 0.75R (see fig. 21)
Abbreviations:	
CR	counter rotation
CRP,P	counter-rotation pusher, pylon mounted
CRT,S	counter-rotation tractor, sting mounted
LV	laser velocimeter
SR	single rotation
SRP,P	single-rotation pusher, pylon mounted
SRT,S	single-rotation tractor, sting mounted

MODEL

The dimensional characteristics of the nacelle used with the single- and counter-rotation propellers are listed in table I and shown in figure 2. All propeller blades tested were an SR-2 design jointly developed by Hamilton Standard and the NASA Lewis Research Center. The planform and twist distribution for the SR-2 propeller blades are available in reference 2. The hubs for both the single-rotation (SR) and counter-rotation (CR) systems permitted operation with two-, four-, or eight-blade propellers over a range of blade reference angles from -2° to 60°. The blade reference angle $\beta_{.75}$ is the angle between the plane of rotation and the blade zero-lift line measured at the 0.75 blade radius. The single-rotation propeller was 1.408 ft in diameter and the counter-rotation propeller was 1.342 ft in diameter.

The propellers were powered by a 29-hp (at 10 000 rpm) water-cooled electric motor housed in a nacelle having a maximum outside diameter of 6 in. There were two different front ends for the nacelle (table I): the first for use with the singlerotation propeller and the second for use with the counter-rotation propeller and its gearbox. The single-rotation propeller rotated clockwise looking upstream. The gearbox for the counter-rotation system contained a spider gear system consisting of two gears and two pinions to drive the rear propeller in the opposite direction from the front propeller and at the same rotational speed. The front propeller was driven clockwise looking upstream, and the rear propeller was driven counterclockwise. The spacing between the front and rear propellers was 2.31 in.

There were two different mounting arrangements for the nacelle: a sting mount (with a fairing from the nacelle to the sting) and a pylon mount (in which the nacelle was attached to an airfoil-shaped pylon that attached to the sting via an adapter), as shown in figure 3. The pylon mount permitted the propeller to be tested in the pusher configuration. The pylon had a tapered planform with an NACA 0012 airfoil section. The chord length of the pylon at the nacelle was 12.5 in. Ordinates for the nacelle sting adapter and the nacelle aft fairing, which was used with the pylon-mounted configurations, are provided in table I. A six-component strain-gauge balance was mounted at the locations shown in figure 2 and was used to measure aerodynamic forces and moments.

FACILITY

The tests were conducted in the Langley 4- by 7-Meter Tunnel, which has a closed test section measuring 14.50 ft high, 21.75 ft wide, and 50 ft long. This is a closed-circuit atmospheric wind tunnel allowing open or closed test-section operation, and it is described in detail in reference 3. Tests using the 12-W argon-ion laser velocimeter (LV) described in reference 3 were conducted in the open test-section configuration with the LV system located outside the tunnel-flow shear layer, as shown in the test-section plan view in figure 4. The entire optics package for the LV, which operates in 180° backscatter mode, is mounted on the x-y traversing platform shown in figure 5. The LV data acquisition system can simultaneously acquire two channels of LV data and one channel of auxiliary data. Because the propeller/nacelle system was axisymmetric, the two-component LV system could be used to measure three velocity components. The axial and radial components of velocity were obtained by making measurements in a vertical plane passing through the propeller/nacelle axis, and the axial and tangential components of velocity were obtained by making measurements in a horizontal plane.

Velocity measurements were sampled at each location for a period of 1 min. These data were then statistically processed for mean velocity, standard deviation, and skew. The data presented herein are for the mean velocity.

TESTS

Tests for the eight-blade single-rotation propeller/nacelle system were conducted for blade reference angles $\beta_{.75}$ of 30.45°, 40.30°, and 50.15°; for comparative purposes, a four-blade single-rotation propeller was also tested at $\beta_{.75} = 40.30^{\circ}$. (For brevity, these two propellers are occasionally referred to as "8-blade" and "4-blade," respectively, in the figures.) The counter-rotation propeller was tested with four blades per hub (designated "4 × 4," which gave a total of eight blades) for a blade reference angle of 41.34°. For comparative purposes, the counter-rotation propeller was also tested as an 8 × 8 blade system (having a total of 16 blades) with $\beta_{.75} = 41.34^{\circ}$. Both the single- and counter-rotation propellers were tested at nacelle angles of attack of 0°, 10°, and 20°. The propeller advance ratio was varied from 0.7 to 2.3 by changing both propeller rotational speed and wind-tunnel velocity. The variation in wind-tunnel velocity (63 to 101 fps) resulted in dynamic pressures ranging from 4.5 to 12 psf. The combination of propeller rotational speed and tunnel free-stream velocity resulted in a range of Reynolds numbers (based on blade chord) from 0.15 × 10⁶ to 0.48 × 10⁶. An appendix is presented as a data supplement and includes a listing of the various test conditions (table AI) and a tabular listing of data (table AII).

The electric motor used in these tests resulted in maximum propeller power loadings (P/d²) of 14.6 and 16.1 hp/ft² for the single-rotation and counter-rotation propellers, respectively. These power loadings are substantially lower than the full-scale values currently being considered for advanced turboprop applications. However, reference 4 shows that it is possible to match correctly the propeller characteristics in coefficient form, and thereby to simulate the thrust and power coefficients and flow-field characteristics for the highly loaded advanced turboprop concepts if the effects of Reynolds number and Mach number are neglected. Under this assumption, a valid wind-tunnel simulation of the performance of a full-scale propeller may be obtained by matching the nondimensional power loading $(P/d^2q_{\omega}V_{\omega})$ of the model to the full-scale values.

RESULTS AND DISCUSSION

Effect of Blade Angle on Propeller Performance

Figure 6 presents the basic performance characteristics of the eight-blade single-rotation propeller as a function of advance ratio for blade angles of 30.45°, 40.30°, and 50.15°. The data show an increase in thrust and in power required as blade angle increases. The leveling off of both thrust and power coefficient curves for the higher blade angles at low advance ratios indicates that a portion of the propeller blade may be stalled, although studies were not conducted to verify this possibility.

According to classical propeller theory, as blade angle increases, the maximum efficiency occurs at higher advance ratios. This allows propellers with variable pitch to be operated at the optimum blade angle (and therefore blade-section angle of attack) to produce maximum efficiency at a given advance ratio. The efficiency of the propeller is based on an integration of the aerodynamic performance of each local blade section and is influenced by the distribution of section angle of attack, blade angle, and advance ratio J. If the induced inflow velocity is neglected, the velocity seen by the propeller at the 0.75 radial station is a vector sum of the rotational speed at that section (0.75π nd) and the free-stream velocity (V_{m}), and the result is a blade-section angle of attack that can be written as

$$\alpha_{b.75} = \beta_{.75} - \tan^{-1} \left(\frac{J}{0.75\pi} \right)$$

Using this relationship and the data from figure 6 for $\beta_{.75} = 30.45^{\circ}$ and 40.30° , the maximum measured propeller efficiency occurred for $\alpha_{b.75} = 7.5^{\circ}$ and 9.6°, respectively.

Comparison With Other Experimental Data

Figure 8 shows the variation of thrust coefficient and power coefficient with advance ratio as measured during the present tests compared with performance data provided by the NASA Lewis Research Center for a 2-ft-diameter eight-blade SR-2 propeller. Reference 2 describes the tests performed at the Lewis Research Center but does not include the data provided herein. In addition, figure 8 also presents data from reference 4 for conditions that duplicated the present test conditions and blade angle. As shown, good agreement exists between the three data sets.

Propeller Flow-Field Results

Propeller data such as thrust and power coefficients and efficiency are normally presented as a function of propeller advance ratio. The effect of advance ratio on the slipstream velocities produced by the eight-blade single-rotation propeller is presented in figure 9, which is a comparison of the nondimensional axial and tangential velocity components and swirl angle for two advance ratios. The measurement plane was located 0.148R (1.25 in.) behind the propeller plane.

The data show that the slipstream axial and tangential velocities were higher at the lower advance ratio (higher thrust), as expected. Resolved into vector form, these increases result in a significantly greater swirl angle (the angle between the resolved vector and the axial direction) for the lower advance ratio (higher thrust) condition, as shown in figure 9. The maximum swirl angles measured were 18.4° for J = 0.86 and 10.2° for J = 1.18. Also note that the axial velocity is less than the free-stream value at the propeller tip and that the tangential velocity is positive outboard of the tip. This pattern appeared consistently throughout the singlerotation data. The fact that the axial velocity is less than the free-stream velocity may be the result of the tip vortex, as suggested in references 5 and 6 where the data exhibited similar trends.

Nondimensional velocities for $\beta_{.75} = 40.30^{\circ}$ at an advance ratio of 1.18 are shown for three longitudinal measurement stations in figure 10, and the nondimensional velocities for an advance ratio of 0.86 are shown in figure 11. In both cases, the axial and tangential velocities show the expected increase with increasing distance downstream of the propeller as the slipstream accelerated. Radial velocity measurements were made for J = 1.18 and are shown in figure 10. The flow toward the nacelle is shown by negative values of v/V_{∞} and indicates slipstream contraction. The large positive radial velocity behind the blades near the spinner is caused by the flow over the nacelle curvature.

Effect of Blade Angle on Propeller Flow Field

A comparison of the nondimensional axial and radial velocity components for $\beta_{.75} = 30.45^{\circ}$ and 40.3° is shown in figure 12. The measurement plane was located 0.148R (1.25 in.) behind the propeller plane. The data show a higher axial velocity

(and consequently thrust coefficient) for the higher blade angle. The negative radial velocity near the propeller tip indicates the stronger slipstream contraction for the higher blade angle case.

Comparison of Single- and Counter-Rotation Tractor Propellers

The objective of the counter-rotation propeller system was to obtain increased efficiency by recovering the energy lost due to slipstream swirl with the single-rotation propeller. At the time that the present investigation was conducted, a suitable strain-gauge balance was not available for measuring the torque of the front and rear counter-rotating blade sets, although accurate thrust measurements could be made. As a result, power coefficients for the counter-rotation turboprop system could not be calculated and only a limited number of conditions were investigated. Figure 13 shows the variation of thrust coefficient with advance ratio for the single- and counter-rotation tractor propellers at a blade angle of approximately 40° . At the same advance ratio, the 4×4 (eight blades total) counter-rotation propeller. However, the power coefficient was not measured for the counter-rotation propeller, so no conclusion can be reached on the comparative efficiencies.

The nondimensional velocities for the 4 \times 4 blade counter-rotation tractor configuration are shown in figure 14. The blades for both of the propellers were set at $\beta_{.75}$ = 41.34° and the advance ratio was 1.21. The axial velocity measurements show the expected acceleration through the two blade rows and farther downstream. As was the case for the single-rotation propeller, axial flow at the tip is less than the free-stream value. Also, the axial velocity data show a strong slipstream contraction within a distance of 1 diameter behind the propellers. This strong slipstream contraction is also seen in the large negative values of radial velocity just aft of the propeller. At the far downstream station, the radial velocity has only a small region of negative flow at the edge of the slipstream. The tangential velocity is positive behind the front propeller and negative behind the rear propeller, indicating that for these propeller blade settings the second propeller overcompensated for the swirl induced into the slipstream by the front propeller.

A direct comparison of the nondimensional axial, radial, and tangential velocity components and the swirl angle for the single- and counter-rotation systems is shown in figure 15. This comparison is presented for the counter-rotation tractor configuration with $\beta_{.75}$ = 41.34° and for the single-rotation tractor data of figure 9. The data show comparable axial velocities; however, the counter-rotation thrust coefficient was appreciably higher. As shown, for these counter-rotation blade settings the net swirl for the counter-rotation propeller was in the opposite direction from that for the single-rotation propeller. Data for the counter-rotation propeller, and the counter-rotation data show details of the flow not evident in the single-rotation measurements. For example, both the radial and tangential components show a spike between 0.8 and 1.0 radius that is only slightly evident in the single-rotation data. This probably indicates the location of the propeller tip vortex, and data for additional measurement locations between 0.8R and 1.0R for the single-rotation condition would be expected to show similar characteristics.

Comparison of Tractor and Pusher Propellers

Figures 16 and 17 present a comparison of the tractor and pusher modes of operation for the single- and counter-rotation propellers. For the conditions investigated, the data show that the thrust performance of the pusher and tractor propellers was approximately equal within the accuracy of the data. For the pusher configuration, the propeller/nacelle was supported by the pylon arrangement shown in figure 3. Note that for the conditions tested, the pylon was also subject to angle-of-attack effects. Based on the data of figures 16 and 17, it appears that ingestion of the pylon wake for a nacelle angle of attack of 10° had no measurable effect on thrust performance for advance ratios below 1.7. Because individual blade loads were not measured during the present series of tests, the impact of the pylon wake on cyclic blade loading is unknown.

No LV measurements were made for the pylon-mounted counter-rotation pusher configuration during the present investigation. However, the same propeller/nacelle/ pylon model was mounted on a turboprop transport in a pusher configuration for the tests reported in reference 4. For this case, the flow into the propeller should be influenced by the wing as well as by the nacelle and pylon. The LV measurements were made at two axial stations, 0.442R (3.56 in.) and 2.00R (16.1 in.) aft of the front propeller plane of rotation. A schematic of the mounting arrangement is shown in figure 18.

The nondimensional velocities for the aircraft-mounted counter-rotation pusher configuration for $\beta_{.75} = 41.34^{\circ}$ at an advance ratio 1.21 are shown in figure 19. The LV survey was made across the entire propeller slipstream at the 2.00R axial station. Centerline data (r/R = 0) for this axial station 1 propeller diameter downstream indicate that the axial velocity behind the nacelle and spinner had reached the free-stream value. The measurements denoted by an "x" in the symbol square were taken on the opposite side of the nacelle centerline from the data denoted by the open symbol. The negative tangential velocities across the entire propeller wake indicate that the wake flow is no longer axisymmetric and the swirl has been dominated by the wing downwash.

The effect of the wing downwash can be seen in figure 20, in which the nondimensional velocities behind the rear propeller are plotted for both the tractor and pusher configurations. These measurements were made above the nacelle. The downwash from the wing flow field produced a vertical displacement of the propeller slipstream for the counter-rotation pusher configuration relative to the tractor configuration. No tangential velocity data at this axial station are available for the pusher configuration.

Propeller/Nacelle Normal Force, Side Force, and Yawing Moment

The propeller normal force that occurs at angle of attack is produced by the turning of the flow through the propeller disk, whereas the yawing moment and side force are due primarily to a nacelle crossflow. The origin of these various loads can be understood by referring to figure 21. Consider a propeller disk at nacelle angle of attack α_n as shown in the figure. At positive nacelle angles of attack, the downgoing blade sections experience an increased section angle of attack and the upgoing blade sections experience a reduced angle of attack. The blades on the downgoing side of the propeller disk therefore produce greater thrust than those on the upgoing side. The pressure behind the propeller disk on the downgoing side is consequently increased relative to the upgoing side. This pressure differential produces

a side force on the nacelle and creates a crossflow on the nacelle that contributes to the yawing moment and side force.

In order to substantiate the existence of this crossflow, the single-rotation propeller/nacelle model was yawed 8° toward the LV system, and the flow velocities were measured above and below the nacelle centerline 2.0R (16.9 in.) downstream of the propeller plane. Since the propeller/nacelle is axisymmetric, this was equivalent to looking down on the system at angle of attack. The LV velocity measurements are shown in vector form in figure 22 where the root of the vector denotes the measurement location, the length shows the magnitude, and the orientation indicates the flow direction. These measurements show that the flow direction in the slipstream at this downstream location was toward the nacelle at an angle of 3° behind the downgoing blade, and it was away from the nacelle behind the upgoing blade. The measured propeller/nacelle side-force increment was comparable to the measured normal force on the nacelle alone (blades off) at an angle of attack of 3°. This use of the LV system as a diagnostic tool in conjunction with other measurements is an illustration of the value of such a system for research facilities.

Figure 23 presents the variation of the normal-force, yawing-moment, and sideforce coefficients with respect to thrust coefficient for the eight-blade singlerotation propeller and for the 4×4 counter-rotation propeller at approximately the same conditions. The counter-rotation propeller system had lower side force than the single-rotation propeller; however, the counter-rotation propeller system produced a substantially higher normal-force coefficient. From this we conclude that the counter-rotation propeller system was more effective than the single-rotation system in turning the flow through the propeller disks; this may be due in part to the higher efficiency of the counter-rotation system achieved by recovery of the swirl losses. Although some crossflow velocity remained in the counter-rotation propeller slipstream as indicated by the side-force coefficient, it would be expected that the pusher configuration (with the nacelle forward of the propeller) would totally eliminate the yawing moment and side force.

SUMMARY OF RESULTS

The results of low-speed wind-tunnel tests to determine the basic performance, force and moment characteristics, and flow-field characteristics of an eight-blade single-rotation propeller and a four- by four- (4×4) blade counter-rotation propeller with SR-2 blades may be summarized as follows:

1. Laser velocimeter (LV) measurements documented the eight-blade singlerotation propeller flow-field velocities for changes in blade angle and advance ratio and documented the velocities of one operating condition of the 4×4 blade counterrotation propeller flow field for comparison.

2. At a nominal blade angle of 40° , the 4×4 counter-rotation propeller produced substantially higher thrust coefficients than the eight-blade single-rotation system. The LV measurements made between the two blade rows, and aft of the second blade row, showed that the counter-rotation propeller system was effective in changing flow swirl direction.

3. Ingestion of the pylon wake for the pusher configurations of both the singleand counter-rotation propellers had no serious detrimental effect on the propeller thrust performance. 4. Comparisons of the normal and side forces produced by the propeller systems at angle of attack show that the counter-rotation propeller produced substantially higher values of normal force than the single-rotation propeller. Conversely, the single-rotation propeller/nacelle produced substantially higher values of side force than the counter-rotation propeller/nacelle.

5. The side force produced for the single-rotation propeller was found to be due to the crossflow on the nacelle. This crossflow is a result of the propeller disk operating at angle of attack.

NASA Langley Research Center Hampton, VA 23665-5225 March 7, 1986

APPENDIX

DATA SUPPLEMENT

As an aid to the reader, this data supplement provides the wind-tunnel test conditions and tabulated aerodynamic data.

Run	Configuration	Number of blades	β _{.75} , deg	α _n , deg	β _n , deg
71 72 73	SRT,S	4 8 	40.30	0 0 10	0 0 0
74 75 77 92	V CRT,S	∀ 4 × 4	50.15 30.45 41.34/41.34	0 0 0 10	
93 106 112		4 × 4 8 × 8 4 × 4	41.54/41.54	20 0 0	
119 120	CRP,P	$\begin{array}{c} 4 \times 4 \\ 4 \times 4 \end{array}$		0 10	
127 128 129	V	4 × None 8 × None 8 × 8	41.34 41.34 41.34/41.34	0 0 0	•

TABLE AI.- TEST CONDITIONS

.20

•6986

1.0193

ALPHA	J	CP	СТ	CPM	CNF	CYM	CSF	CRM
• 01	1.7594	0005	0897	0684	0488	0062	0147	.0001
.01	1.6168	•1141	0112	0617	0460	0011	0013	0177
06	1.4969	.2265	.0399	0457	0828	0076	0200	0410
02	1.4228	•2750	•0834	0629	0780	.0161	.0240	0550
02	1.3453	.3228	.1236	0659	0761	•0233	.0190	0723
.05	1.2318	•4099	•1772	0718	0950	•0118	•0172	1095
•01	1.1687	•4683	•2126	0758	0832	•ū342	.0396	1390
06	1.0832	.5312	•2493	1150	0701	0032	•0262	1835
• 39	•9809	•5881	•3095	0696	0300	•0883	•0699	2477
• 09	.8743	.6270	•3282	0741	0619	•0888	•0954	3324
• 05	•7965	.6765	•3472	1020	0733	•1218	•1528	4321
•01	•7078	•7154	•3714	1503	0800	•1249	.1887	5788
RUN= 72								
ALPHA	Ĺ	CP	СТ	CPM	CNF	CYM	CSF	CRM
• 05	2.1548	4102	2817	0935	0678	0447	0383	.0358
06	1.7213	.1094	.0009	0911	0661	.0011	0193	0150
06	1.5799	.2130	•0904	0938	0296	0227	0286	0346
06	1.4850	•3654	•1595	1079	0485	0189	0062	0671
.16	1.4080	.4595	.2402	0801	0544	•0065	0002	0939
06	1.3352	• 5573	•2753	1115	0632	•0073	0051	1267
02	1.2474	•6247	•3205	1022	0359	•0324	.0267	1627
.01	1.1783	•7144	•3771	1072	0684	•0166	•0154	2085
.09	1.0814	•8215	•4317	1226	0730	•0808	•0574	2847
• 05	•9637	.8893	•4719	1009	0444	.0546	.0714	3880
• 09	.8832	•9653	•5114	1502	0645	• 0.796	•1124	5015
• 05	•7913	.9907	•5246	1794	1188	•0508	•1152	6412
					1 - 1 -	1 2 2 7	1 / 0 /	0//3

•5441 -•1397

.1297

•1684 -•8463

-.1112

AL P HA	J	CP	СТ	CPM	CNF	CYM	C S F	CRM
10.18	2.1074	4738	3374	•2525	.0659	•1198	•0827	.0432
9.98	1.7778	•0639	0581	.2576	.0843	.0519	.0217	0082
10.10	1.6071	.2658	.0819	.2799	.0617	.0310	.0001	0417
10.14	1.5002	•3719	.1635	•2759	•0714	0143	0193	0670
10.14	1.4289	•4805	.2028	.2750	.0982	0255	0408	0954
10.02	1.3354	.5389	•2498	.2979	•0719	0817	0550	1225
10.18	1.2425	•6262	•3225	•3077	.0861	0782	0609	1644
10.18	1.1571	.7270	•3648	.3420	.0953	0753	0847	2201
10.18	1.0457	•7452	•3889	•3735	•1295	1315	1266	2762
10.14	•9854	.8802	•4576	•4022	.1341	1868	1780	3673
10.18	.8820	.9623	•5034	.4209	.1533	2679	2199	5012
10.10	•7998	•9746	•5144	•4479	.0880	2961	2533	6175
10.22	.7155	1.0314	•5456	•5320	•1319	3887	3405	8164

ALPHA	L	CP	СТ	CPM	CNF	CYM	CSF	CRM
02	2.1387	4328	3104	.1115	• 0 4 0 4	3428	1761	.0383
02	1.7291	.0817	0062	.0308	0157	3407	1603	0111
•01	1.5979	.2610	.1052	0216	0579	3439	1476	0414
• 05	1.5008	.3479	.1659	0486	0837	3502	1377	0626
.05	1.4114	.4983	.2348	0735	1189	3717	1682	1014
• 05	1.3289	.5184	.2673	1133	1312	3735	1528	1190
•01	1.2392	.6218	•3206	1650	1775	3877	1552	1641
.13	1.1584	.7122	.3749	1718	1601	4034	1684	2151
• 09	1.0651	.8069	•4256	2641	2158	4112	1429	2883
.09	.9702	.8807	.4758	3158	2885	4444	1416	3791
.09	.8806	.9745	.5280	3862	3132	4610	1223	5093
•16	•7966	.9888	•5428	4713	4251	-,5426	1762	6316
• 09	.7074	1.0491	•5663	5979	4366	5509	1397	8496

AL P HA	L	CP	CT	CPM	CNF	CYM	CSF	CRM
02	2.3117	.3181	•0756	1035	0485	0170	•0097	0241
02	1.8015	.8262	.2833	1204	0684	0099	.0089	1032
02	1.6040	1.0520	•3666	1366	0892	0074	•0281	1657
• 01	1.4871	1.1774	•4247	1227	0753	0046	•0499	2158
02	1.4206	1.2626	.4502	1332	0644	.0162	• 3444	2536
.01	1.3597	1.3552	.4979	1569	0995	•0390	•0656	2971
.05	1.2441	1.4515	.5245	1307	0509	•0693	.0705	3800
02	1.1798	1.4834	.5449	1457	0899	•0459	.0876	4319
.05	1.0982	1.5608	.5701	1686	0826	•0887	•1086	5245
.05	.9613	1.5419	.5632	1695	0796	.1258	.1636	6762
.09	.7797	1.5570	.5766	2263	0873	.1874	•2543	-1.0379

ALPHA	J	CP	CT	CPM	CNF	CYM	CSF	CRM
02	2.1118	-1.0426	8603	0646	0144	1049	0899	.0947
02	1.7769	5188	4429	0292	.0093	0723	0653	•0666
02	1.5919	2675	2553	0518	.0038	0560	0693	.0428
06	1.4754	1447	1557	0562	0025	0312	0316	.0269
• 05	1.4231	0839	0992	0425	.0022	0465	0424	•0168
• 01	1.3359	0056	0335	0642	0313	0211	0267	.0013
.05	1.2132	.0952	.0469	0650	0178	0355	0311	0262
.09	1.1570	.1568	.0944	0771	0651	0016	.0043	0475
.01	1.0794	.2075	.1458	1049	0782	0091	.0054	0722
.05	.9749	.2930	.2114	0793	0413	•0267	•0301	1249
• 05	.8843	•3756	.2783	1037	0492	.0445	•0552	1946
.05	•7944	.4125	.3152	1174	0440	•0539	.0835	2649
.09	•7025	.4780	.3051	1285	0541	.1208	•1498	3926

ALPHA	J	CT	CPM	CNF	CYM	CSF	CRM
10.17	•7454	.8935	1.2691	.3359	3730	1398	.2026
10.17	. 8657	.8389	1.1688	•2543	2463	0753	•1354
10.09	.9279	•8006	1.1444	.2894	1878	0528	.1083
10.25	1.0399	•7497	1.0806	.2947	3741	1439	.0809
10.06	1.1234	•6802	•9489	.2237	2352	0934	•0624
10.29	1.2116	.6557	.9118	.2290	1605	0819	•0460
10.13	1.2988	•5796	.8323	.2547	1582	0668	•0349
10.06	1.4131	•4946	.8050	.2050	1771	0508	•0295
10.06	1.5061	.4398	.7420	.2014	1462	0305	.0296
10.02	1.5940	.3910	.6854	.1685	1124	0174	.0269
10.02	1.6531	.3816	.7188	.2591	1870	0370	.0249
10.02	1.7481	.3526	.6647	.2021	1450	0289	.0224
10.02	1.8686	• 3305	.6834	.2236	0758	0199	•0225

ALPHA	j	СТ	CPM	CNF	CYM	CSF	CRM
20.23	•7433	.9080	2.4123	•7380	1853	0698	.1890
20.11	•8491	.8555	2.1562	•6268	1901	0725	•1291
20.03	•9318	.8075	2.1033	.6702	2097	0907	.1099
20.03	1.0320	.7624	1.9118	.6413	0767	.0090	.0815
20.03	1.1227	.7069	1.7404	•5691	0208	0030	.0596
20.07	1.2089	.6710	1.6263	•5324	•039ŏ	.0374	.0428
20.03	1.2983	.6243	1.5521	.5129	•0432	•0554	.0370
20.03	1.3956	• 5564	1.4194	•4493	•0116	.0242	.0274
20.07	1.4683	.5123	1.3853	.4640	.0511	•0570	.0256
19.98	1.6075	.4618	1.2963	•4436	•0733	•0456	.0197
19.98	1.6709	.4396	1.2228	.3729	•0495	•0518	.0217
20.03	1.7867	.4315	1.1620	.3863	0059	•0196	.0157
20.03	1.8367	•4423	1.1793	•3884	•0247	•0418	•0160

ALPHA	J	CT	CPM	CNF	CYM	CSF	CRM	
•03	.7785	1.2599	6199	3710	.0106	0629	•2592	
01	.8302	1.2247	7004	4002	.0521	0415	•2125	
• 03	.9346	1.1277	4155	2454	.0255	0082	•1499	
01	1.0145	1.0694	4683	2813	1395	0983	.1236	
• 03	1.1323	•9691	3732	2010	0566	0402	.0815	
• 03	1.1263	.9660	3899	2168	.0049	0311	.0816	
.03	1.2599	.8441	3540	2352	0200	0152	.0627	
01	1.4124	•6923	3350	2115	0140	0212	.0441	
.03	1.4964	.6025	3193	1757	0162	0241	.0364	
01	1.5993	.5191	3058	1703	0098	0267	.0283	
• 03	1.6609	•4904	3126	1787	0477	0306	.0282	
01	1.8079	.3997	2511	1273	0378	0347	.0231	
01	1.9193	•3393	2867	1404	0400	0126	•0223	
RUN=112								
ALPHA	J	СТ	CPM	CNF	CYM	CSF	CRM	
- 01	7692	. 8221	- 4308	3001	0331	0321	-1609	

01	•7682	.8331	4398	3991	0331	0321	•1609
01	.8401	•7870	4449	4062	0469	0503	•1161
04	.9310	•7339	4452	4107	0424	0108	•0939
04	1.0090	•6924	3590	3045	0101	0171	•0599
04	1.0986	•6427	3415	2831	0198	0191	•0489
04	1.2263	•5628	2672	1853	.0046	0104	•0261
01	1.3082	•5045	2792	2118	1164	0506	.0251
04	1.4047	.4350	2181	1952	0790	0239	.0218
04	1.4912	•3690	2001	2004	0300	0095	•0154
04	1.5933	. 2794	2652	2088	0118	.0048	.0121
08	1.6722	.1991	2387	1985	0318	0268	•0094
08	1.7751	.1149	1653	1532	0061	•0057	•0085
04	1.8739	.0822	2177	1831	0278	.0061	•0099

ALPHA	J	CT	CYM	CSF				
•13	•7410	.8576	0603	0740				
.05	.8515	•7989	0673	0573				
02	•9429	•7450	1159	1495				
.02	1.0280	•7140	0624	0740				
02	1.1364	.6198	0852	1259				
.02	1.2200	•5604	0884	1125				
02	1.3129	.4822	0706	0677				
02	1.4083	•4170	0512	0735				
02	1.4999	.3943	1170	2243				
02	1.5922	.2872	1090	1354				
02	1.6586	.2277	0960	1231				
06	1.7908	.1210	0673	0905				
06	1.8600	.0695	0510	1001				
RUN=120				GREES IN WIND	TUNNEL.	ALPHA F	OR PYLON	=10 DEGREE
RUN=120 Alpha					TUNNEL.	ALPHA F	OR PYLON	=10 DEGREE
ALPHA	(NOTE J	MODEL AT CT	PSI=10 DE(Cym	GREES IN WIND CSF	TUNNEL.	ALPHA F	OR PYLON	=10 DEGREE
ALPHA .13	(NOTE J .7377	MODEL AT CT .8701	PSI=10 DE(CYM 2958	GREES IN WIND	TUNNEL.	ALPHA F	OR PYLON	=10 DEGREE
ALPHA .13 .05	(NOTE J .7377 .8451	MODEL AT CT .8701 .8151	PSI=10 DE CYM 2958 3355	GREES IN WIND CSF -1.2836 -1.2151	TUNNEL.	ALPHA F	OR PYLON	=10 DEGREE
ALPHA • 13 • 05 - • 02	(NOTE J .7377 .8451 .9404	MODEL AT CT .8701 .8151 .7710	PSI=10 DE CYM 2958 3355 3775	GREES IN WIND CSF -1.2836	TUNNEL.	ALPHA F	OR PYLON	=10 DEGREE
ALPHA • 13 • 05 - • 02 • 02	(NDTE J .7377 .8451 .9404 1.0295	MODEL AT CT .8701 .8151 .7710 .6771	PSI=10 DE CYM 2958 3355	GREES IN WIND CSF -1.2836 -1.2151 -1.2627	TUNNEL.	ALPHA F	OR PYLON	=10 DEGREE
ALPHA • 13 • 05 - • 02 • 02 - • 02	(NDTE J .7377 .8451 .9404 1.0295 1.1332	MODEL AT CT .8701 .8151 .7710	PSI=10 DE CYM 2958 3355 3775 3810	GREES IN WIND CSF -1.2836 -1.2151 -1.2627 -1.1413	TUNNEL.	ALPHA F	OR PYLON	=10 DEGREE
ALPHA • 13 • 05 - • 02 • 02 - • 02 • 02	(NDTE J .7377 .8451 .9404 1.0295 1.1332 1.2021	MODEL AT CT .8701 .8151 .7710 .6771 .6523 .6064	PSI=10 DE CYM 2958 3355 3775 3810 4038	CSF -1.2836 -1.2151 -1.2627 -1.1413 -1.0820	TUNNEL.	ALPHA F	OR PYLON	=10 DEGREE
ALPHA .13 .05 02 .02 02 .02 02 .02 02	(NDTE J .7377 .8451 .9404 1.0295 1.1332	MODEL AT CT .8701 .8151 .7710 .6771 .6523	PSI=10 DE CYM 2958 3355 3775 3810 4038 4113	CSF -1.2836 -1.2151 -1.2627 -1.1413 -1.0820 -1.0711	TUNNEL.	ALPHA F	OR PYLON	=10 DEGREE
ALPHA • 13 • 05 - • 02 • 02 - • 02 • 02	(NDTE J .7377 .8451 .9404 1.0295 1.1332 1.2021 1.3183	MODEL AT CT .8701 .8151 .7710 .6771 .6523 .6064 .5447	PSI=10 DE CYM 2958 3355 3775 3810 4038 4113 4587	CSF -1.2836 -1.2151 -1.2627 -1.1413 -1.0820 -1.0711 -1.0648 -1.0282 -1.0385	TUNNEL.	ALPHA F	OR PYLON	=10 DEGREE
ALPHA • 13 • 05 - • 02 • 02 - • 02 - • 02 - • 02 - • 02	(NDTE J .7377 .8451 .9404 1.0295 1.1332 1.2021 1.3183 1.4147	MODEL AT CT .8701 .8151 .7710 .6771 .6523 .6064 .5447 .4766	PSI=10 DE CYM 2958 3355 3775 3810 4038 4113 4587 4576	CSF -1.2836 -1.2151 -1.2627 -1.1413 -1.0820 -1.0711 -1.0648 -1.0282	TUNNEL.	ALPHA F	OR PYLON	=10 DEGREE
AL P HA • 13 • 05 - • 02 • 02 - • 02	(NDTE J .7377 .8451 .9404 1.0295 1.1332 1.2021 1.3183 1.4147 1.4962	MODEL AT CT .8701 .8151 .7710 .6771 .6523 .6064 .5447 .4766 .4292	PSI=10 DE CYM 2958 3355 3775 3810 4038 4113 4587 4576 4824 4966 4983	CSF -1.2836 -1.2151 -1.2627 -1.1413 -1.0820 -1.0711 -1.0648 -1.0282 -1.0385 -1.0132 -1.0132 -1.0157	TUNNEL .	ALPHA F	OR PYLON	=10 DEGREE
AL P HA 13 05 - 02 02 - 02 - 02 - 02 - 02 - 02 - 02 - 02 - 02 - 02 - 02	(NDTE J .7377 .8451 .9404 1.0295 1.1332 1.2021 1.3183 1.4147 1.4962 1.5954	MODEL AT CT .8701 .8151 .7710 .6771 .6523 .6064 .5447 .4766 .4292 .3812	PSI=10 DE CYM 2958 3355 3775 3810 4038 4113 4587 4576 4824 4966	CSF -1.2836 -1.2151 -1.2627 -1.1413 -1.0820 -1.0711 -1.0648 -1.0282 -1.0385 -1.0132	TUNNEL.	ALPHA F	OR PYLON	=10 DEGREE

ALPHA	J	CT	CYM	CSF
• 05	•7378	•3147	0522	1296
• 05	•8836	.2970	0104	0631
.05	•9517	.2765	0322	0711
.05	1.0281	•3793	0663	1152
• 02	1.1243	•2166	0568	1210
.02	1.2150	.1856	0461	0890
. 02	1.3230	.1443	0469	0880
• 02	1.4200	.1089	0729	1296
.02	1.4987	•0588	1385	2350
•02	1.6064	•0350	0780	1351
.02	1.6657	.0056	0453	0885
.02	1.7848	0622	0675	1148
• 02	1.8921	1284	0426	0903

ALPHA	J	CT	CYM	CSF
•13	•7393	• 5036	0856	1270
• 09	.8667	•4749	•0013	0156
.05	•9520	•4409	0532	1168
.09	1.0306	•4811	0480	1103
.05	1.1036	.3800	0686	1019
.05	1.2223	.3261	0605	1310
. 05	1.3110	.2899	0333	0667
• 05	1.4037	.2379	0514	1011
. 02	1.4884	.2113	1290	2622
.02	1.5798	•1421	0527	1236
. 02	1.6534	.0954	0736	1291
. 02	1.7983	.0101	0397	0818
02	1.8747	0570	0938	1735

TABLE AII.- Concluded

ALPHA	L	CT	CYM	CSF
.13	•7753	1.2481	0463	1243
•13	.8483	1.1938	0788	0297
.13	•9671	1.0923	0417	0084
.13	1.0457	1.0225	0517	0759
•09	1.1353	•9451	0824	0847
.13	1.1218	•9549	0510	0679
•09	1.2037	.8626	0390	0406
•09	1.2586	•7988	0487	0281
.05	1.4369	.6191	0377	0512
• 05	1.5165	•5157	0363	0314
•05	1.6097	•4099	0808	1064
.02	1.6860	•3135	0671	0962
•02	1.8073	.1776	0591	0814
• 02	1.8986	•0564	0982	1688

REFERENCES

- 1. Goldsmith, I. M.: A Study To Define the Research and Technology Requirements for Advanced Turbo/Propfan Transport Aircraft. NASA CR-166138, 1981.
- 2. Jeracki, Robert J.; Mikkelson, Daniel C.; and Blaha, Bernard J.: Wind Tunnel Performance of Four Energy Efficient Propellers Designed for Mach 0.8 Cruise. NASA TM-79124, 1979. (Available as SAE Paper 790573.)
- Sellers, William L., III; and Elliott, Joe W.: Recent Applications of a Laser Velocimeter in the Langley 4- by 7-Meter Wind Tunnel. NASA paper presented at 8th Biennial Symposium on Turbulence, Univ. of Missouri-Rolla, Sept. 1983.
- 4. Coe, Paul L., Jr.; Applin, Zachary T.; and Williams, Louis J.: Stability and Control Results for Advanced Turboprop Aft-Mount Installations. SAE 1984 Transactions, Volume 93, Soc. Automot. Eng., Inc., c.1985, pp. 6.256-6.263. (Available as 841479.)
- 5. Ridder, Sven-Olof: Wind Tunnel Test of a Twin, Rear Propeller Transport Aircraft Configuration at Low Speeds. ICAS Proceedings 1984 ~ 14th Congress of the International Council of the Aeronautical Sciences, Volume 2, B. Laschka and R. Staufenbiel, eds., International Council of Aeronautical Sciences, c.1984, pp. 644-654. (Available as ICAS-84-2.6.3.)
- 6. Aljabri, A. S.; and Hughes, A. C.: Wind Tunnel Investigation of the Interaction of Propeller Slipstream With Nacelle/Wing/Flap Combinations. Aerodynamics and Acoustics of Propellers, AGARD-CP-366, Feb. 1985, pp. 21-1 - 21-10.

u in	r, in., for -		
x, in.	SR propeller	CR propeller	
-6.028 -6.000 -5.500 -5.000 -4.500 -4.000 -3.500 -2.500 -2.000 -1.250 0 .270 .440 .780 1.110 1.810 2.510 3.220 3.890 4.640 5.600 6.230 6.600 6.617 6.738 6.876 7.014 7.152 7.290 7.703 8.393 9.428 10.000	0 .340 .480 .710 .920 1.230 1.500 1.730 1.930 2.020 2.210 2.450 2.580 2.581 2.619 2.665 2.707 2.745 2.778 2.859 2.945 2.997 3.000	0 .149 .525 .857 1.140 1.405 1.638 1.845 2.015 2.145 2.235 2.250 2.250 2.250 2.250 2.250 2.250 2.333 2.545 2.685 2.840 2.935 2.970 2.976 2.982 2.986 3.000	

(a) Forward-nacelle ordinates

· · ·			
	u in	r, in.,	for -
	x, in.	Sting adapter	Aft fairing
	28.000 29.000 30.000 31.000 32.000 33.000 34.000 35.000 35.000 36.000 37.717 38.000 39.000 40.000 41.000 42.000 43.000	3.000 3.000 2.940 2.900 2.850 2.520 2.300 2.160 2.020 1.920 1.831 1.820 1.750 1.680 1.620 1.600 1.560 1.550	3.000 3.000 2.960 2.891 2.730 2.550 2.290 1.945 1.500 .861 0

(b) Aft-nacelle ordinates

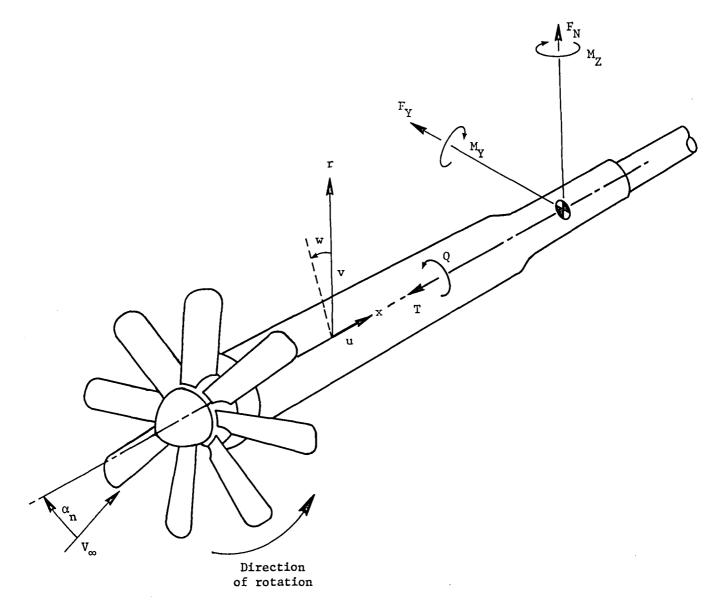


Figure 1.- Sketch of propeller and nacelle showing body system of axes.

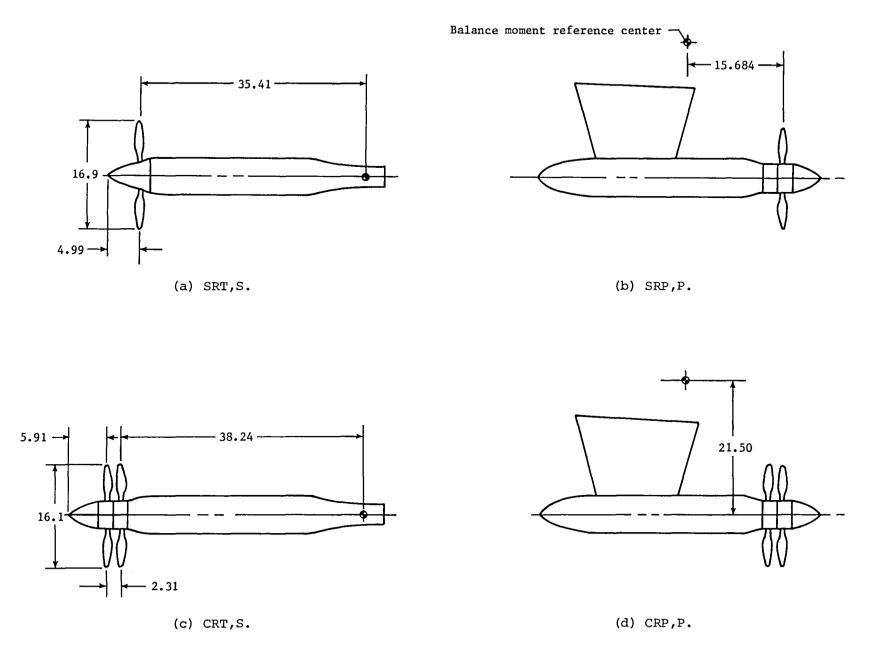


Figure 2.- Propeller/nacelle mounting arrangements. Dimensions are given in inches.

L-86-308

Figure 3.- Photograph of pylon-mounted pusher propeller/nacelle.

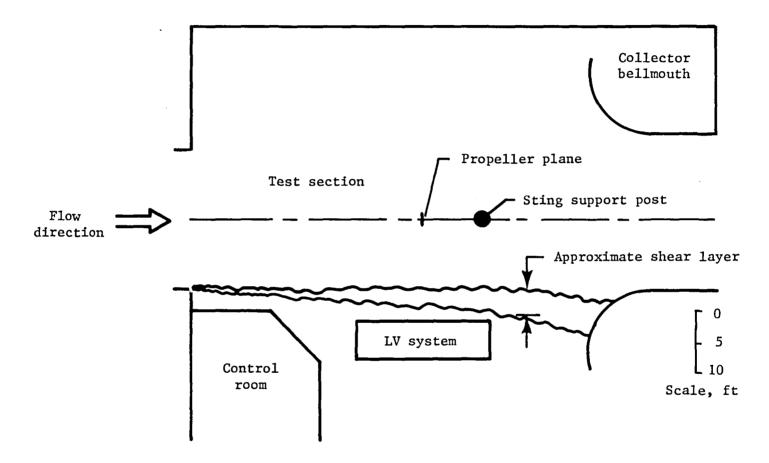


Figure 4.- Plan view of Langley 4- by 7-Meter Tunnel.

L-83-4023

Figure 5.- LV system in the Langley 4- by 7-Meter Tunnel.

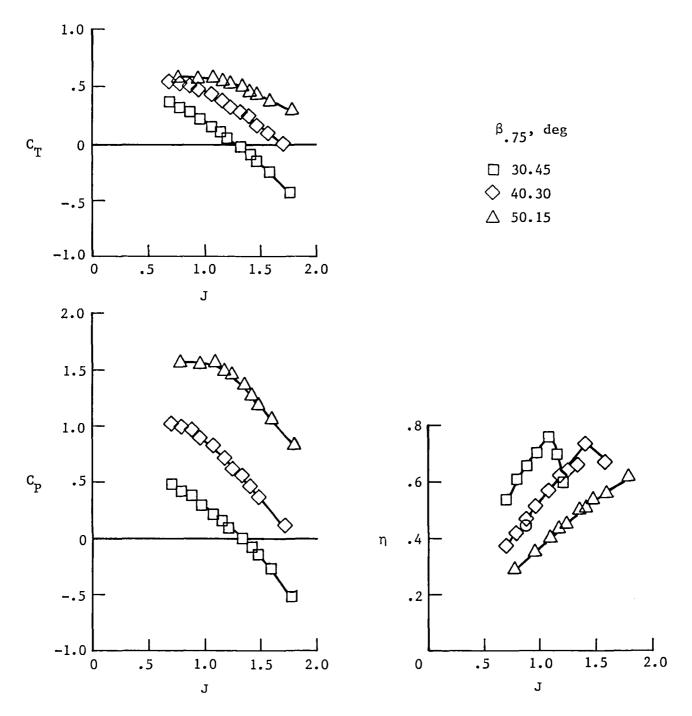


Figure 6.- Effect of blade angle on performance of eight-blade single-rotation propeller.

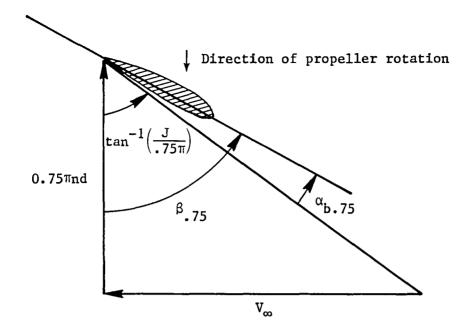


Figure 7.- Relationship between $\alpha_{b.75}$, $\beta_{.75}$, and advance ratio J. For nacelle angle of attack α_n of 0°, $\alpha_{b.75} = \beta_{.75} - \tan^{-1}\left(\frac{J}{0.75\pi}\right)$.

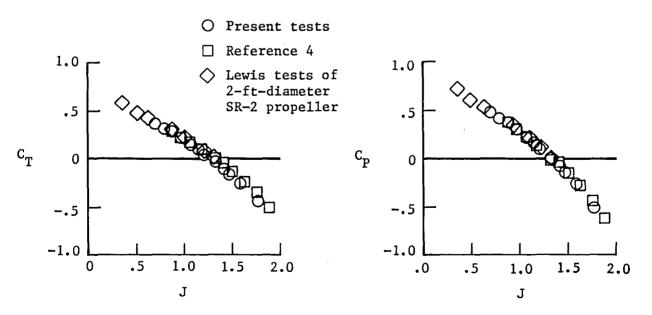


Figure 8.- Comparison of single-rotation performance data from present tests with prior tests. $\beta_{.75} \approx 30^{\circ}$.

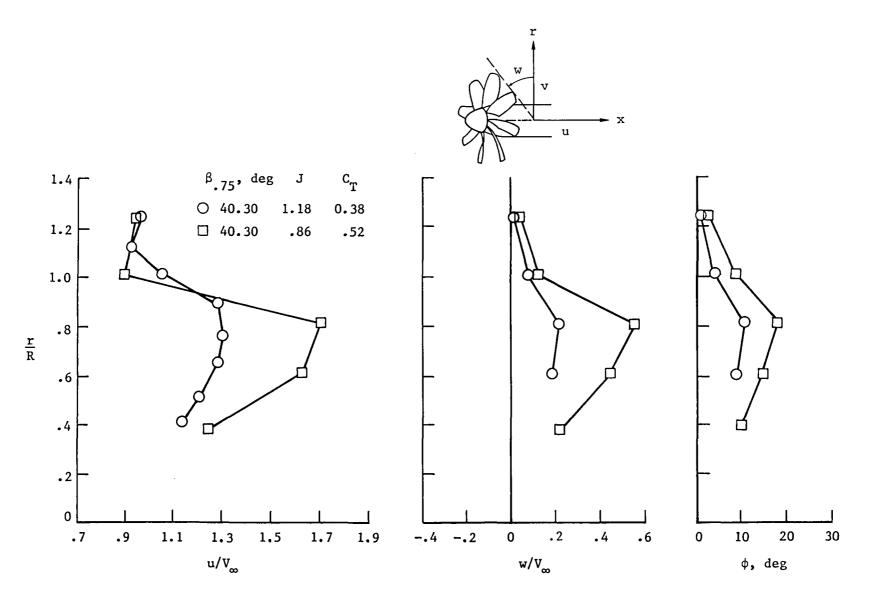


Figure 9.- Effect of advance ratio on flow field behind single-rotation propeller. Measured 1.25 in. behind pitch change axis.

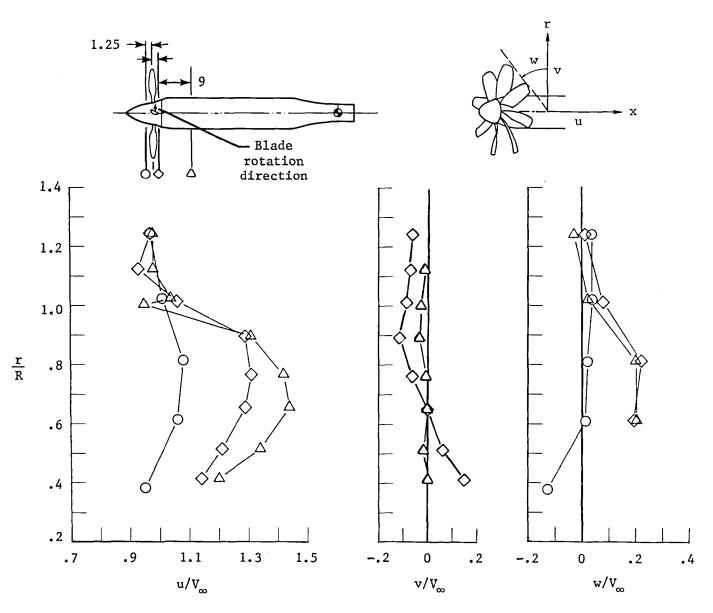


Figure 10.- Propeller flow-field velocity ratios for single-rotation tractor configuration. $\beta_{.75} = 40.30^\circ$; J = 1.18; C_T = 0.38. Dimensions are given in inches.

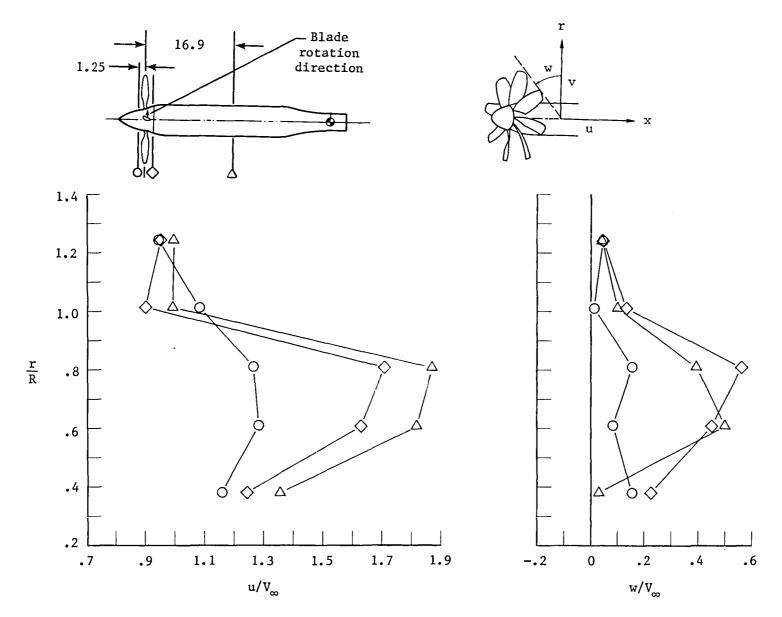


Figure 11.- Propeller flow-field velocity ratios for single-rotation tractor configuration. $\beta_{.75} = 40.30^{\circ}; J = 0.86; C_{T} = 0.52.$ Dimensions are given in inches.

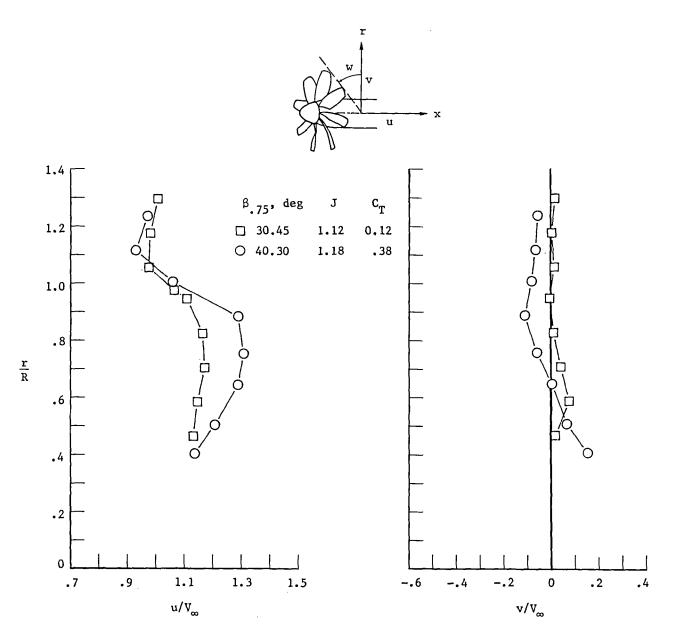


Figure 12.- Effect of blade angle on flow field behind single-rotation tractor propeller/nacelle. Measured 1.25 in. behind pitch change axis.

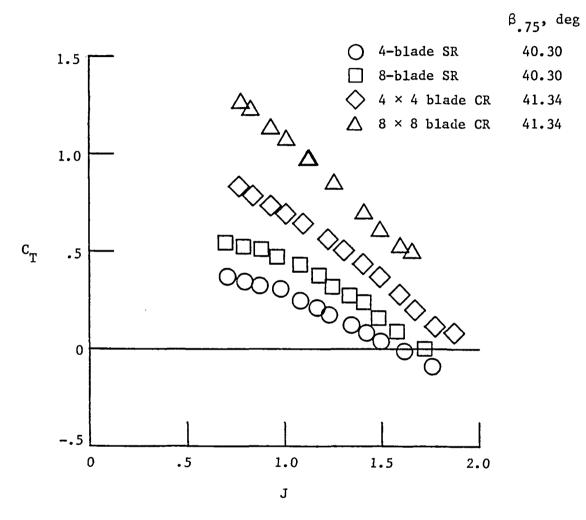


Figure 13.- Variation of thrust coefficient with advance ratio for single- and counter-rotation tractor propellers.

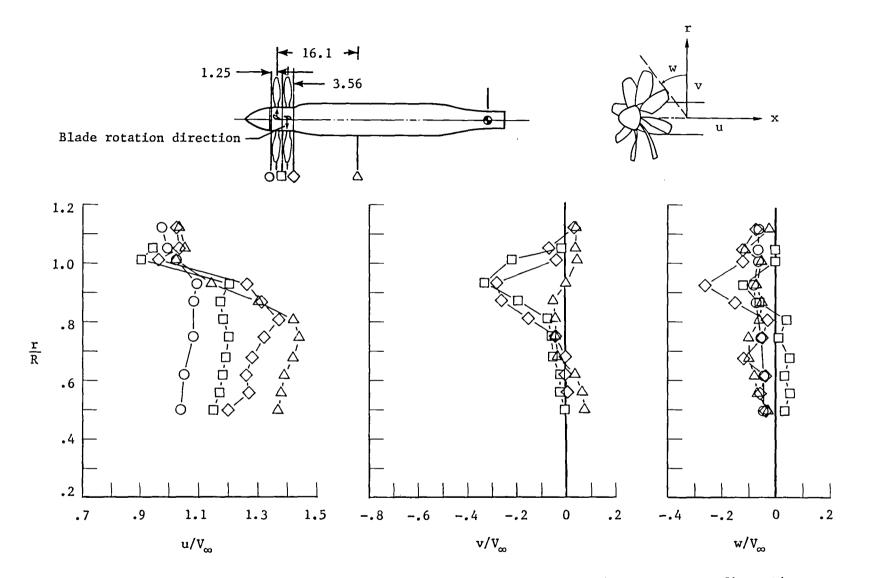


Figure 14.- Propeller flow-field velocity ratios for counter-rotation tractor configuration. $\beta_{.75} = 41.34^{\circ}/41.34^{\circ}; J = 1.21; C_{T} = 0.56.$ Dimensions are given in inches.

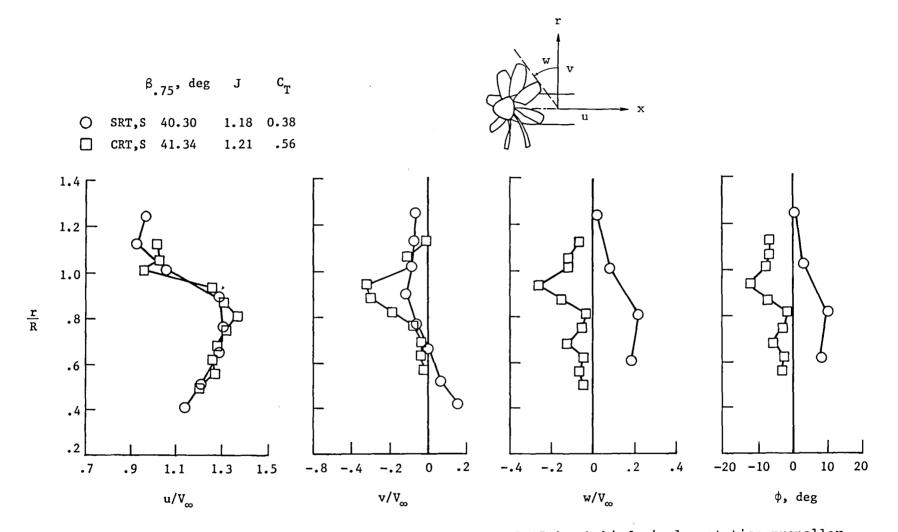
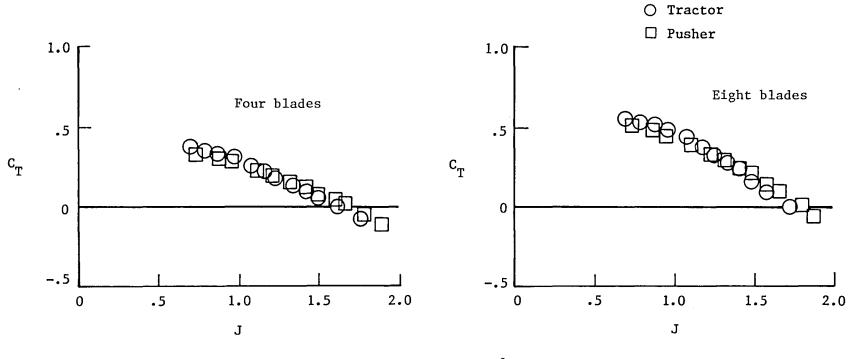
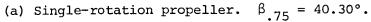
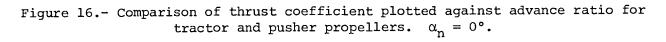





Figure 15.- Comparison of propeller flow fields measured 1.25 in. behind single-rotation propeller pitch change axis and 1.25 in. behind counter-rotation rear-propeller pitch change axis.

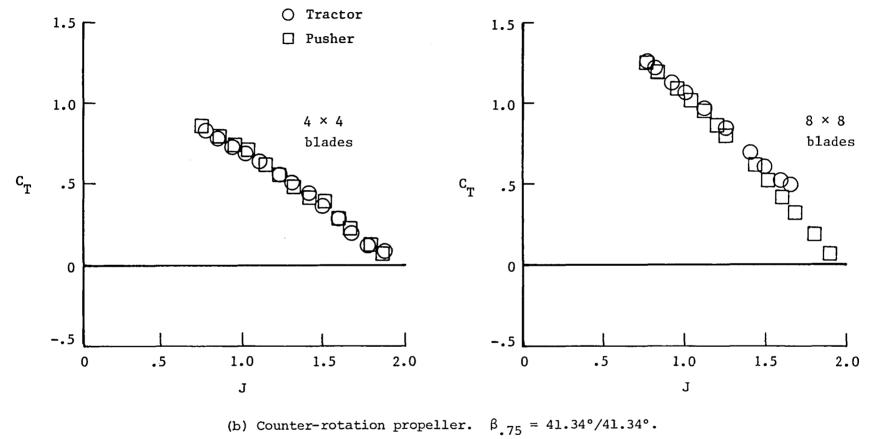


Figure 16.- Concluded.

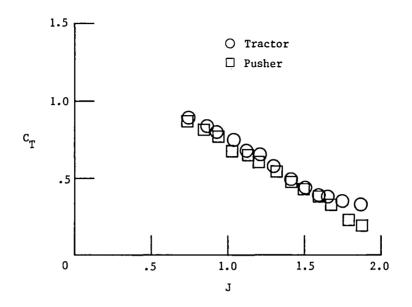


Figure 17.- Comparison of thrust coefficient plotted against advance ratio for 4 × 4 counter-rotation tractor and pusher propellers. $\alpha_n = 10^\circ$.

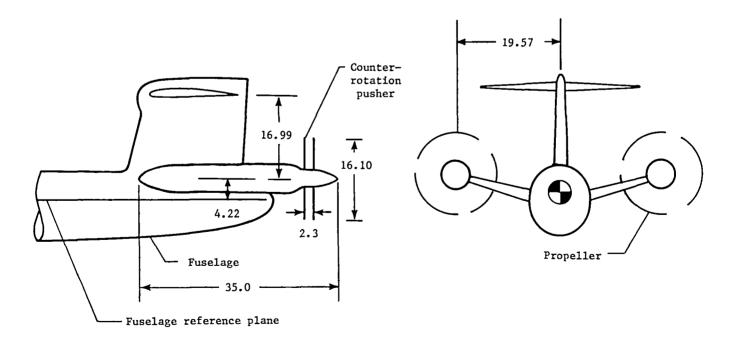


Figure 18.- Mounting arrangement and geometric characteristics of model-mounted pusher configuration. Dimensions are given in inches.

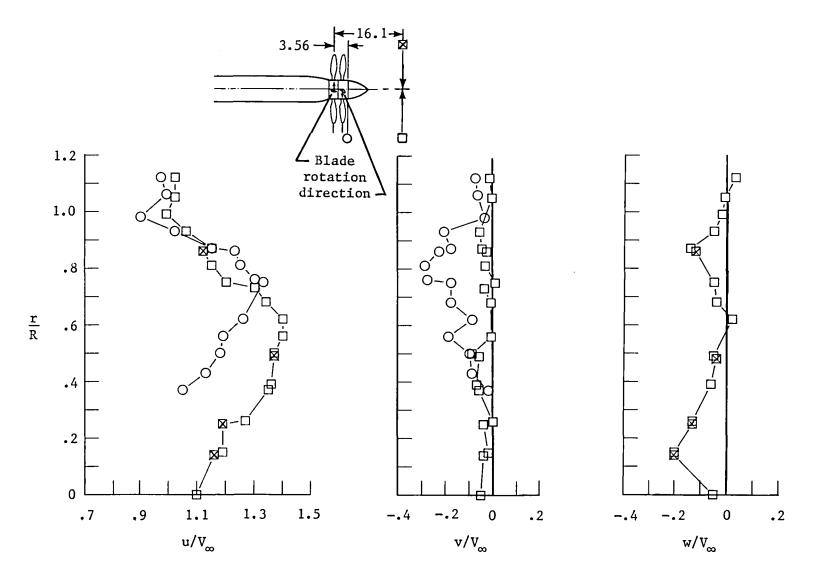


Figure 19.- Propeller flow-field velocity ratios near model-mounted counter-rotation pusher configuration. $\beta_{.75} = 41.34^{\circ}/41.34^{\circ}$; J = 1.21; C_T = 0.56. Dimensions are given in inches.



Figure 20.- Comparison of propeller flow fields 1.25 in. behind rear-propeller pitch change axis of counter-rotation tractor propeller/nacelle and model-mounted counter-rotation pusher configurations. $\beta_{.75} = 41.34^{\circ}/41.34^{\circ}; J = 1.21; C_{T} = 0.56.$

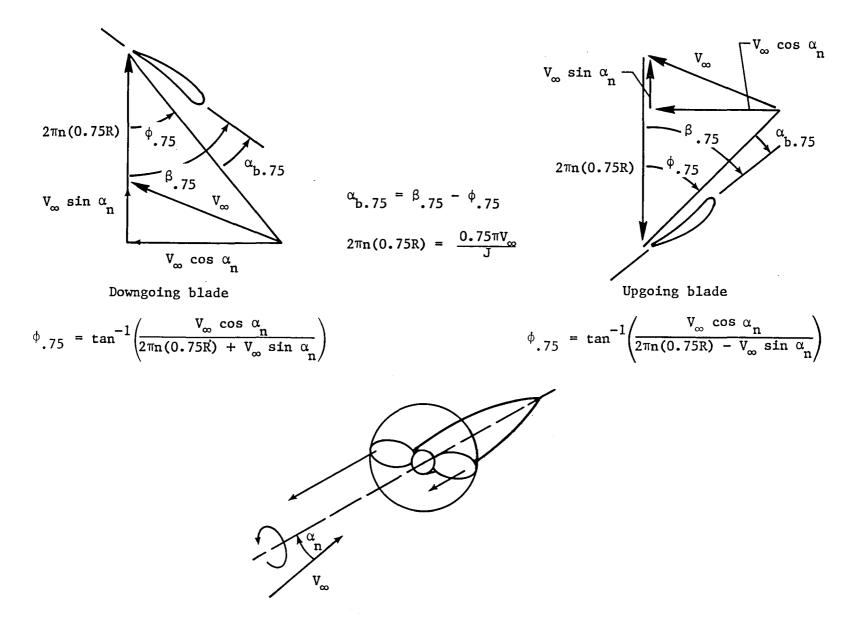


Figure 21.- Sketch illustrating origin of asymmetric thrust loads on propeller at angle of attack.

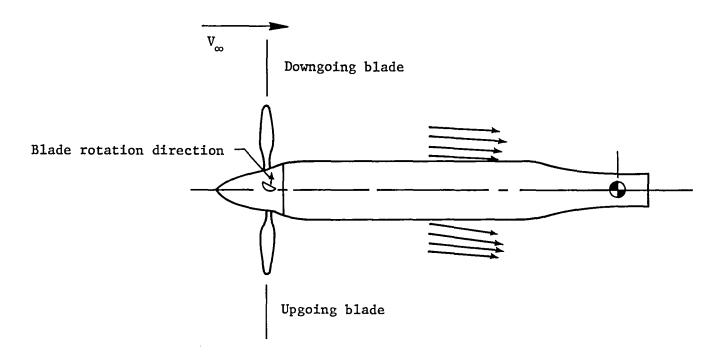


Figure 22.- Effect of nacelle angle of attack on propeller flow field, as viewed from above. $\beta_{.75} = 40.30^\circ$; J = 1.18; $\alpha_n = 8^\circ$.

○ 8-blade single-rotation propeller ($\beta_{.75} = 40.30^{\circ}$) □ 4 × 4 blade counter-rotation propeller ($\beta_{.75} = 41.34^{\circ}/41.34^{\circ}$)

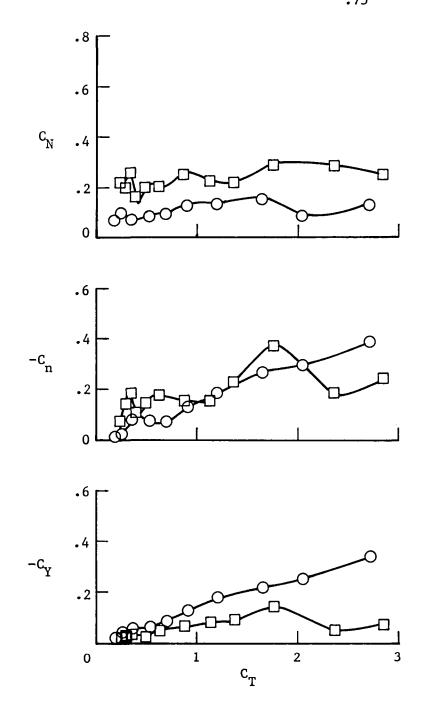


Figure 23.- Propeller characteristics at a nacelle angle of attack $\alpha_n^{}$ of 10°.

.

1. Report No.	2. Governme	ent Accession No.	3. Recipient's Cat	alog No.
NASA TM-87656				
4. Title and Subtitle		5. Report Date		
Low-Speed Wind-Tunnel Tests of Single- an Rotation Propellers		nd Counter-	April 198	86
			6. Performing Org	anization Code
		505-45-43-02		
7. Author(s) Dana Morris Dunham, Garl L. Gent	and	8. Performing Org L-16077	anization Report No.	
Paul L. Coe, Jr.		· · ·	10. Work Unit No	
9. Performing Organization Name and Address				
NASA Langley Research Center			11. Contract or Grant No.	
Hampton, VA 23665-5225				
			13 Type of Repor	t and Period Covered
12. Sponsoring Agency Name and Address				1 Memorandum
National Aeronautics and Space Administration		ation		
Washington, DC 20546-0001		•	14. Sponsoring Ag	sency Code
15. Supplementary Notes				
16. Abstract				·
A low-speed (Mach 0 to 0.3) wind-tunnel investigation was conducted to determine				
the basic performance, force and moment characteristics, and flow-field veloci-				
ties of single- and counter-rotation propellers. Compared with the eight-blade				
single-rotation propeller, a four- by four- (4×4) blade counter-rotation pro-				
peller with the same blade design produced substantially higher thrust coeffi-				
cients for the same blade angles and advance ratios. The results further				
indicated that ingestion of the wake from a supporting pylon for a pusher con-				
figuration produced no significant change in the propeller thrust performance				
for either the single- or counter-rotation propellers. A two-component laser				
velocimeter (LV) system was used to make detailed measurements of the propeller				
flow fields. Results show increasing slipstream velocities with increasing				
blade angle and decreasing advance ratio. Flow-field measurements for the				
counter-rotation propeller show that the rear propeller turned the flow in the				
opposite direction from the front propeller and, therefore, could eliminate the				
swirl component of velocity, as would be expected.				
17 Key Words (Suggested by Authors(a))		18 Distribution States		
17. Key Words (Suggested by Authors(s))		18. Distribution Statement		
Turboprop	Unclassified - Unlimited			
Laser velocimeter (LV)				
Single-rotation propeller				
Counter-rotation propeller				0-+ 02
			Subject	Category 02
19. Security Classif.(of this report)	20. Security	Classif.(of this page)	21. No. of Pages	22. Price
Unclassified Unclassified 44 A03				
	1			

National Aeronautics and Space Administration Code NIT-4

Washington, D.C. 20546-0001

Official Business Penalty for Private Use, \$300 BULK RATE POSTAGE & FEES PAID NASA Permit No. G-27

POSTMASTER:

If Undeliverable (Section 158 Postal Manual) Do Not Return