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Highlights: 

 Plasma-catalytic NOx formation was studied at atmospheric P and low T using a range of 

materials 

 Sharp edges and high surface area of plasma catalysts enhance NOx formation 

 Catalyst particles with 0.2 mm diameter produced 2.5 times higher NOx than 1.3 mm 

 Active metal oxides enhanced NO oxidation to NO2 
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ABSTRACT 

The direct synthesis of NOx from N2 and O2 by non-thermal plasma at atmospheric pressure and low 

temperature is presented, which is considered to be an attractive option for replacement of the Haber-

Bosch process. In this study, the direct synthesis of NOx was studied by packing different catalyst support 

materials in a dielectric barrier discharge (DBD) reactor. The support materials and their particle sizes 

both had a significant effect on the concentration of NOx. This is attributed to different surface areas, 

relative dielectric constants and particles shapes. The nitrogen could be fixed at substantially lowered 

temperatures by employing non-thermal plasma-catalytic DBD reactor, which can be used as an 

alternative technology for low temperature synthesis. The γ-Al2O3 with smallest particles size of 250-160 

μm, gave the highest concentration of NOx and the lowest specific energy consumption of all the tested 

materials and particle sizes. The NOx concentration of 5700 ppm was reached at the highest residence 

time of 0.4 sec investigated and an N2/O2 feed ratio of 1 was found to be the most optimum for NOx 

production. In order to intensify the NOx production in plasma, a series of metal oxide catalysts supported 

on γ-Al2O3 were tested in a packed DBD reactor. A 5 % WO3/ γ-Al2O3 catalyst increased the NOx 

concentration further by about 10 % compared to γ-Al2O3, while oxidation catalysts such as Co3O4 and 

PbO provided a minor (~5 %) improvement. These data suggest that oxygen activation plays a minor 

role in plasma catalytic nitrogen fixation under the studied conditions with the main role ascribed to the 

generation of microdischarges on sharp edges of large-surface area plasma catalysts. However, when the 

loading of active metal oxides was increased to 10%, NO selectivity decreased, suggesting possibility of 

thermal oxidation of NO to NO2 through reaction with surface oxygen species. 

Keywords: plasma catalysis, nitric oxides, catalyst support, support particle size, supported active 

metal oxides. 
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1. Introduction 

Nitrogen, being an important constituent of amino acids, is essential for life on earth [1–3]. However, this 

abundant element of atmosphere is hardly accessible to most living beings, because of the extremely 

stable N-N triple bond, which demands unusually high activation energy barrier. To become accessible, 

nitrogen must be chemically bonded to oxygen or hydrogen through the process of nitrogen fixation [1]. 

Nitrogen is artificially fixed with hydrogen through the Haber-Bosch process producing ammonia. This 

process sustains 40 % of today’s population and its role will only grow along with the rapidly growing 

global population [1,4–7]. However, the Haber-Bosch process developed at the beginning of the 20th 

century is notoriously energy-inefficient. It consumes almost 2 % of world’s total energy production and 

emits 300 million metric tons of CO2 [8,9]. Modern technological and ecological standards require a 

considerable reduction in its environmental footprint and an increase in its energy efficiency. 

Nevertheless, the modern Haber-Bosch process has almost reached its theoretical limits on energy 

efficiency, so further improvements require a thorough search for a totally different approach [10]. 

Among several alternatives, electricity-driven plasma processes are considered to be very attractive 

candidates for the Haber-Bosch replacement. The idea arises from the thermodynamically non-

equilibrium nature of non-thermal plasma (NTP), where electrons have a temperature of thousands of 

degrees, while the bulk gas is close to room temperature [11,12]. As a result, highly reactive species are 

formed enabling NTPs to conduct thermodynamically unfavorable reactions at low temperatures [11]. 

Unfortunately, the reactions taking place in NTP are difficult to control and the selectivity is rarely 

optimum towards the desired products. Hence, NTP is combined with heterogeneous catalysis through 

Plasma Catalysis, and it is a rapidly growing research area [13–17]. Plasma enables reactions at low 

temperatures and at faster rates, whereas catalysts increase reaction selectivity [14,15,18]. When plasma 

and catalysts are combined, they have very strong interactions and often yields a synergetic effect. 

Presence of catalyst is known to influence plasma discharge by enhancing the electric field, by changing 

the discharge type, and by facilitating micro-discharge formation in catalyst pores. Similarly catalyst’s 

exposure to plasma changes its morphology, reduces metallic oxide to metallic catalyst [19,20]. Non-

thermal plasma-catalyst systems have been effectively investigated for a range of processes such as CO2 

conversion to value added products [14,21], CH4 reforming [22–24], volatile organic compound 

abatement [25–28], and automotive applications [18,29]. 

It is striking to note that nitrogen fixation via NTP, has a theoretical energy consumption 3 times lower 

than the Haber-Bosch process [10], offering a possibility of a fossil-free nitrogen fixation using renewable 

electricity with a fraction of the current energy costs [30,31]. Compared to the high-pressure Haber-
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Bosch process, plasma nitrogen fixation offers an opportunity for atmospheric pressure and ambient 

temperature reactions with substantially improved plant safety, decreased operational and capital costs, 

although it will add new (electrical) equipment to the process such as transformer and electrical power 

supply system which are needed for plasma generation.  

The plasma processes are more attractive on a smaller scale such as a container or modular plant [32]. 

The concept of de-centralized production of chemicals is gradually gaining an acceptance in chemical 

industry [33–35], and hence, opens new doors for containerized plasma nitrogen fixation process. This 

development would benefit remote and stranded areas in enabling them to produce their own fertilizer 

and fuels, using only renewable energy sources such as solar or wind [30,36–39]. 

Despite the important advantages, catalytic plasma nitrogen fixation is rather poorly studied [10,30,36]. 

Plasma catalytic NOx synthesis was investigated by Cavadias and Amouroux in inductively coupled high 

frequency plasma reactor coated with catalysts such as MoO3 and WO3 [40]. The yield of NOx was about 

8 % without catalyst, but increased to 19 % by using the WO3 catalyst. Mutel et al. [41] used the same 

metal oxides deposited on the plasma reactor wall. The energy consumption for catalytic nitrogen fixation 

process was found to be 0.93 MJ/mol of N, which provided a 78 % improvement in energy efficiency 

compared to thermal plasma process [41]. However, this energy consumption numbers are still far away 

from the energy consumption by Haber-Bosch process (i.e. 0.48 MJ/mol), which uses thermal catalysis. 

Belova et al. [42,43] investigated plasma catalytic nitric oxide synthesis in a glow discharge reactor and 

found the following order of catalyst effectiveness Pt>CuO>Cu>Fe>Ag [42,43]. Recently, Cu-ZSM-5 

catalyst was investigated by Sun et al. [44] for NOx formation in DBD reactor with a single stage 

configuration, where temperatures above 350oC was found favorable for NOx formation [44]. Plasma-

catalysis assisted ammonia synthesis in a DBD reactor is also reported in the literature as an alternative 

to thermal catalysis process, however the energy efficiency and yields are far from the current 

commercial process [30,45–47]. Nevertheless, to the best of our knowledge, no follow-up literature was 

published or commercial process developed, acknowledging and explaining the obvious synergetic effect 

of the catalyst in the results obtained. Similarly, various catalytic materials such as a range of metal 

oxides and metal-exchange zeolites were patented for plasma nitrogen fixation applications [48,49]. 

However, no independent studies of these catalysts have been published to assess their suitability for 

plasma NOx synthesis and no systematic work exists covering the performance parameters of the plasma 

reactor.  

The analysis of existing literature shows that very few catalysts have been systematically studied for 

plasma catalytic NOx synthesis in NTP. Moreover, no study has been carried out to explain the reasons for 

the synergetic effect between plasma and catalyst. In particular, there are a number of overlapping 

reasons for the synergetic effect between the plasma and catalyst, e.g. influences caused by the different 
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support material, the different active catalyst and process parameters, etc. The decoding of such a 

complex topic needs a systematic approach in a simplified way. Till now, the information on the effect of 

catalyst support materials and reactor performance parameters on NOx synthesis are scarce. Therefore, 

in this paper, we aim for a systematic study of plasma NOx synthesis on supported oxide catalyst in a 

one-sided DBD reactor. Firstly, the effect of catalyst support, its dielectric properties, porosity, particle 

size and shape are investigated. Secondly, the main process parameters such as residence time and feed 

ratio are studied. Finally, a series of active metal oxides supported on the optimal support are tested. 

2. Experimental section 

2.1. 1-SDBD Plasma-Catalytic Reactor 

Plasma NOx synthesis was performed in a one-sided DBD plasma reactor at atmospheric pressure with a 

bed of catalytic material placed in the discharge zone. The schematic of the experimental set-up is shown 

in Fig. 1. Two different configurations of 1-SDBD reactor were used. Both reactor configurations 

consisted of an axial stainless steel (SS) inner high voltage electrode and a ground electrode made of SS 

mesh tightly wrapped around the quartz reactor body and a support/catalysts were embedded in the 

plasma zone. The discharge gap of 2 mm and the length of the discharge zone of 60 mm were identical 

for both reactor configurations. For the catalyst support experiments, the high voltage electrode was 20 

mm o.d. and the quartz reactor body was 24 mm i.d. For the supported catalyst experiments, these 

dimensions were 6 and 10 mm, respectively. In the latter case, the small volume of the reactor allowed 

for tests with a small amount of the catalyst (about 2 g) compared to ~10-20 g used in the larger 

reactor. The reactors were placed in a tubular furnace to heat only the plasma discharge (catalyst) zone, 

while keeping the reactor ends outside of the furnace (shown in Figure SI-11 of supplementary 

information).  

Both reactors were powered by a customized Xenionik EP 4000 alternating current power supply 

consisting of a signal generator (Siglent SDG 1025), a 4 kW audio amplifier (Behringer EP 4000) and a 

high voltage transformer (Xenionik). The applied voltage was measured using a high voltage probe 

(Tektronix P6015A) near the high voltage electrode. The capacitor (100nF) voltage was measured using 

1:10 voltage probe on the grounded side as shown in Fig. 1. The power consumed by the DBD plasma 

reactor was calculated using the Lissajous method [50], based on the area of the plot between the 

applied and the capacitor voltages. All the electrical signals were recorded using a USB powered 4 

channel PC Oscilloscope (PicoScope® 3000). The equations used to calculate the total power (Ptot), 

specific energy input (SEI), and the energy consumption per mole of NOx (ENOx) are shown in Eq. (1-3), 

respectively.  


cycleone
ptot dVtVCfP )(     (1) 
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Where V is the applied voltage, Cp - capacitance of the capacitor, ƒ - applied voltage frequency, Qgas - 

volumetric gas flow rate, CNOx - concentration of NOx in gas.  

Flow rates of N2 and O2 gases (Linde Gases, 99.9%) introduced into the reactor were controlled using 

mass flow controllers (Bronkhorst). The reaction products were analyzed online in the gas cell with CaF2 

windows (Specac) using a Fourier transform infrared spectrophotometer (Shimadzu IRTracer-100) at the 

resolution of 0.5 cm-1. The concentrations of NO and NO2 were determined by the adsorption bands at 

1900 cm-1 and 1630 cm-1, respectively, using a series of calibration gas mixtures. The concentration of 

NOx was determined as a sum of NO and NO2 concentrations. In all the experiments, full spectra were 

recorded and the main products were NO and NO2. In a few experiments, N2O was detected, but its 

concentration was negligible (N2O intensity was more than 20 times lower than that of NO2). Ozone was 

not detected, because it might have quickly oxidized NO to NO2, even if formed. In all the cases, N2 and 

O2 conversion was below 0.5 %. Hence, NO selectivity reported was calculated using Eq. 4, 

𝑆𝑒𝑙𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦 𝑁𝑂 =  )( 2NONONO CCC    (4) 

The operation frequency and the pulse width were optimized in the range of 1–40 kHz and 15–30 µs, 

respectively, to achieve the highest NOx concentration. For the bigger reactor, the frequency of 18 kHz 

and the pulse width of 20 µs was found to be the optimum. Whereas for the smaller reactor, the 

optimum frequency was 21 kHz and the pulse width 25 µs. The tested material was kept in-place by 

quartz wool (Carl Roth GmbH) positioned outside the catalyst bed.  

Before every experiment, the reactor was heated to 150 oC with pre-heated nitrogen flow of 1 L/min to 

dry the tested support/catalysts. All the experiments were performed twice and all reported data were 

obtained as an average of at least 10 values obtained. The temperatures of the plasma region and the 

gas outlet were monitored continuously with thermocouples. For monitoring the plasma region 

temperature, the thermocouple was installed externally 1.5 cm away from the grounding electrode, the 

maximum temperature was found to be 200 oC. The outlet product stream temperature was always less 

than 26 oC. Heat transfer calculations based on heat fluxes in the reactor and introduced power showed 

that temperature inside the reactor was lower than 250oC. Blank experiments with thermal (non-plasma) 

catalysis were performed up to the temperature of 400 oC and neither NO nor NO2 were detected. Hence, 

all NOx obtained was formed during plasma and plasma-catalytic processes.  
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2.2. Support and Catalyst Preparation 

The support materials investigated in this work, γ-Al2O3, α-Al2O3, TiO2, MgO, and BaTiO3 were purchased 

(Mateck GmBh) in the form of ~3 mm pellets, crushed and sieved into a series of particle fractions for at 

least 24 h using a mechanical shaker until constant weight.  

Supported catalysts were prepared using conventional wet impregnation techniques using pelletized γ-

Al2O3 support. Active materials were selected to study the effect of oxygen binding energy as well as the 

performance of partial oxidation catalyst. About 50 g of the support was placed into a 1 L round-bottom 

flask, 500 mL of the precursor aqueous solution was added. Water was slowly evaporated by rotavapor 

for 5 h at 40 oC. The samples were placed in a tube furnace and dried at 110oC for 4 h (heating rate 1 

oC/min) and calcined for 2 h at 400 oC in air. The amount of the precursor was taken to obtain the active 

component (oxide) loading of 5 or 10 wt %. The following precursors were used: cobalt (II) nitrate (Alfa 

Aesar, >98 wt %) for Co3O4, oxalic acid dihydrate (Sigma-Aldrich, >99 wt %) and ammonium 

heptamolybdate (Fluka, >99 wt %) in 3:1 molar ratio for MoO3,  nickel (II) nitrate hydrate (Alfa Aesar, 

>98 wt %) for NiO, oxalic acid and ammonium metavanadate (Alfa Aesar, >99 wt %) in 3:1 molar ratio 

for V2O5, copper (II) nitrate (Alfa Aesar, >99 wt %) for CuO, ammonium tungsten oxide hydrate (Alfa 

Aesar, >99 wt %) for WO3, lead (II) nitrate (Alfa Aesar, >99 wt %) for PbO.  

2.3. Characterization of Support and Catalyst 

Surface areas and pore distributions were measured by N2 physiosorption using a TriStar 3000 

micrometrics surface area and porosity analyser using standard multipoint Brunauer-Emmett-Teller (BET) 

analysis and Barrett Joyner Halenda (BJH) pore distribution methods. All specimens were dried at 150 oC 

for 1 h before the measurements in nitrogen flow. The results are presented in Table 1. All the materials 

except γ-Al2O3 and TiO2 were non-porous (Vpore<0.5 μL/g). Average pore diameter for γ-Al2O3 was 15.5 

nm and for TiO2 – 16.6 nm. Nitrogen adsorption isotherm and a corresponding pore size distribution of γ-

Al2O3 is presented in Fig SI-1, Supplementary Data. 

Scanning electron microscopy (SEM) study was performed on the Zeiss EVO 60 instrument equipped with 

an energy-dispersive X-ray spectrometer Oxford instruments Inca System 350 under the pressure of 10-2 

Pa and electron acceleration voltage of 20 kV. Powdered samples as well as fractured pellets were 

studied by applying them on conductive tape followed by carbon-coating before the SEM analysis.  

 

Powder X-ray diffraction measurements of crushed samples were performed using an Empyrean powder 

X-ray diffractometer equipped with a monochromatic Kα-Cu X-ray source in the 2θ range of 10-80o, step 

length 0.026o, step time 147 s. The X-ray diffraction measurements are presented in SI-2. The 
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characterisation was performed before and after the plasma catalytic tests and no differences in either 

textural and chemical properties of the catalysts were observed. 

 

3. Results and discussion 

3.1. Effect of support material  

3.1.1. Effect on NOx production  

To understand the effect of the different support materials on NOx production, experiments were 

conducted with 500-630 μm particles (except quartz wool) at varying specific energy input and flow rate 

of 1 L/min with N2:O2 volume ratio of 1. Support materials studied were γ-Al2O3, α-Al2O3, MgO, TiO2, 

BaTiO3 and quartz wool. A blank experiment was also conducted without packing to compare with the 

packed bed experiments. 

 

In Fig. 2a, the concentration of NOx is plotted against the SEI for different supports. The input power was 

in the same range for all the tested catalyst supports. The effect of the packed catalyst support on NOx 

production is clearly visible, the NOx concentration increases proportionally with SEI for all support 

materials. The SEI for quartz wool, MgO, γ-Al2O3, α-Al2O3 and the blank experiment fall in the same range 

of 2000 to 4000 J/L with varying concentration of the NOx from 700 to 3000 ppm. Comparing these 

catalyst supports shows that the blank experiment without packing any catalyst support always has the 

lowest NOx concentration at the same SEI. Whereas, the γ-Al2O3 gave the highest NOx concentration. At 

the SEI of 4000 J/L, γ-Al2O3 gives a 100% increase in the NOx concentration compared to the blank 

experiment. Quartz wool was also found to be an efficient catalyst support for NOx generation, similar to 

γ-Al2O3.  

The results obtained for the higher relative dielectric constant supports such as TiO2 and BaTiO3 are 

located in a lower range of SEI (< 2500 J/L). The NOx concentrations for these two packed materials are 

similar at SEI higher than 1250 J/L. However, for these materials at comparable SEI, NOx concentrations 

are substantially lower, indicating the fact that the plasma discharge might be less intense and was in the 

form of glow discharge.   

Another important criteria is the selectivity of support materials to produce either NO or NO2. In Fig. 2b, 

the selectivity towards NO is plotted against the SEI. The selectivity towards NO for all the materials 

studied lies around 50 % in the SEI range from 1500 to 3800 J/L, while it changes non-linearly at a lower 

SEI reaching more than 90 % for BaTiO3 and TiO2 at the lower SEI studied. On the contrary, at a higher 

energy input (> 3800 J/L), the NO selectivity slowly decreased. These trends suggest that nitrogen 
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fixation in NTP initially occurs in the form of NO. When the energy input increases, chances of NO 

oxidation increase, resulting in the increasing formation of NO2. The NO selectivity for γ-Al2O3 is lower 

than quartz wool, even though both of them produced equally high concentration of NOx. This difference 

in NO selectivity for γ-Al2O3 and quartz wool suggests the possibility of reaction of NO species with 

surface adsorbed oxygen species on γ-Al2O3 to yield higher amount of NO2. Based on the results from this 

study, one can choose the SEI range and the catalyst support to obtain the desired product. 

3.1.2. Reasons of varied effect on NOx production with different support material  

Discharge Behavior 

The electrical signals for various support materials can provide important information on discharge 

behavior of the studied systems. Even though the signal generator supplies energy in the form of pulses 

with a frequency of 18 kHz and a pulse width of 20 µs, the voltage and current signal measured on the 

DBD reactor was quasi-sinusoidal for all the packing materials investigated, as shown in Fig. 3.  

As can be seen from Fig. 3, the spikes on the capacitor voltage /current were different for different 

materials and resulted in different discharge behaviors as shown in the characteristic photographs 

presented in SI-7 of the Supplementary Material. These spikes are characteristic for the formation of the 

microdischarges (filamentary discharges) in DBD reactor [27,51]. As reported for the standard one-sided 

DBD without packing, the microdischarge crosses the complete discharge gap, starting from the inner 

electrode to the surface of the dielectric. When the discharge gap was packed with support material, the 

available space for the filamentary microdischarge formation became limited. Thus, only weak 

microdischarges were generated in-homogeneously in the void space between pellets and between 

pellets and the dielectric wall as well as pellets and the high voltage electrode. Along with filamentary 

discharges, surface discharges were formed and propagated over the support material surface [52,53]. 

Therefore, the filamentary discharge formed in the DBD reactor without packing transits into the 

combination of localized weak filamentary discharges and surface discharges in case of the packed bed 

DBD reactor [52].  

When the discharge gap is packed with catalyst support, the microdischarges cannot travel on the same 

tracks any more. It can be noticed from V-I curve of γ-Al2O3 packed DBD and without packed DBD that 

they are quite similar. Thus, it can be concluded that there were microdischarges generated between the 

particles surfaces or between the particles and electrode/dielectric in case of γ-Al2O3 packed DBD.  

However, for BaTiO3, no obvious spikes were identified demonstrating that no microdischarges had been 

formed. Minor surface discharges might have occurred at the catalyst surface resulting in low NOx 

formation. For MgO and TiO2, the spikes were moderate but weaker than the blank experiment, which 

demonstrated the formation of weak microdischarges. It is also worth noting that the quartz wool had 

the highest amplitude for current and capacitor voltage spikes, which mean that the microdischarges 
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generated in case of quartz wool were stronger than the other catalyst supports. Such a difference 

between discharge behaviors of quartz wool and γ-Al2O3 can also explain the difference in NO selectivity 

(Fig. 2b). More intensive plasma generation in case of quartz may have resulted in larger amount of high-

energy species to form NO. 

As a result, various materials provide substantially different discharge behavior, either improving or 

suppressing the formation of microdischarges. From the comparison of the V-I signals and NOx 

concentration data, it is clear that the formation of microdischarges is essential for the nitrogen fixation. 

The possible reasons for the different V-I behavior of the materials studied are the differences in relative 

dielectric constant, surface area, or particle shape. The detailed analysis of these factors is provided 

below. However, it should be mentioned that other parameters such as surface electrical conductivity and 

presence of nanofeatures generating high electric field may also contribute. Therefore, further controlled 

experiments are required to elucidate these parameters. 

Surface area 

As shown in Fig. 2a, the γ-Al2O3 catalyst support, with the highest surface area, gave the highest NOx 

concentration ( 

). A more direct comparison between γ-Al2O3 and α-Al2O3, which have a similar chemical functionality and 

close relative dielectric constants, shows that the surface area is crucial for plasma nitrogen fixation.  

Surface area is known to be essential for conventional (thermal) heterogeneous catalysis for extensive 

reasons. A high surface area in a catalyst provides more active sites; or alternatively, a catalyst support 

with a higher area generally holds smaller metal nanoparticles with larger active (metal) area. In the case 

of plasma catalysis, the reaction is activated by the microdischarges between the particles or between 

particles and electrode/dielectric. The discharge area without any packing material is only the area of the 

reactor walls. In the presence of the packing particles, the discharges happen mainly on the surface of 

the particles as observed in other studies [54]. Hence, the higher surface area is considered to lead to 

higher frequency of discharges resulting in higher NOx concentration. Similarly, an empty DBD reactor 

has a negligible geometric area of its walls and is the reason for the lowest NOx concentration observed 

(Fig. 2a). 

Relative dielectric constant 

As described in the section 3.1.1, at the same input power, the NOx concentration obtained with TiO2 and 

BaTiO3 catalyst supports was much lower compared even to the blank experiment. The relative dielectric 

constants of TiO2 and BaTiO3 are much higher than that of other materials ( 

), which suggests an important role of the relative dielectric constant on NOx plasma synthesis. For a 

comparison, the blank experiment can be considered as an experiment with a relative dielectric constant 

of 1 for the packing material, which is the mixture of N2 and O2. All the other materials have a relative 
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dielectric constant lower than 10, while TiO2 has 85 and BaTiO3 has in the range of 600-4500 depending 

on temperature [55].  

The relative dielectric constant is an indication about how easily a material can be polarized when an 

electric field is applied. A higher relative dielectric constant means a material can polarize more easily 

when an electric field is applied and a polarized material creates an internal electric field which opposes 

the overall electric field. This gives a lower overall electric field and results in decreased energy of 

electrons. In other words, the voltage on the packing material (Up) depends on the relative dielectric 

constants of the gas phase (εg) and packing material (εp) as well as mean gap thicknesses in the gas (dg) 

and the solid respectively (dp) as shown in Eq. 5 [54]. 

g

p

p

g

gp
d

d
UU




      (5) 

Thus, with a higher relative dielectric constant, a lower voltage will be added to the packing material 

because the sum of Up and Ug is the total voltage applied to the packed DBD reactor. In case of BaTiO3, 

which has a very high relative dielectric constant, plasma ignition is very easy. As a result of lower 

voltage on the packaging material, electrons have lower acceleration and carry smaller energy. Smaller 

electron energy leads not only to a decrease in the energy of the reactive species, but also to decreased 

gas ionization as well. The latter happens because in a higher electric field, shorter distance is required 

for electrons to reach the ionization energy resulting in larger number of ionizations inside the fixed 

discharge gap. In our case, only very low plasma current could be observed when BaTiO3 was used as 

support. Also, BaTiO3 does not show the spikes in current or capacitor voltage signals, indicating the 

presence of glow (uniform discharge) instead of filamentary discharges. As a result, it was difficult to 

increase the SEI to BaTiO3 packed DBD, even though the input energy was of the same magnitude as 

other supports. Thus, the results from BaTiO3 are located in the lowest range in Figure 2a. When 

alumina, with a lower relative dielectric constant, was used as support for the reaction, intense plasma 

was visible. This also resulted in a higher concentration of NOx (Fig. 2a).  

Shape of the catalyst support 

The surface area and the relative dielectric constant are not the only factors that affect NOx formation 

because the quartz wool has shown very high NOx concentration as γ-Al2O3. A possible explanation for 

this effect is the increase in electric field in places with highest curvature. Quartz wool has a fine fibrous 

structure with the rigid sharp edges which induces very high electric fields as reflected by the sharpest V-

I spikes (Fig. 3e). Chen et al. [56] proved that the sharp edges of packing material led to higher local 

electric fields and highly energetic electrons [21]. Thus, the superior performance of quartz wool for NOx 

production can be explained by fibrous sharp edge morphology. 
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Similarly, γ-Al2O3 also showed considerable number of high intensity peaks for current and voltage, which 

could be the result of the sharp edges on the particles as can be seen from the SEM pictures in (Figure 

SI-3). Analogous sharp edges can also be seen in case of BaTiO3. For BaTiO3, the effect of electric field 

enhancement by sharp edges could have been nullified by its comparatively high relative dielectric 

constant.  Similarly, the shape considerations also worked for other materials. For example, the SEM 

shows that MgO and TiO2 have much smoother edges in agreement with lower microdischarges and NOx 

formation.  

3.2. Effect of particle size  

3.2.1. Effect on NOx production  

Results from this work show that particle shape has substantial effect on NOx formation and γ-Al2O3 was 

found to be the most efficient catalyst support. As a result of this, the effect of γ-Al2O3 particle size on 

NOx formation was studied further.   

The concentration of NOx increases proportionally with SEI for all particle sizes investigated as shown in 

Fig. 4a. There is a marked effect of particle size on the NOx concentration. The smaller support particles 

gave higher concentration of NOx as compared to the corresponding larger support particle. The highest 

NOx concentration of 5000 ppm was achieved with smallest support particle (250-160 μm) tested. The 

reasons could be the changes in discharge behavior and void fraction which are discussed in the next 

section. 

For all particle sizes, the NO selectivity decreased with the increasing SEI, as shown in Fig. 4b. The 

chances of NO oxidation increased with the corresponding increase in energy input, yielding higher 

amounts of NO2. Although not linearly, but generally smaller particles favored NO2 formation than NO 

formation. This is because the smaller particles exhibit higher discharge and surface area, which 

increases the electron energy as well as influences the residence time. These two factors contribute to 

the oxidation of NO to NO2 during the course of the reaction. A previous study showed that the SEI and 

residence time are the two factors that lead to further oxidation of NO to NO2 [57]. Here, the residence 

time is influenced by the void fraction which will be discussed below. 

3.2.2. Reasons of varied effect on NOx production with different particle sizes  

Discharge behavior 

First of all, the change of discharge behavior is the most straightforward explanation of particle size effect 

as can be seen from the V-I curves (Fig. 5). Comparing the current and voltage curves for various particle 

sizes, it can be noted that the particle size has a considerable effect on the intensity of spikes. For the 

smaller particles sizes, a higher amplitude of current fluctuations was observed demonstrating higher 

© 2017. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/



intensity of microdischarges formed. As discussed in section 3.1.2, these high intensity spikes are the 

reason for the higher amount of NOx produced. The smaller particles with sizes of 355-250 and 250-160 

μm, generated a higher amount of NOx likely due to the high intensity localized electric field generated at 

particle-particle, particle-electrode and particle-dielectric contact points. The decrease in the particle size 

also increases the exposed surface area of particle to the plasma discharge. These combinations of 

effects are responsible for higher amount of NOx produced in smaller size particles. 

Void fraction 

Except for the discharge behavior, the void fraction was also changed. For the same reactor volume, the 

void fraction decreases with the decrease in particle size. This decrease in void fraction results in the 

higher number of contact points between support particles and between particle and electrode/dielectric, 

the points where electric field is stronger than the mean value in the reactor [22]. Hence, the discharge 

area must have been much higher and intense in case of DBD reactor packed with smaller particles than 

with the larger particle sizes. As a result, NOx formation increased with the smaller particles, which is in 

good agreement with the results obtained for CO2 conversion [21,22,54].   

3.3. Effect of residence time  

The mean residence time will affect the extent of the reaction in conventional thermal catalysis. Thus, the 

performance of DBD reactor with varying residence time was investigated with particles of γ-Al2O3 (500-

355 μm) up to an acceptable pressure drop. Therefore, four residence times were investigated with a 

feed ratio (N2/O2) of 1 (Fig. 6). The residence time of 0.1 s, 0.13 s, 0.2 s and 0.4 s were achieved by 

changing the gas feed flowrate to 2, 1.5, 1, to 0.5 L/min, respectively.  

Fig. 6a shows the effect of residence time and SEI on NOx concentration. Concentration of NOx increases 

proportionally to SEI for all residence times investigated. The highest concentration of 5670 ppm was 

achieved with SEI of 8980 J/L for residence time of 0.4 s.  

Longer residence times results in a higher concentration of NOx because of longer reaction times and the 

higher SEI per unit volume of the feed gases. Increase in residence time helps in the ionization and 

reaction of the maximum number of reactant species. Supplying a higher SEI per unit volume of 

reactants gives high mean energy to electrons to react and produces the reaction species, which lead to 

reaction to produce nitric oxide and NO2. 

Fig. 6b shows the selectivity to produce NO over NO2. For the highest residence time, 0.4 s, the 

selectivity for NO decreases with the increased SEI, therefore NO2 formation is favored over NO 

formation. At short residence time, i.e. 0.1 s, selectivity for NO formation increases. Thus, the NO2 

formation is favored over NO formation at lower residence time. With a long residence time inside the 

© 2017. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/



discharge zone, NO is further oxidized to NO2. Whereas with a short residence time, it is not sufficient for 

oxidation of NO to NO2, therefore NO leaves in higher amount as final product.  

3.4. Effect of Feed Ratio  

The effect of feed ratio on NOx synthesis was investigated by varying the feed ratio of N2 to O2 from 0 to 

4. The effect of feed ratio on the concentration of NOx and the selectivity of NO is shown in Fig. 7. A feed 

ratio of 1 to 1.5 was found to be optimum to produce higher amount of NOx, similar to our previously 

published study on gliding arc reactor [57]. At a feed ratio of 1, reactive species of nitrogen and oxygen 

have equal probability to combine with adjacent oxygen and nitrogen species, respectively. The 

combination reaction gives NO first and then further oxidation yields NO2.  

As the ratio of N2 to O2 increases, NO is produced in higher amount than NO2. For a ratio of 4, the 

selectivity of NO is 56 % and at the feed ratio of 0.25 the selectivity of NO is 35%. At a lower feed ratio 

meaning a higher feed rate of oxygen, the formation of NO2 is favored more as the NO produced is 

readily further oxidized to NO2 because of the higher proportion of O2 in the feed.  

3.5. Active Metal Oxides Supported Catalysts 

In order to study the effect of catalyst in plasma nitrogen fixation, the best performing γ-Al2O3 support 

was selected and various metal oxides were deposited on it. Supported rather than single-phase catalysts 

were used, so the overall physical properties of the particles such as relative dielectric constant and 

shape were constant, apart from catalyst surface chemical properties which are determined by the 

supported active oxide. This combination provided a direct comparison of the plasma catalytic properties 

of the active metal oxide, rather than a combination of physical and chemical properties as has been 

previously performed.  

The conventional catalysts for complete oxidation of hydrocarbons were selected for the study, because 

their main role in the thermal activation of oxygen species is thoroughly studied [58,59]. It is expected 

that in the plasma-catalytic nitrogen fixation, nitrogen species will be activated by the high-energy 

plasma species, then these species should react with the oxygen species either thermally activated by the 

catalysts or by plasma.  

To study these hypotheses, a wide range of oxides with various degrees of oxygen activation abilities 

were supported. For example, alumina is almost inactive in oxygen activation, while PbO, CuO and Co3O4 

provide quick oxidation of hydrocarbons with the activity inferior only to noble metals (Fig. SI-5 in the 

Supplementary Data) [58]. Noble metals were not considered in the current work, because highly 

conductive metallic particles have different electronic properties. In such a case, it would be impossible to 

attribute any observed differences in activity to the factor of chemical properties. Other oxides such as 
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NiO, MoO3, V2O5 and WO3 are expected to be of intermediate activity between Al2O3 and Co3O4, if oxygen 

activation step is crucial for nitrogen fixation.  

These catalysts were characterized by nitrogen physisorption, powder X-ray diffraction and SEM. These 

results are given in Fig. SI-1, SI-2, SI-3 and SI-4 respectively in the Supplementary Data. They showed 

that the introduction of the active oxide on alumina did not affect its overall physical properties. 

Elemental mapping confirmed a uniform distribution of the oxides over the support.  

3.5.1. Influence of Active Metal Oxides 

Packing catalyst support or supported metal oxides in DBD clearly shows a considerable improvement in 

the amount of NOx produced compared to the blank experiment conducted as shown in Fig. 8a. Also the 

SEI for all the performed experiments was the same, demonstrating that the assumption of supported 

metal oxides did not change the physical properties of the catalyst support is valid. The comparison of γ-

Al2O3 with the supported catalysts does not show a large increase in NOx concentration. However, the 

trends are in excellent agreement with the results of Gicquiel et al. [60], who showed that WO3 provided 

the highest nitrogen fixation activity in plasma followed by MoO3 and empty microwave discharge reactor. 

 

The catalysts also affected the selectivity towards NO (Fig. 8b). For the blank experiment, the NO 

selectivity was the highest suggesting that the primary product of plasma nitrogen fixation, NO, had 

lower chances of further oxidation to form NO2. For the plasma-catalytic nitrogen fixation, however, the 

results were unexpected. In particular, the most active 5% WO3/Al2O3 catalyst showed the lowest activity 

suggesting that it increased either NO oxidation or provided an alternative direct route towards NO2 

formation. Surprisingly, the other two active catalysts 5% Co3O4/Al2O3 and 5% PbO/Al2O3 which showed 

similar NOx concentrations demonstrated the different NO selectivities, 48 and 56 % respectively. 

Conversely, it was expected to obtain very similar results due to very similar oxygen activation properties 

of these two catalysts. Such a difference indicates that there exists a separate channel for NO2 formation 

on certain catalysts. However, the mechanistic studies do not support the possibility of NO2 formation as 

a product of plasma oxidation of N2 [61,62]. As a result, the effect of the catalyst on NO selectivity could 

be explained in terms of localized discharge formation, i.e. enhancement of plasma formation in the 

catalyst vicinity allowing for higher plasma density, resulting in higher chances of secondary oxidation of 

NO either with plasma-activated oxygen species or with surface adsorbed oxygen species. The catalyst-

dependent plasma formation near the surface was reported by Durme et al. [27].  

Further comparison of the catalytic results has been performed following the known trends in complete 

catalytic oxidation of hydrocarbons, i.e. studying the effect of catalyst activity depending on oxygen 

"binding" energy [58]. Interestingly, there is only a minor correlation between the nitrogen fixation 
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activity in plasma and the activity in oxygen activation (Fig. 9). For example, PbO and Co3O4, which are 

the most active in oxygen activation, demonstrated only slightly higher NOx concentration compared to γ-

Al2O3. Also, the WO3 catalyst showed NOx concentration noticeably higher than expected based on its 

oxygen activation activity. These observations suggest that oxygen activation on the catalysts plays a role 

in plasma-catalytic nitrogen fixation. However, this role is much less important compared to thermal 

oxidation reaction probably because oxygen activation under the studied conditions takes place mostly in 

plasma as shown by the results obtained with all the supported catalysts which were closely similar. This 

means that the main role of plasma catalyst in nitrogen fixation is in the facilitation of microdischarge 

formation rather than the chemical interaction with the plasma-activated species. 

Complete hydrocarbon oxidation usually takes place at elevated temperatures of 300-500 oC, but the 

studied reactions were performed at a reactor temperature of about 250 oC. As a result, it may result in 

insufficient oxygen activation on the catalyst surface and this may affect the conclusions drawn regarding 

the catalytic activity. This possibility and the influence of temperature between 200 and 400 oC for a 

selected NiO/Al2O3 catalyst has been studied and reported in supplementary information section SI-5. The 

results presented in Fig. SI-8 of the Supplementary information show that NOx concentration slightly 

decreases at a higher temperature, which confirms that oxygen activation in plasma nitrogen fixation 

does not play an important role. 

 Influence of Active Metal Oxide Loading 

To study the effect of the supported oxide on plasma nitrogen fixation, several selected catalysts with 

higher active metal contents were prepared. Fig. 10a shows that the NOx concentrations for the 5 and 10 

% active metal oxide loaded catalysts in plasma are very close, which supports the conclusion that active 

metal oxides play a minor role in plasma nitrogen fixation. Furthermore, the catalyst that contain 10 % of 

the active oxides is shifted to a lower SEI compared to that containing 5%, which indicates that for these 

catalysts not only surface chemical properties, but bulk physical properties discussed in 3.1 (e.g., relative 

dielectric constant), were substantially affected. Interestingly, the MoO3 catalyst which was reported by 

several authors to be efficient in plasma nitrogen fixation showed rather marginal improvement compared 

to γ-Al2O3 [41,60].  

However, the difference in catalyst performance was most clear while considering NO selectivity. 

Because, a well-known active oxidation catalyst, 10% Co3O4/Al2O3, provided enough active species for 

oxidation of NO into NO2 (Fig. 10b). Even though, different loadings of metal oxides catalyst found not to 

change the concentration of NOx much, the selectivity to NO2 increased significantly for 10% loaded 

metal oxide catalysts, especially for Co3O4 as can be seen from Fig. 10b. It strongly suggests that the 
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activation of N2 and O2 mainly takes place in the plasma phase and the catalyst do play an important role 

in oxidation of NO to NO2 through reaction with surface adsorbed O species.  

 

 

4. Conclusions 

A systematic study of the plasma catalytic nitrogen oxidation has been performed in a one-sided DBD 

reactor. A range of catalyst supports, α-Al2O3, γ-Al2O3, TiO2, MgO, BaTiO3 and quartz wool were studied, 

which showed completely different behavior. Quartz wool and γ-Al2O3 showed almost twofold increase in 

NOx concentration compared to the blank experiment, while BaTiO3 provided much lower concentration 

due to the formation of glowing discharge compared to numerous filamentous microdischarges that were 

obtained using other supports. Electrical characteristics of the microdischarges were studied and showed 

a direct correlation between the formation of microdischarges and NOx formation. Hence, maximizing the 

formation of microdischarges seems to be an appropriate means of increasing nitrogen fixation in plasma. 

The comparison of the physical properties of the investigated catalyst supports indicated that 3 

characteristics contribute in facilitating microdischarges formation. Firstly, high surface area provides 

large area for the generation of the microdischarges because γ-Al2O3 (~100 m2/g) showed about 30 % 

higher NOx concentration compared to α-Al2O3 (<1 m2/g). Secondly, moderate relative dielectric constant 

(<10), provides high voltage in the packing material and results in high NOx concentration. In case of 

higher relative dielectric constants, the glowing discharge was observed for BaTiO3, producing lower NOx 

concentration. Thirdly, the presence of sharp edges where the electric field is high was an important 

factor. Rigid fibrous quartz wool provided enough sharp edges, where the electric field is stronger to 

generate high intensity microdischarges, which gave higher NOx concentration similar to γ-Al2O3. 

Similarly, smaller particles provided smaller radii curvature, which increased NOx formation by almost 

twofold when comparing γ-Al2O3 particles of 0.2 and 1.3 mm average diameter. However, at this stage it 

is impossible to rule out contribution of other effects such as surface electrical conductivity and presence 

of nanofeatures on the catalyst surface. 

Results of gas residence time study in a plasma reactor packed with γ-Al2O3 showed that a higher gas 

flow rate increases energy efficiency by about 50 %, but decreases total NOx concentration considerably 

in the gas. The gas ratio, N2/O2, of 1, was found to be optimum, with the other ratio in the range of 0.2–

4 providing about 17 % decreased NOx formation due to the preferential formation of the primary NO 

products from such a gas mixture. 

The most important factors that increase the nitrogen fixation efficiency by almost 60 % compared to the 

blank experiment are catalyst’s geometrical factors such as particle sizes and shapes. Hence, the main 
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role of the plasma catalyst seems to be the facilitation of the formation of microdischarges in plasma via 

large surface area and a large amount of sharp edges. Therefore, the catalyst supports which have high 

surface area in combination with sharp edges, such as 3D printed, could yield higher concentrations in 

plasma catalytic nitrogen fixation.  

A range of metal oxides were supported on γ-Al2O3, which provided comparable physical properties of the 

catalysts and allowed for direct comparison of the effect of surface chemistry on the plasma nitrogen 

fixation. The supported catalysts showed rather marginal (at most 10 %) increase compared to the 

catalyst support used (γ-Al2O3). Interestingly, WO3 was found to be the most active, while well-known 

oxygen activation catalyst such as PbO or Co3O4 showed much lower improvement of below 5 %. These 

data show that oxygen activation on complete combustion catalysts plays a role. It is likely that the 

vibrationally excited nitrogen species, which are known to be formed in plasma [60,61], have a higher 

probability of reaction with the mobile oxygen species on the catalyst surface. The marginal increase in 

selectivity shows that the non-catalytic route via direct gas-phase interaction of excited N2 with O2 

species prevails. When the loading of active metal oxide was increased from 5% to 10%, the difference 

in catalysts activity was the most evident in case of 10% Co3O4/Al2O3, a well-known oxidation catalyst, 

which likely provided a large amount of activated oxygen to oxidize plasma-formed NO into NO2.  

Based on the results of the study, it is clear that further efforts are required to make plasma nitrogen 

fixation commercially feasible. Firstly, NOx yield should reach an order of at least 1-2 vol. % for ease of 

separation. Secondly, the energy efficiency should be increased to a level comparable to that of the 

Haber-Bosch process. Even having the same energy efficiency, plasma nitrogen fixation could be a 

compelling business case provided by off-the-grid economy opportunities. For example, synthesis of 

nitrogen fertilizers in container-scale miniplants can be performed using local renewable energy resources 

such as wind and solar. At an industrial scale, plasma synthesis is promising by significant simplification 

of the plant equipment required. 
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Supplementary Data associated with this paper can be found in the online version of the paper and 

contains the following information: Nitrogen adsorption isotherm of pristine γ-alumina support, Powder X-

ray diffraction patterns of the catalysts synthesised, SEM Images of catalyst supports and the supported 

active metal oxides, Volcano plot of catalytic activity for propylene oxidation on oxide catalysts, 

Temperature of catalyst bed and its effect on the NOx concentration and NO selectivity, Energy Efficiency 

for Plasma NOx Synthesis 
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Fig. 1. A Scheme of the one-sided DBD plasma experimental set-up. 

  

© 2017. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/



 

 

Fig. 2. (a) The effect of catalyst support on NOx concentration. (b) The effect of specific energy input on the NO 

selectivity. 
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Fig. 3. Discharge signals for various packing materials at a plasma power of 45 watts; (a) the blank experiment 

without packing, (b) γ-Al2O3, (c) BaTiO3, (d) MgO, (e) Quartz wool, (f) TiO2 (at 18 kHz, 20 µs, flow rate of 1  
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L/min, N2/O2 ratio of 1). 

 

 

Fig. 4. The effect of the catalyst support (γ-Al2O3) particle size (a) on NOx concentration and (b) the selectivity 

towards NO. (Flow rate of 1 L/min and N2/O2=1 at frequency of 18 kHz and pulse width of 20 µs.) 
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Fig. 5. Discharge signals at a plasma power of 45 watts, 18 kHz, 20 µs, flow rate of1 L/min and N2/O2 ratio of 1 for 

the DBD reactor packed with γ-Al2O3 with the particle diameters of (a) 1600-1000 μm, (b) 850-630 μm, (c) 350-250 

μm. The following designations are used: (blue) current, (black) applied voltage, (blue) capacitor voltage. 
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Fig. 6. The effect of the residence time for γ-Al2O3 packed DBD reactor on (a) NOx concentration and (b) the 

selectivity towards NO. (Particle size= 500-355 micron, 18 kHz, 20 µs). 
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Fig. 7. The effect of feed ratio on NOx concentration and NO selectivity in a DBD packed with γ-Al2O3 particles 500-

355 μm at the total gas flow rate of 1 L/min. 

  

© 2017. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/



 

  

 

Fig. 8. The effect of metal oxides supported over γ-Al2O3 on (a) NOx concentration and (b) the selectivity towards 

NO. 

  

© 2017. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/



 

Fig. 9. NOx concentration for the studied 5% alumina-supported catalysts at the highest specific energy input as a 

function of oxygen "binding" energy (standard enthalpy of oxide formation per oxygen atom) with the (red) general 

trend on the expected concentration in case of a limiting step of oxygen activation. 
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Fig. 10. The effect of the supported oxide loading on (a) on NOx concentration and (b) the selectivity towards NO. 
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Table 1. Properties of support materials. 

 Support Type Surface 

Area(m2g-1) 

Relative dielectric 

constant 

γ-Al2O3 112 9.3-11.5 

α-Al2O3 0.3 9.3 

TiO2 34 85 

MgO 0.03 9.7 

BaTiO3 0.1 400-6500 

Quartz Wool 0.5 4.6 
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