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Abstract

Blastocerus dichotomus is the largest deer in South America. We have used 25 microsatellite markers detected 
and genotyped by Next Generation Sequencing to estimate the genetic variability of B. dichotomus in Argentina, 
where most of its populations are threatened. Primer design was based on the sequence of a shallow partial 
genome (15,967,456 reads; 16.66% genome coverage, mean depth 1.64) of a single individual. From the thousands 
of microsatellite loci found, even under high stringency selection, we chose and tested a set of 80 markers on 30 
DNA samples extracted from tissue and feces from three Argentinean populations. Heterozygosity levels were low 
across all loci in all populations (H=0.31 to 0.40). Amplicon sequencing is a fast, easy, and affordable technique that 
can be very useful for the characterization of microsatellite marker sets for the conservation genetics of non-model 
organisms. This work is also one of the first ones to use amplicon sequencing in non-invasive samples and represents 
an important development for the study of threatened species.
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Blastocerus dichotomus is the largest deer in South 
America, that inhabits all types of wetlands, such as flooded 
grasslands, lagoons and swamps with floating marshes (Duarte 
and González, 2010), which gives it the common name of 
“marsh deer”. It is listed as Vulnerable by the IUCN. In 
Argentina, most of its populations are threatened (Pereira et 
al., 2019) which is why starting to address its situation from 
a genetic perspective is imperative.

Microsatellite loci are widely distributed in the genomes 
of eukaryotes and have been used without major difficulties 
in many species (for example, Dayon et al., 2020). The 
development of markers with the modern Next Generation 
Sequencing (NGS) approach, which involves the partial 
sequencing of a genome, makes the analysis of thousands 
of microsatellite loci possible, allowing them to be chosen 
under much more stringent conditions. Moreover, NGS 
technologies can also be used to genotype microsatellites, 
through PCR amplicon sequencing, which allows for a faster, 
easier, and more affordable process (Andrews et al., 2018). 
This approach helps to overcome some of the limitations of 
former genotype-by-fragment-size microsatellite analyses: 
unambiguous allele identification, additional information 
besides number of repeats, and possibility of comparing 

genotypes across different laboratories (Andrews et al., 2018). 
Also, the application of NGS techniques for both the design 
and genotyping of microsatellites allows the analyses of short 
target sequences (from 40 / 50 bp), which can be particularly 
important when analyzing low quality or degraded DNA.

The objective of this study was to estimate the genetic 
variability of the marsh deer in Argentina using a considerable 
number of new microsatellite markers. We used NGS 
techniques for the development and characterization of the 
markers and estimated genetic variability in tissues and non-
invasive samples.

We used a blood sample from a marsh deer from the 
Paraná River Delta for an initial genome analysis. DNA 
extraction was performed with a Zymo Research kit (Quick 
DNA Microprep kit) and sonicated with a Covaris M220 
Focused-Ultrasonicator for 120 s. The resulting fragments had 
a mean size of 950 bp. For genomic library construction, we 
used the Illumina TruSeq kit, following the manufacturer’s 
instructions. Sequencing was done in an Illumina MiSeq, 
using MiSeq Reagent kit v2 2x250 paired ends following the 
manufacturer’s instructions. After sequencing, demultiplexing 
and read quality analysis were performed using the Illumina 
Base Space software. Ninety-eight percent of the resulting 
reads were used to assemble a partial genome with the 
software ABySS (Simpson et al., 2009). Genome coverage, 
understood as the percentage of the genome that had at least 
one nucleotide sequenced, was estimated with Sequencing 
Coverage Calculator (Illumina). Mean depth, estimated 
as the average number of times that each nucleotide was 
sequenced (Sims et al., 2014) was calculated as L * N / G,  
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with L being the length of the reads, N being the total number 
of reads and G the length of the reference genome. Since no 
genome is available for the species we studied, data from 
the phylogenetically close white-tailed deer, Odocoileus 
virginianus, whose genome size is 2.4 GB (London et al., 
2022) was used. The assembled contigs were used as an input 
for the microsatellite search using MSATCOMMANDER 
1.0.8 MacOS version (Faircloth, 2008). We searched for di, 
tri and tetranucleotides with a minimum of seven, seven and 
five repeats respectively. We then designed the primers with 
the same program, using the following parameters: final 
product length 30-130bp, primer length 18-23bp, melting 
temperature between 57 °C and 65 °C, GC content 30-70%, 
and a GC clamp in the 3’ end. From the thousands of primer 
pairs found, we selected a set of 80 markers at random, that 
were synthetized with the addition of a sequencing tail (Left 
sequencing tail: CCCTACACGACGCTCTTCCGATCT, right 
sequencing tail: GTTCAGACGTGTGCTCTTCCGATCT). 
These were ordered from Macrogen Korea.

We extracted DNA from feces (N=12) with the Quick-
DNA Fecal/Soil Microbe Miniprep Kit (Zymo Research) and 
tissues (N=18) with the salting out protocol (Miller et al., 
1988), from different Argentinean populations: 19 samples 
from Paraná River Delta (Buenos Aires and Entre Ríos 
provinces), 6 from Esteros del Iberá (Corrientes province) 
and 5 from El Bagual Reserve (Formosa province). 

All chosen primers were screened together with the 
software AutoDimer (Vallone and Butler, 2004) to check 
for the possibility of heterodimers and hairpins, and then 
divided into four multiplexes of 20 primer pairs each. 
Amplicon libraries were built in the Marine Gene Probe 
Lab at Dalhousie University using the Qiagen Multiplex 
reagent kit, following manufacturer’s instructions. Final 
volume was scaled to 5 µl per reaction. The cycling program 
consisted of 94 °C for 15 min, 20 cycles at 94 °C for 30 s,  
57 °C for 180 s, 72 °C for 60 s, and a final extension at  
68 °C for 30 min. The final products were diluted with 20 µl 
of ultrapure water (see Zhan et al., 2017 for more details). 
These products were used as a template for the second PCR, 
which adds the indices, and consists of 2.15 µl of ultrapure 
water, 0.5 µl 10x buffer, 0.2 mM of each dNTP, 0.2 µM  
of indexed oligo, 0.3 µl of diluted PCR product and 0.25 U of 
TSG DNA polymerase (Bio Basic, Markham, ON, Canada), 
in a final volume of 5 µl per reaction. The cycling program 
consisted of 95 °C for 120 s, 20 cycles of 95 °C for 20 s,  
60 °C for 60 s, 72 °C for 60 s, and a 72 °C final extension for  
10 min (Zhan et al., 2017). We screened all the PCRs, observing 
DNA bands by electrophoresis, using 2% agarose gels stained 
with gel green (Biotium, Fremont, CA, USA). Products were 
pooled in equal proportions and then purified using a 1.8:1 
of Sera-Mag Speedbeads (GE Healthcare, Little Chalfront, 
UK). Library quantification was done with the Kapa Library 
Quantification kit (Roche, Pleasanton, California) following 
the manufacturer’s protocol. The library was diluted to 15 pM 
and sequenced on an Illumina MiSeq, using the MiSeq 150 
cycle V3 single-read kit. Amplicons from feces and tissues 
were sequenced independently using different flow cells. This 
prevents reads from good quality samples overwhelming 

reads from samples of lower quantity and quality DNA. 
DNA from feces was analyzed using seven replicates each 
to build a consensus genotype, as recommended for this 
type of material (Taberlet et al., 1996). After sequencing, 
indexed samples were demultiplexed automatically with 
MiSeq Sequence Analysis software. This resulted in the 
creation of one FASTQ file per individual, which contained 
the sequences of all the corresponding microsatellites. These 
files were used as input for the MEGASAT software (Zhan 
et al., 2017), which genotyped all the loci automatically, and 
generated histograms for manual visual genotyping. In addition 
to analyzing MEGASAT plots, we analyzed the sequences of 
reads of different lengths from each marker. We aligned the 
potential alleles with the program GENEIOUS PRIME 2020 
(Kearse et al., 2012). This was done to verify the identity of 
the markers in relation to the original sequences used to design 
them, excluding markers whose polymorphism was due to 
indels in the flanking regions or the tandem repeat zone: a 
further advantage of this method compared to the genotyping 
by size on a capillary DNA sequencer, where size homoplasy 
may be a problem. 

We used MICROCHECKER 2.2 (Van Oosterhout et al., 
2004) to detect large allele dropout and null alleles. In the 
case of non-invasive samples, we calculated the rate of false 
alleles and allelic dropout within replicates with GIMLET 
1.3 (Valière, 2002). We calculated polymorphic information 
content (PIC) with the online tool Gene Calc (See the Internet 
Resources Section). We used Arlequin to calculate HO, HE, 
number of alleles per locus and to test Hardy-Weinberg and 
linkage disequilibria. 

The sequencing produced 15,967,456 reads. Genome 
coverage was 16.66%, and mean depth was 1.64. The assembly 
produced 1,347,182 contigs. The MSATCOMMANDER 
search found 12,658 microsatellites, from which 511 primer 
pairs were designed with the conditions described above and 
80 were selected from those.

After the amplicon sequencing process, we retained 25 
polymorphic markers out of the original 80 tested (Table 1). 
Null alleles were found for Bdi30, Bdi51, Bdi57, Bdi59 and 
Bdi65 loci. The allele dropout rate varied between 0.01 and 
0.014. In the case of non-invasive replicates, the false allele 
rate varied between 0.01 and 0.20 and the allelic dropout 
rate between 0.01 and 0.14, which shows the importance of 
making replicates when working with this kind of samples. We 
calculated diversity indices for the three populations (Parana 
River Delta (PRD): N=19, Ho = 0.38±0.19, He=0.31±0.22; El 
Bagual (EB): N=5, Ho=0.38±0.24, He=0.40±0.32; Esteros del 
Ibera (EI): N=6, Ho=0.39±0.24, He=0.38±0.32). Detailed loci 
data are presented for the Paraná River Delta, the population with 
the largest N (Table 2). None of the markers showed deviations 
from Hardy-Weinberg equilibrium after applying the False 
Discovery Rate approach (Pike, 2011) to the p-values. There 
was no evidence for linkage disequilibrium for any pairs of loci. 

The use of amplicon sequencing for genotyping made it 
possible to affordably test a greater number of loci and samples 
than a research project that uses capillary electrophoresis 
genotyping reducing time and effort (for example, Latorre-
Cardenas et al., 2020; Lim and Ab Majid, 2021). 
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Table 1 – Characterization of 25 polymorphic microsatellite markers on the marsh deer (Blastocerus dichotomus).

Locus Left sequence Right sequence Repeat 
motif NA Allele size 

range (bp) PIC GeneBank 
accession no.

Bdi4 TATCCCACCTGCCTCTCAAC CTGTTTCATACCACTCACCCTG (AAAT)n 2 93-101 0.16 OL998317

Bdi6 CTTCTGGCAATGCAGGAGAC TGTCAGGCAGCATTCTCTTTC (AGAT)n 2 104-112 0.16 OM001701

Bdi9 CCTGGGAAGTATCTTTGGTTCC AGTGGACAGAATGAGAGGGC (AC)n 2 112-132 0.25 OM001702

Bdi10 TCAGCCCAGGATAACACAGG GCACATGAGTATCTATGCGCG (AC)n 2 79-81 0.24 OM001703

Bdi11 ACCACCTCCTTCTGTCATGG ACATCTTTGAGCTGCGGTTC (TG)n 2 127-131 0.26 OM001704

Bdi12 ACACAGAGAAGTCCAACAAGC GGAGATTCCCATTTACGGTCC (CT)n 2 114-116 0.34 OM001705

Bdi18 TCCAGTGAGTCTTCCCTGAG GTGACTTAACCTACACGCAC (TG)n 2 90-92 0.19 OM001706

Bdi19 CAGTTCATGTGGGTGTTCGC CAGGAAGGCTGCAAGGAAAG (TG)n 3 140-144 0.37 OM001707

Bdi21 TGCCCAGGTAATCAATAAGCTC TTCACTGAGATATGAGCCCTC (TG)n 3 101-107 0.36 OM021322

Bdi24 TGAGAGCTACTTTGGCCTTTG GTTGGACACGACTGAGCAAC (TG)n 5 63-35 0.36 OM021323

Bdi26 TAACCCAGGGATCGGAACTG GACAACAAACAACAGTGGTAGC (AC)n 2 118-120 0.29 OM021324

Bdi30 ACGAAGGCACCTGGTTTAAC GCAGGGATGAGCTGACCAG (TG)n 3 120-124 0.37 OM021325

Bdi36 ACCTGTGATAAACCACAGTGGG TGGACAGCAAAGTGATTCAGTG (AT)n 4 117-119 0.35 OM021326

Bdi37 ATCAGCCAGACATTGCCATC TGAGAGCAGCTGGAATCGG (AC)n 3 109-119 0.70 OM021327

Bdi39 TGGAAAGAGGAGCCTTGGAG TGAGCAACAGTCCATTGTGTG (AC)n 2 124-138 0.57 OM021328

Bdi40 AAGTGTTCCCAGCAGAAGTG AAAGGCAGCAGGGAGAGAC (TG)n 2 112-116 0.37 OM021329

Bdi42 CTGGCTTGATCAGGGTTCC CAACATCTTGACTGTGTGGC (TG)n 4 114-118 0.44 OM021330

Bdi44 GGTCTCTACTTCCTTACTAGCC CTGGCTTGCTACAGTCCAAC (TG)n 2 102-116 0.27 OM021331

Bdi49 CTCATCACATGGAAACGGCC ACCATAGCTCTTGTTTGTCTGC (AG)n 4 87-91 0.40 OM021332

Bdi51 CAAAGGAGCAAGGCACAGAG GGAACATCCCATCATCACCC (TG)n 3 83-91 0.45 OM021333

Bdi55 GCAACTGGGCACAAACTC TGCATTTCTGGTCAAATCCC (TG)n 2 105-107 0.22 OM021334

Bdi57 TGGGCTTCTACTCTTGCAGC TGTCAGTGAAGTAATGCCTCTG (ATT)n 2 113-119 0.09 OM021335

Bdi58 TGTGCTGAGTTTCTTCATGGG CCGTATGGTGGCAGTGAAAC (ATGT)n 4 96-120 0.44 OM021336

Bdi59 TACCCTTCACTCTGCTTCCC CAGTGTCAAGTTTCTGGTTCTG (AT)n 2 80-94 0.47 OM021337

Bdi65 GGACATGATTGAGCAGCTTAGG TGGACGCCATTTCTGCTTTG (AC)n 4 108-110 0.24 OM021338

NA: number of alleles, PIC: Polymorphism Information Content, Cross amp: cross-amplification.

The variability of the microsatellite markers was 
generally low, with several loci having only two alleles. 
This is likely due to the drastic reduction in the census sizes 
of the populations of the species in Argentina because of 
hunting and habitat degradation in recent decades (Pereira et 
al., 2019). The observed heterozygosity results are lower than 
those obtained for other cervid species (Table 3), except the 
South Andean deer, which has slightly lower heterozygosity 
levels, probably resulting from very low (<2000 individuals) 
population size (Corti et al., 2011). Curiously, the highest 
reported heterozygosity (mean He=0.765) is for the Pantanal 
population of the same species we studied (Oliveira et al., 
2009). We tried to reproduce the analyses using the same nine 
loci described by those authors, but most loci failed to amplify 
with our tissue and feces samples even after many rounds of 
optimization. The only locus that did amplify (Bdc65) was 
monomorphic in our samples. It is unclear if the differences 
between our results and those from Oliveira et al. (2009) 
reflect actual biological differences (related, for example, to 
larger populations sizes of deer populations in the Pantanal) 
or to technical problems related to the set of microsatellites 
described by them.

Another important result of this work was that it 
showed how amplicon sequencing can be very useful for 

the characterization and analysis of microsatellites in the 
Conservation Genetics of non-model organisms, since a 
large number of markers can be simultaneously analyzed. 
This can be particularly useful for organisms with low 
levels of heterozygosity, such as land vertebrates, whose 
current distribution is only about 5% or their original one 
(Li et al., 2015) with the consequent loss of gene variation 
(Willoughby et al., 2015). Over the last few years, analyses 
of single nucleotide polymorphisms (SNPs) began to replace 
microsatellites in studies of genetic variability, since they 
required the amplification of shorter fragments (~50bp versus 
~100bp) (Weinman et al., 2015) and presented similar or even 
greater resolution to that provided by microsatellites (Weinman 
et al., 2015). Furthermore, although microsatellite markers have 
been widely used in population genetic studies, they do not 
provide sequence information and present inconveniences such 
as homoplasies and null alleles (Estoup et al., 2002). However, 
the use of SNPs has its own disadvantages. The platforms used 
to genotype SNPs require expensive and specialized equipment 
and may not be available to every research laboratory (Andrews 
et al., 2018). They are also biallelic and may be worse predictors 
of genetic variability at the genomic level than microsatellites 
(Smitz et al., 2016). It has been shown that the number of SNP 
loci needed to achieve equivalent statistical power is between 
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Table 2 – Diversity indices for polymorphic loci of the Paraná Delta population.

Locus NA HO/HE HWE p-value

Bdi04 2 0.21/0.27 0.37

Bdi06 1 - -

Bdi09 3 0.06/0.18 0.03

Bdi10 2 0.19/0.18 1.00

Bdi11 3 0.25/0.33 0.20

Bdi12 2 0.21/0.34 0.14

Bdi18 1 - -

Bdi19 2 0.36/0.52 0.54

Bdi21 2 0.58/0.51 0.66

Bdi24 2 0.53/0.44 0.61

Bdi26 2 0.11/0.19 0.16

Bdi30 2 0.32/0.48 0.17

Bdi36 3 0.50/0.55 1.00

Bdi37 5 0.79/0.68 0.20

Bdi39 3 0.56/0.65 0.69

Bdi40 2 0.40/0.51 0.60

Bdi42 3 0.68/0.58 0.02

Bdi44 2 0.11/010 1.00

Bdi49 3 0.39/0.54 0.24

Bdi51 3 0.47/0.52 0.63

Bdi55 2 0.44/0.36 0.53

Bdi57 2 0.06/0.18 0.10

Bdi58 3 0.82/0.54 0.11

Bdi59 4 0.32/0.49 0.04

Bdi65 2 0.16/0.31 0.08

NA: number of alleles, HO: observed heterozygosity, HE: expected heterozygosity, HWE p-value: significative at 5% for Hardy-Weinberg equilibrium 
test, FIS: inbreeding coefficient, FIS p-value: significative at 5% for the inbreeding coefficient.

Table 3 – Levels of microsatellite variation in some cervid species, ordered by increasing He values. He = mean Hardy-Weinberg expected heterozygosity; 
Ho = mean observed heterozygosity; Nal = range or mean number of alleles per locus.

Species #loci He Ho Nal Ref

Hippocamelus bisulcus 14 0.344 0.341 2-3 Corti et al., 2011

Blastocerus dichotomus 25 0.363 0.383 2-5 This work

Elaphurus darwinianus 5 0.520 0.560 2-4 Zeng et al., 2007

Capreolus pygargus 12 0.555 0.461 4-6 Lee et al., 2015

Cervus sichuanicus 9 0.562 0.756 6.56 He et al., 2014

Cervus elaphus 14 0.600 0.580 6.8 Dellicour et al., 2011

Ozotoceros bezoarticus 12 0.633 0.411 7.58 Raimondi et al., 2012

Mazama gouazoubira 10 0.700 0.550 5.6 Caparroz et al., 2015

Odocoileus virginianus 11 0.750 0.721 8-20 Miller et al., 2019

Capreolus capreolus 8 0.760 0.590 9-18 Zachos et al., 2006

Blastocerus dichotomus 9 0.765 0.745 4-12 Oliveira et al., 2009

four and twelve times higher than for microsatellites (Liu et 
al., 2005). More importantly, many of the currently available 
SNPs methodologies (such as those from the RADSeq family; 
Andrews et al., 2018) require genomic DNA of good quality, 
which is not always available in conservation genetic studies, 
particularly of rare or elusive species. 

This work is one of the first to use amplicon sequencing 
in non-invasive samples, in addition to Eriksson et al. (2020) 
and De Barba et al. (2017). This is particularly important 
considering that the low quality and quantity of the DNA 
from fecal samples hinders their analyses by mainstream SNP 
methods like RADseq, GBS or WGS (Andrews et al., 2018). 
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