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Abstract  

The 15 mol% Cu/Al2O3 catalysts with different Mn doping (0.5, 1.0, 1.5, mol%) were prepared using 

PEG-300 surfactant following evaporation-induced self-assembly (EISA) method. Calcination of precur-

sors were performed in flowing air conditions at 500 ºC. The catalysts were characterized by X-ray Dif-

fraction (XRD), X-ray Photoelectron Spectroscopy (XPS), Scanning Electron Microscope Energy Disper-

sive X-Ray (SEM-EDX), Fourier Transform Infra Red (FTIR), and N2 physisorption. The catalysts ac-

tivities were evaluated for H2 assisted LPG-SCR of NO in a packed bed tubular flow reactor with 200 

mg catalyst under the following conditions: 500 ppm NO, 8 % O2, 1000 ppm LPG, 1 % H2 in Ar with to-

tal flow rate of 100 mL/min. Characterization of the catalysts revealed that surface area of 45.6-50.3 

m2/g, narrow pore size distribution (1-2 nm), nano-size crystallites, Cu2+ and Mn2+ phases were princi-

pal active components. Hydrogen enhanced significantly selective reduction of NO to N2 with LPG over 

1.0 mol % Mn-Cu/Al2O3 giving 95.56 % NO reduction at 150 ºC. It was proposed that the synergistic in-

teraction between H2 and LPG substantially widened the NO reduction temperature window and a 

considerable increase in both activity and selectivity. Negligible loss of catalyst activity was observed 

for the 50 h of stream on run experiment at 150 ºC. The narrow pore size distribution, thermal stability 

of the catalyst and optimum Mn doping ensures good dispersion of Cu and Mn over Al2O3 that im-

proved NO reduction in H2-LPG SCR system. Copyright © 2017 BCREC Group. All rights reserved 
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1. Introduction  

Multiple-growth of vehicular count and in-

creasing industrialization emit toxic nitrogen 

oxides (NOx) as primary pollutants directly into 

atmosphere [1]. The NOx photo-chemically re-

acts with atmospheric constituents and pro-

duces more lethal secondary pollutants viz. acid 

rain, ozone, smog, etc. [2]. In addition, NOx also 

cause global warming, and climate change. To 

prevent adversarial effects on health and envi-

ronment, legislations require continuous strict-

ness through upgrading pollution abatement 

techniques. Both light-duty and heavy-duty ve-

hicles emission need more modern clean de-NOx 

exhaust technologies to improve air quality [3]. 

Therefore, NOx abatement has become a signifi-
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cant concern and a focused approach is needed 

to amend or develop the technologies to reduce 

NOx emission. In the last few decades, many 

de-NOx studies have been focused on exhaust 

gas recirculation (EGR), catalytic decomposi-

tion of NOx, lean-burn NOx traps (LNT), and 

selective catalytic reduction (SCR) of NOx. 

Among several NOx control techniques SCR of 

NOx with reductants such as NH3, urea, hydro-

carbon, or H2-hydrocarbon are the most effec-

tive way [4-6]. For automotive NOx emission 

control applications, it is necessary to develop a 

highly active, selective and robust SCR cata-

lyst. The catalyst should selectively convert 

NOx in presence of a reductant into environ-

mentally benign N2 molecules. Consequently, 

great efforts have been made to develop SCR 

catalysts with large specific surface area and 

pore diameter Al2O3 support [1,4]. 

Catalyst is the key to SCR technology and 

its performance directly affects the abatement 

of NOx emissions. Different types of SCR cata-

lysts are reported in the literature such as 

platinum group metal (Pt, Pd, Rh, etc.), pre-

cious metal (Ag/Al2O3, Au-Ag/Al2O3) and transi-

tion metals (V2O5-WO3/TiO2, Cu-ZSM-5, Fe-

ZSM-5, etc.) [7-12]. PGM catalysts are highly 

active but they are costly, low abundance and 

vulnerable to further price increases with in-

creasing demand. Therefore, the need to ex-

plore PGM free catalyst with transition metals 

is of global research prominence. Transition 

metal oxide-based catalysts are inexpensive, re-

sistant to poisoning and higher active surface 

area compared to noble metal oxides [13]. Con-

sequently, transition metal oxides have been 

intensively studied to discover more economical 

and effective catalysts for low-temperature 

SCR of NOx.  

A great number of scientific publications re-

late to cheaper catalysts than PGM catalysts 

for SCR processes have been reported. The 

MnOx, NiOx, CuOx, CeOx, and mixed metal ox-

ides have been studied as promising cheap and 

low temperature SCR catalysts. The commer-

cial catalysts V2O5-WO3/TiO2 and V2O5-WO3 

(MO3)/TiO2 were widely used as NH3-SCR in 

stationary engines exhaust, encounter difficul-

ties such as ammonia slip, air heater fouling, 

ammonium sulfate deposition and being haz-

ardous not a good choice for vehicular engines.  

Cu-ZSM-5 and Fe-ZSM-5 are highly active and 

stable at high temperatures but hydrother-

mally unstable make them not viable for com-

mercial applications [14]. 

Transition metal oxides mixed with noble 

metals to reduce the cost have also been testi-

fied, such as: Pt-Cu/Mg-Al, Pt-K/MgAl2O4, 

Ru/Mg-Co-Al, etc. Such catalysts showed better 

NO mitigation at higher temperatures (>250 

°C) than transition metal catalysts [15]. Cu-

based catalysts are considered to be promising 

that might become potential candidates for the 

replacement of V2O5-WO3/TiO2 for their low 

cost, low toxicity and high activity at low tem-

peratures [16]. CuOx/ZrO2, CuOx/WOx-ZrO2, 

CuO/Ti0.95Ce0.05O2, and zeolite-supported cop-

per catalysts (Cu-BEA, Cu-SSZ-13, Cu/SAPO-

34 and so on) show excellent low-temperature 

NH3-SCR activities [17]. Various reductants 

like NH3, urea, hydrocarbons (HC), H2 assisted 

HC/NH3, ethanol, hydrogen, CO, alcohols, 

amines, etc. are studied to reduce NOx in pres-

ence of catalyst [18].  

Several reactions occur in an NH3-SCR sys-

tem that reduces NOx to nitrogen, can be illus-

trated as Equations (1-3) [19]. The dominant 

reaction is represented by Equation (1).  

 

4NO + 4NH3 + O2  4N2 + 6H2O          (1) 

 

Competing, non-selective reactions with oxygen 

can produce secondary emissions or may un-

productively consume ammonia. One such non-

selective reaction is the complete oxidation of 

ammonia, shown by Equation (2).  

 

4NH3 + 5O2  4NO + 6H2O           (2) 

 

Also, side reactions may lead to undesirable 

products such as N2O, as represented by Equa-

tion (3). 

 

5NO + 4NH3 + 3O2  4N2O + 6H2O          (3) 

 

The SCR of NOx reaction using hydrocarbon 

like LPG (~72 % propane) and H2-assisted HC 

can be illustrated as Equations (4, 5).  

  

2NO + C3H8 + 4O2  N2 + 3CO2 + 4H2O         (4) 

2NO+C3H8 + H2 +5.5O2  N2 + 3CO2 + 5H2O (5) 

 

There are dominantly two reductants were 

used for diesel vehicular exhaust; first is Urea-

SCR and the second one is HC-SCR. Recently, 

commercial SCR systems employed in heavy-

duty trucks and also in a few light-duty lean-

burn vehicles are based on aqueous 32.5 % 

urea solution (AdBlue), which hydrolyzes to re-

lease ammonia in the hot exhaust gas system 

[20]. The released ammonia reduces the NOx 

on the SCR catalyst to form nitrogen and wa-

ter. The major drawbacks with such SCR sys-

tem are NH3-slip, ash odor, air heaters plug-

ging and formation of harmful by-products. 
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The side reactions of NH3 oxidation over cata-

lyst above 240 °C with O2 concentration above 

5 % produce N2O and NO2 [21]. The side reac-

tions compete with the SCR reaction for NH3 

and hence, the NO conversion is reduced. Fur-

ther, urea only hydrolyses to ammonia in hot 

exhaust gas above 200 oC, it is not possible to 

inject urea during at lower temperature and 

consequently NOx emissions reduction drops. 

Also, extra cost of storage in the vehicles is ob-

jectionable factor. These key facts enforced re-

searchers to find out alternate reductant for 

low temperature NO-SCR. 

The potential use of LPG (~72 % C3H8) as 

reducing agent in the SCR of NOx is a better 

alternative to the other reductants as it leads 

to a strong decrease in the Gibbs free energy 

values of NO reduction to N2 than other reduc-

tants (Table 1) [22]. In addition, LPG offers bet-

ter system integration, as it is readily obtain-

able and is used as a fuel for many utilities and 

encouraged for use in motor vehicles. 

Therefore, an alternative strategy for meet-

ing NOx emission regulations that does not ex-

hibit the difficulties of the aforementioned 

methods is HC-SCR [23]. The better selectivity 

of NO reduction to N2 in case of H2-LPG en-

sures less susceptibility to side reactions [24]. 

Further, recent invention shows that addition 

of small amounts of hydrogen to the diesel en-

gine exhaust can significantly improve the per-

formance [25].  

Manganese doped catalyst significantly im-

proves the low temperature SCR activity [26]. 

The key factors are identified to be (1) high spe-

cific surface area and surface acidity; (2) addi-

tional surface adsorbed oxygen on the catalyst 

surface (3) well dispersion of MnOx [27]. The 

MnOx showed the redox property of lattice oxy-

gen [28]. It has been found that Mn doping in a 

catalyst lowers down the temperature for NOx 

SCR [29-31]. Among all, Mn-based catalysts 

have acknowledged for high de-NOx potential 

at low temperatures [32]. However, improve-

ment in NOx conversions, broadening of tem-

perature window and time on stream patterns 

still need to be improved.  

There is no work reported on Mn doped 

Cu/Al2O3 catalyst using H2-LPG reductant in 

the open literature for de-NOx. Thus, in the 

present study Mn doped Cu based catalysts 

were comparatively investigated and concluded 

that they are low cost, possess good NO-SCR 

activity at low temperature and high selectiv-

ity to N2 with H2-LPG reductant.    

 

2. Materials and Method  

2.1 Catalyst preparation        

Three Mn doped Cu/Al2O3 catalysts with 

different concentrations were prepared along 

with Cu/Al2O3 catalyst following the EISA pro-

cedure suggested by Li et al. [1]. In the synthe-

sis of Copper-alumina catalysts 8.3 mL poly-

ethylene glycol (PEG-300) was dissolved in 150 

mL of ethanol at room temperature termed as 

solution-1. In a container, 12.0 mL of 69 % ni-

tric acid, 3.75 g citric acid anhydrous, 15.30 g 

(15 mmol) of aluminium iso-propoxide, 15 

mol% of copper nitrate trihydrate and requisite 

amount of Mn(NO3)2 were added in the above 

solution-1 with vigorous stirring for 10 h. The 

final solution was dried overnight at 110 °C in 

an oven, followed by in-situ calcination in flow-

ing air at 500 °C for 5 h. The calcined samples 

were crushed and sieved to pass a 100 mesh for 

activity testing. All the chemicals used in the 

catalyst preparation are of AR grade. For the 

simplicity in general consideration, the cata-

lysts were name as: Cu/Al2O3 as Cat-A, 0.5 % 

Mn-Cu/Al2O3 Cat-B, 1.0 % Mn-Cu/Al2O3 Cat-C 

and 1.5 % Mn-Cu/Al2O3 as Cat-D.   

 

2.2 Catalytic activity measurement   

The NO-SCR activity tests were studied in a 

tubular quartz reactor over 200 mg catalyst di-

luted with 1 mL Al2O3 bed kept over quartz 

wool under the following reaction conditions: 

500 ppm NO, 8 % O2, 1000 ppm NH3, 1000 ppm 

LPG, 1 % H2 in Ar with total flow rate of 100 

mL/ min. Gases were fed from pressurized cyl-

inders. The experimental data were recorded 

under steady state conditions. The space veloc-

ity was 30000 mL.g-1.h-1. The reaction tempera-

tures were varied from ambient to 450 °C. 

Three different reductants (H2, LPG, and NH3) 

were used separately under the same experi-

mental conditions. In addition, H2 assisted 

LPG (H2-LPG) reduction was also investigated. 

The temperature of reaction was monitored 

with the help of K-type thermocouple inserted 

in the thermo-well of the reactor in contact 

with catalyst bed. The reaction temperature 

Table 1. Gibbs free energy at 500 K for reduction of NO in the presence of various reductants  

Reductant   H2              CO             NH3           CH4            C3H8          C4H10 

-∆Gr  (kJ/mol)  605.8         646.3          367.5         543.9           603.1          557.7 
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and rate of heating was controlled with help of 

micro-processor based temperature controller. 

The flow of gas mixture entering the reactor 

was free from moisture and CO2 via passing 

them through CaO and KOH pellet trap. The 

flow rates of different gases were monitored 

with the help of digital gas flow meters. The 

inlet and outlet NOx concentrations were de-

termined by Ecophysics CLD 62 chemilumines-

cence NO/NOx analyzer. The concentration of 

propane and CO2 as well as the N2 was meas-

ured by two online gas chromatographs using 

FID and TCD detectors (Nucon 5765) and pora-

pack q-column with methanizer and molecular 

sieve 5A respectively.  

The conversion of NO at any instant was 

calculated on the basis of values of the concen-

tration of NO in the feed, NO conversion (XNO) 

was calculated as follows: and product stream 

by the following Equation (6):  

 

                        (6) 

 

 

 

The conversion of main LPG constituents, 

C3H8, C4H10 and i-C4H10 were calculated on the 

basis of values of their concentrations in the 

feed and product using the following Equations 

(7-9):  

 

 

                       (7) 

 

 

        

       (8) 

 

 

 

     (9) 

 

 

where, the subscripts “in” and “out” indicate 

the inlet and outlet concentrations respectively 

at steady state. The change in concentration of 

C3H8, C4H10 and i-C4H10 is due to redox reac-

tions at any instant is proportional to their re-

spective areas of chromatograms [AC3H8], 

[AC4H10], and [Ai-C4H10]. 

The N2 selectivity can be written in terms of 

concentration of N2 and other by-products (NO2 

and N2O) by Equation (10):  

 

     (10) 

 

 

2.3 Catalyst Characterization   

X-ray diffractograms were measured on Ri-

gaku Ultima IV X-ray diffractometer 

(Germany) using the Cu Kα radiation at 40 kV 

and 40 mA for phase identification. The spectra 

were recorded between 20 and 80° (2θ). The 

mean crystallite size (d) of the catalyst was cal-

culated from the line broadening of the most 

intense reflection using the Scherrer‟s formula 

in Equation (11). 

 

             (11) 

 

  

where d is the mean crystallite diameter, 0.89 

is the Scherrer constant, λ is X-ray wavelength 

(Cu Kα radiation) = 1.54056 Å, and  is effec-

tive line width of the observed X-ray reflection, 

calculated by the expression 2=B2-b2; where B 

is full width half maximum (FWHM) and b is 

instrumental broadening determined through 

the FWHM of the X-ray reflection at 2θ of crys-

talline SiO2.  

X-ray photoelectron spectroscopy (XPS) was 

used to monitor the surface compositions and 

chemical states of the constituent elements and 

performed on an Amicus Spectrometer 

equipped with Mg Kα X-ray radiation. For typi-

cal analysis, the source was operated at a volt-

age of 15 kV and current of 12 mA. The binding 

energy scale was calibrated by setting the main 

C 1s line of adventitious impurities at 284.7 

eV, giving an uncertainty in peak positions of ~ 

0.2 eV. Scanning electron micrographs (SEM) 

and SEM-EDX were recorded on Zeiss EVO 18 

scanning electron microscope (SEM) instru-

ment. An accelerating voltage of 15 kV and 

magnification of 1000X was applied. Energy-

dispersive X-ray analysis (EDX) was collected 

on a JEOL JEM 2010 microscope operating at 

200 kV equipped with a PGT Imix PC system. 

Specific surface area (SSA) measurements 

were performed using Micromeritics ASAP 

2020 analyzer by physical adsorption of N2 at 

the temperature of liquid nitrogen (-196 °C), 

using the BET method in the standard pres-

sure range of 0.05-0.30 P/P0. Fourier transform 

infrared spectroscopy (FTIR) of the prepared 

catalyst was recorded in the range of 400-4000 

cm-1 on Shimadzu 8400 FTIR spectrometer 

with KBr pellets at room temperature.  
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3. Results and Discussion 

3.1 Catalyst Characterization 

3.1.1  X-Ray diffraction   

X-ray diffraction (XRD) studies were carried 

out to identify the crystalline phases of the 

catalyst samples. The powder XRD patterns of 

the crystalline nature of Cat-A and Mn doped 

catalysts (Cat-B, Cat-C and Cat-D) were con-

firmed by collecting intensity data over a 2θ = 

20-80° is depicted in the Figure 1. The charac-

teristics reflections of Cat-A as well as three 

different concentration of Mn doped catalysts 

showed single diffraction peak at 2θ = 22.72°, 

which could be attributed to a single phase 

crystalline structure of Al2O3 (JCPDS#310026). 

The diffraction peaks of Cu and Mn could not 

be observed for Mn doped catalysts, which 

clearly indicated that the Cu and Mn ions were 

well-dispersed over Al2O3 support. The increase 

in the amount of Mn doping in Cu/Al2O3, the in-

tensities of Al2O3 diffraction peaks decreased 

significantly [33].   

3.1.2  XPS analysis  

X-ray photoelectron spectra (XPS) were re-

corded to investigate elemental composition 

and the oxidation state of the catalysts sample 

near the surface. Figure 2 (a-d) displays the 

XPS spectra in the Cu-2p, Mn-2p, Al-2p and O-

Figure 2. XPS peak fitting of (a) Cu, (b) Mn, (c) Al and (d) O for Cat-A, B, C and D.  

Figure 1. XRD pattern of Cu/Al2O3 and Mn-

doped Cu/Al2O3 catalyst  
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1s regions. The corresponding results as shown 

in Figure 2(a) reveals that the only Cu, Mn, Al 

and O elements are present in the catalyst. Us-

ing a Gaussian fitting method, it was observed 

that the Cu2p emission spectra was well fitted 

with two spin-orbit doublets, implying both Cu+ 

and Cu2+ in the catalyst sample. The peaks fit-

ted at the binding energies of 934.3 and 948.4 

eV attributed to Cu-2p3/2 and Cu-2p1/2 configu-

rations [34,35]. Although, it can be proposed 

that highest Cu+/Cu2+ are preferable for the re-

duction of NO.  

The XPS spectra in the Mn-2p region are 

presented in Figure 2(b). The observed binding 

energies 644.8 eV, and 653.85 eV are associated 

with the presence of Mn2+ and Mn3+ respec-

tively in their respective samples [36,37]. BE of 

Al-2p is shown at 74.6 eV revealed Al3+ oxida-

tion state as shown in Figure 2(c). The binding 

energies of O-1s are displayed in Figure 2(d). 

Generally, there are two different types of oxy-

gen in the catalysts with binding energy 532.2 

eV and 534.1 eV, which could be predictable as 

chemisorbed oxygen and lattice oxygen, respec-

tively [38]. The presence of chemisorbed oxygen 

is small as compared to lattice oxygen in Cat-

C. One of noticeable fact is that the amount of 

oxygen is less in Cat-C as compared to all three 

catalysts due to absence of lattice oxygen which 

creates oxygen vacancies for reduction reac-

tions. 

 

3.1.3  Scanning Electron Micrographs (SEM)    

SEM analysis was done to study the surface 

morphology of the catalysts. Figure 3 shows 

the SEM micrographs of Cat-A and Mn doped 

Cat-B, Cat-C and Cat-D. It can be visualized 

that all the catalysts have particles of irregular 

shapes and sizes. The shape of Cat-A was the 

agglomerated bulk particles of the largest size. 

The size of the particles of Cat-C (Figure 3c) 

was the smallest as well as it possessed open 

texture pores in comparison to the other cata-

lysts. Other catalyst samples were appeared to 

be agglomerated whereas Cat-C was well dis-

persed separated particles of size in the range 

Figure 3. SEM micrographs of (a) Cat-A, (b) Cat-B, (c) Cat-C, and (d) Cat-D.  
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of 2.07-3.32 μm. Since the particles of Cat-C 

were the smallest and well dispersed it de-

creases the resistance of internal mass-

transport of reactants and products. Beyond 

the optimum content of Mn (1.0 %) in the cata-

lyst, different structures of agglomerated parti-

cles of larger size were formed. Hence, the opti-

mum composition of Mn was 1.0 % in Cat-C for 

low temperature SCR of NO. 

 

3.1.4  Energy-dispersive X-ray Analysis (EDX)   

The elemental composition of the Cat-C mi-

crospheres was first examined by energy dis-

persive X-ray (EDX) measurements. Energy 

dispersive X-ray (EDX) results from different 

regions of micrographs depicts that all the sam-

ples were pure due to presence of Cu, Mn, Al, 

and O peaks. No other element present in the 

spectra as shown in Figure 4.  

EDX spectrum details of all three catalysts 

samples with their respective weight and 

atomic % is given in Table 2. Elemental map-

ping analysis and corresponding EDX-mapping 

images clearly elucidate the confirm the forma-

tion of respective atomic content in their rele-

vant structure.  

SEM-EDX confirmed the presence of Cu, 

Mn, Al, and O elements present in the precur-

sors used in the preparation of the catalysts. 

Cu and Mn dispersions on the Al2O3 surface 

was found to be sufficient, with some agglomer-

ates appearing for the catalysts. 

 

3.1.5  Fourier Transform Infrared Spectroscopy 

(FTIR)   

The term „Fresh catalyst‟ meant freshly pre-

pared Cat-C (unused) and „used catalyst‟ was 

after 50 h of run on stream for H2-LPG-SCR of 

NO. FTIR of fresh and used catalysts were re-

corded in the range of 500-4000 cm-1 on Shima-

dzu 8400 FTIR spectrometer with KBr pellets 

at room temperature in terms of transmit-

tance. The absorption spectra of the two cata-

lysts during the course of H2-LPG-SCR reac-

Table 2. Weight % and atomic % (EDX elemental data) for all four catalysts  

                    Cat-A                                        Cat-B    Cat-D Cat-C  

Element  Weight% Atomic%  Weight% Atomic%  Weight% Atomic%  Weight% Atomic% 

O K  43.76 61.67  49.58 59.92  37.14 50.41  45.08 50.50 

Al K  40.96 23.04  29.81 21.06  44.65 29.84  34.72 30.32 

Cu K  15.28 15.29  19.63 18.23  17.03 18.3  18.56 16.53 

Mn K  - -  0.98 0.79  1.18 1.45  1.63 1.65 

Total  100.00    100.00    100.00    100.00   

Figure 4. EDX spectrum and elemental micrographs of (a) Cat-A, (b) Cat-B, (c) Cat-C, and (d) Cat-D 
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tion over the Cat-C surface is showed in Figure 

5 the stretching vibrations of metal-oxygen 

bond. 

The bands at 1700-1300 cm-1 are associated 

to the N–C stretching modes, which are caused 

by the different doping level [39]. The bands at 

1200-1600 cm-1 were slightly stronger, indicat-

ing that a few of the Lewis acid sites were occu-

pied by bridging nitrate species [40]. The NO 

conversion changed from 95.56 % to 90.7 % at 

150 °C with accelerated ageing after 50h. As we 

can see from Figure 5 and Table 3, C≡N stretch 

i.e. nirile group is missing due to reductant (H2-

LPG), responsible for better NO reduction at 

the surface of Cat-C. FTIR transmission spec-

tra of the catalysts are comparison shown in 

Table 3. 

 

3.1.6  BET surface area measurement  

The specific surface area and pore size dis-

tribution were determined by BET and BJH 

methods with low temperature adsorption on 

all four catalysts. The BET surface area, pore 

volume and pore diameter of respective cata-

lysts were tabulated in Table 4. The BET sur-

face area data indicates that the BET surface 

area of Cat-A, Cat-B, and Cat-D are smaller 

than Cat-C (50.29 m2g−1), because of the high 

dispersion shown in SEM micrographs. The 

Cat-C catalyst has the maximum BET surface 

area and pore volume due to their high pore di-

ameter compared to rest three catalyst. The 

BET surface area of the Cat-D was 46.85 m2/g 

due to the formation of a large matrix. The 

above results showed that the introduction of a 

1 % of Mn in the Cu/Al2O3 catalyst can curb the 

particle shape and increase its surface area, 

which are beneficial in improving best catalytic 

activity for the SCR reaction.  

The sufficient amount of metal oxide con-

traction that promote reduction behavior of the 

catalyst, which could be originated from the 

strong interaction between Cu and Mn over the 

Al2O3 support [41]. As for Cat-C, its higher 

pore volume and BET surface area may be 

benefited from comparatively smaller 

mesopores. The particle sizes of Cat-C sample 

shown by the SEM images were consistent 

with the BET measurements. The enhanced 

BET surface areas of Cat-C is also favorable to 

the adsorption of NO on them, resulted in the 

significant increase in NO conversion, in turn 

facilitates the H2-LPG-SCR reaction.  

The low-temperature SCR activity of Cat-C 

was optimum, revealing that BET surface area 

was an important decisive factor for catalytic 

activity. The comparatively high specific sur-

face area exposed to more active sites offered 

Table 3. Transmittance frequency (peak) bond and functional group details on the best Cat-C fresh (t1) 

and used (t2) catalyst using H2-LPG-SCR of NO  

t1  Interpretations t2  Interpretations 

2871.0 C–H stretch 

Alkanes (m) 

-   

    2602.4 –C≡C–H: C–H stretch (w) 

alkynes (terminal) 

2589.8 C≡N stretch 

Nitriles (w) 

  - 

1878.9 -     

1436.6 C–N stretch 

aliphatic amines (m) 

1432.1 C–N stretch 

aliphatic amines (m) 

931.1 O–H bend 

carboxylic acids (m) 

921.0 O–H bend 

carboxylic acids (m) 

-   480.5 - 

-   417.9 - 

m=medium, w=weak  

Figure 5. FTIR spectra of fresh and used Cat-

C catalysts  
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less diffusional resistance and facilitates the 

redox process at lower temperatures.  

 

3.2 Catalyst Test for NO reduction  

In all catalytic tests, the amount of NO2 and 

N2O in the product stream were found negligi-

ble. Therefore, NO was mainly reduced to N2. 

All the measurements were taken at steady 

state by ramping up the temperature.  

 

3.2.1  Performance of catalysts with different 

reductants 

3.2.1.1  Performance of catalysts using NH3 re-

ductant    

NH3 is a well-established reductant for NO-

SCR. The NH3-SCR performance for NO reduc-

tion over different catalysts as shown in Figure 

6. It is very clear from the figure that Mn-

promoted catalyst showed better performance 

than Cat-A across the whole temperature 

range. The NO conversion with respect to tem-

perature showed maxima over all the catalysts. 

At higher temperature beyond the maximum 

conversion of NO, reductant started oxidizing 

directly with oxygen present in air, in place of 

SCR of NO, so at higher temperature activity of 

NO conversion decreased. It can be noted down 

from the figure that the optimum Mn doping in 

the catalyst was 1.0 mol %, resulting maximum 

NO conversion to 90 % at 250 °C. Beyond this 

concentration of 1.0 mol % Mn in the catalyst 

the conversion decreased in whole range of 

temperature studied. The catalyst with 1.5 % 

Mn exhibited lower activity; this may be due to 

the fact that abundance of Mn does not ensure 

the increase in catalyst activity as 1 % Mn is 

the optimum quantity for SCR of NO under the 

given experimental conditions. It can be noted 

from the BET characterization that the specific 

surface area of the catalyst increases with in-

crease in the concentration of Mn upto 1.0 

mol%. Further increase in the Mn concentra-

tion decreases the surface area of the catalyst, 

due to agglomeration of particles due to deposi-

tion of excess Mn over active sites of Cu.   

3.2.1.2  Performance of catalysts using LPG re-

ductant   

The activity of all the catalysts was com-

pared using LPG reductant for NO conversion 

and the results are shown in Figure 7. Cat-C 

sample showed the highest SCR activity giving 

92 % NO conversion at a temperature of 250 

ºC. Whereas, the Cat-A catalyst showed 69 % 

NO reduction at higher temperature of 303 ºC. 

It is clear from experimental data that Mn 

doped catalyst have lowered down NO reduc-

tion temperature. The above experiments were 

performed using NH3 and LPG as reductants 

under the above mentioned experimental con-

ditions. But, due to low NO reduction activity, 

hydrogen assisted LPG (H2-LPG) reductant 

was used to enhance the catalyst activity. 

    

3.2.1.3  Performance of catalysts using H2-LPG 

reductant   

The activity of all the catalysts for NO con-

version was compared using H2-LPG reductant 

and the results are shown in Figure 8. The 

Cat-C sample exhibited the highest SCR activ-

ity showing 95.56 % NO conversion at low tem-

perature of 150 oC. Whereas, the Cat-A cata-

lyst showed 73 % NO reduction at high tem-

perature of 300 oC. Figures 6-8 illustrates that 

the optimum Mn doping was 1.0 mol%. Thus, 

appropriate composition, textural and morpho-

logical characteristics may be the reason for 

the highest activity of Cat-C.  

The catalytic performance of Cat-C showed 

lower activity at higher temperature due to ad-

sorption sites were used by the reactant in due 

course of time, which dropped the catalyst ac-

tivities. The reductants were oxidized at high 

temperatures and this significantly dropped 

the NO reduction in case of NH3 and LPG. The 

trend differs in H2-LPG due to synergistic ef-

fect of reductants over the better dispersed sur-

face. Whereas, at lower temperature Cat-C ex-

hibited best NO reduction to N2 due to in-

creased dispersion of smallest particles, which 

enhanced its BET surface area. In case of Cat-

Table 4. BET surface area and pore parameters of all catalysts  

Catalyst 
BET surface area  

(m2 g-1) 

Pore volume  

(cm3 g-1) 

Pore diameter 

(nm) 

Cat-A 46.14 0.0812 2.87 

Cat-B 47.90 0.0847 2.96 

Cat-C 50.30 0.0885 3.12 

Cat-D 46.85 0.0825 2.91 
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D, agglomerated particle surface did not sup-

port the catalytic reaction, where the adsorp-

tion sites are lesser than Cat-C, hindered the 

catalytic activity. 

The experiments were performed to find out 

the best low temperature NO reduction cata-

lyst. From the experimental results it is clear 

that Cat-C showed the best results. To elabo-

rate more precisely, we further discussed the 

effect of reductants over the best catalyst (Cat-

C).  

 

3.2.2 Effect of reductants on Cat-C catalyst   

To simplify the complexity of all the results, 

the effects of three reductants (NH3, LPG, H2-

LPG) for NO conversion over the best selected 

Cat-C is shown in Figure 9. The characteristic 

temperature (T10), i.e. 10 % conversion of NO 

with H2-LPG was observed at 29 °C, while it 

was at 26 °C for LPG reductant and 28 °C for 

NH3 reductant (Table 5). Similarly, T50 was at-

tained at 65 °C for H2-LPG, 82 °C for LPG and 

at 75 °C for NH3. While, Tmax for NO reduction 

over Cat-C was shown at 150 °C with 95.56 % 

NO conversion for H2-LPG reductant, 92.0 % 

conversion of NO for LPG at 250 °C and 90 % 

NO conversion for NH3 at 250 °C. On the other 

hand NH3 reductant showed their NO reduc-

tion efficiency at comparatively higher tem-

peratures (205 ºC). Hence, the experimental re-

sults showed that H2-LPG is the best reductant 

in comparison to other two reductants (NH3 

and LPG).  

LPG was chosen as a reducing agent as it 

leads to a strong decrease in Gibbs free energy 

value of NO reduction to N2, in addition to its 

low cost and easy of availability. H2 addition in 

LPG not only lowered down the temperature 

but also improved conversion of NO reduction. 

It is well documented that hydrogen promotes 

the redox reactions over Ag/Al2O3 catalyst. H2 

played an essential role in the activation of mo-

lecular oxygen, as suggested by Richter et al. 

[42] and responsible for the promotion of the 

steady-state NO reduction [42]. The addition of 

hydrogen leads to decreased activation energy 

of the rate-determining step or to a change in 

the rate-determining step. O2 activation by hy-

drogen is relatively rapid and is not involved in 

the rate-determining step in the H2-C3H8-SCR 

reaction. This indicates that the hydrogen ad-

dition promotes the C3H8-SCR reaction 

through the activation of reductant (C3H8) [43, 

Figure 8. NO reduction performance of all cata-

lysts using H2-LPG reductant  

Figure 9. NO conversion with NH3, LPG and 

H2-LPG reductant over the best catalyst (Cat-C)  

Figure 6. NO reduction performance of all pre-

pared catalysts using NH3 reductant   
Figure 7. NO reduction performance of all cata-

lysts using LPG reductant  
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44]. The addition of hydrogen decreases the ac-

tivation energy for the reaction of molecular 

oxygen into reactive oxygen species involved in 

the oxidative activation of C3H8 which is the 

main constituent of LPG. Thus, the order of re-

ductants according to the performance in the 

NO-SCR reaction is as follows: H2-LPG > LPG 

> NH3. It is clear from the Figures (6-9) and 

Table 5 that best low temperature NO reduc-

tion is possible with Cat-C catalyst. Thus, the 

order of catalyst activity followed the same 

trend for all reductants: Cat-C > Cat-D > Cat-B  

> Cat-A.  

 The combination of highly active catalyst 

and suitable reductants, NO reduction is 

achievable at low temperature. The histogram 

plot of NO conversions vs various catalysts and 

reductants are shown in Figure 10. It can be 

concluded that the best catalyst and the best 

reductant for NO reduction are Cat-C and H2-

LPG under the experimental condition of the 

present study.  

 

3.2.3  LPG conversion 

 Figure 11 shows LPG conversion over Cat-C 

with and without H2 assistance to reduce re-

dundancy at low temperature window. As dis-

cussed earlier LPG does not show better NO re-

duction, so it was not mentioned in the manu-

script experimental work. H2-addition was 

beneficial showing total LPG conversion at 165 
oC, i.e. 25 oC less than without H2 addition [23]. 

Small addition of hydrogen synergistically pro-

moted reduction of NO and being redox reac-

tion simultaneous oxidation of LPG reductant 

increased. It was found that at 75 ºC also NO 

conversion with LPG was (33.7 %) less than 

H2-LPG (45.78 %).  

Figure 11 shows that the hydrogen addition 

increases reduction of NO consequently oxida-

tion of LPG increases. As a result of combina-

tion of high activity catalyst and apposite re-

ductant, NO conversion is achieved at rela-

tively low temperature. Therefore, it can be 

concluded that catalyst has the potential to 

achieve the goal of NOx emission standard 

from diesel, petrol as well as LPG-fueled vehi-

cles using H2-LPG-SCR. 

 

3.2.4  Catalyst selectivity   

The catalytic activity tests were performed 

on three catalysts for NO reduction and the 

Table 5. NO reduction over all catalysts using NH3, LPG, and H2-LPG reductants  

Catalyst Reductant 
Characteristic Temperature 

T10 (oC) T50 (oC) Tmax (oC) 

Cat-A 

NH3 32 120 240 

LPG 43 136 286 

H2-LPG 34 96 200 

Cat-B 

NH3 54 131 262 

LPG 48 140 209 

H2-LPG 37 123 168 

Cat-C 

NH3 28 75 205 

LPG 26 68 250 

H2-LPG 29 65 150 

Cat-D 

NH3 43 125 250 

LPG 48 138 303 

H2-LPG 39 130 245 

Figure 10. NO conversion performance for NH3, 

LPG and H2-LPG as reductant over different 

catalysts 
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negligible amount of NO2 and N2O were found 

in the product stream. Therefore, catalyst se-

lectivity was shown in terms of N2 only. In or-

der to reduce awkwardness in the manuscript 

here we are presenting the graph of best cata-

lyst selectivity. It is clear from Figure 12 that 

the trend of best catalyst Cat-C selectivity to 

N2 on different reductants is as follows: H2-

LPG > NH3 > LPG. 

 

3.2.5  Stability test   

The stability tests were conducted for Cat-C 

under the steady state in the same experimen-

tal conditions at 150 °C for reduction of NO in a 

continuous run for 56 h. In the beginning at 

this temperature 95.56 % NO conversion was 

achieved. Accelerated ageing starts with 2 h 

heating at 500 °C under the run duration of 6 h 

at 150 °C, repeatedly. Practically after 50 h of 

ageing still no significant deactivation was ob-

served under the same experimental condi-

tions. Figure 13 showed accelerated ageing of 

Cat-C for NO reduction using H2-LPG reduc-

tant. Thus, practically there is no deactivation 

of the catalyst occurred in the stability test un-

der the present experimental conditions stud-

ied.  

 

4. Conclusions 

The enhanced de-NOx performance of Cat-C 

synthesize by EISA method using PEG-300 

template. Among all the catalysts 1.0 mol%-

Cu/Al2O3 display hydrothermally stable supe-

rior H2 assisted LPG SCR activity with ele-

vated N2 selectivity over a wide range of tem-

peratures. The catalytic activity attributed to 

its unique textural characteristics and highly 

dispersed Mn crystallites which exhibited the 

redox property with lattice oxygen. The com-

paratively high specific surface area exposed to 

more active sites offered less diffusional resis-

tance and facilitates the redox process at lower 

temperatures. Hydrogen addition promoted re-

duction of NO consequently increases oxidation 

of LPG. The results showed that the amount of 

Mn remarkably influenced the activity of 

Cu/Al2O3. The presence of Mn lowers down NO 

reduction temperature, consequently Cat-C 

turn into the most active stable catalyst which 

can be widely applied in different pollution 

abatement (ecological safety) applications.   

Figure 13. Accelerated ageing of Cat-C for NO reduction  

Figure 11. LPG conversion (%) of Cat-C using 

LPG and H2-LPG reductants 

Figure 12. Selectivity of NO to N2 using differ-

ent reductants over Cat-C catalyst  
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