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ABSTRACT

The deposition and characterization of the silicon oxide and fluorinated 

silicon oxide films, as interlevel dielectrics in microelectronics devices, prepared 

by plasma enhanced chemical vapor deposition at low substrate temperature 

using Si2H6 as silicon precursor are studied.

The film deposition is limited by the mass transport regime, resulting in 

nearly temperature independent deposition rate. The characteristics for the 

silicon oxide films deposited at 120°C show that the film etch rate is comparable 

to that obtained by TEOS-based PECVD at 400°C and the leakage current is 

comparable to that of the films deposited at 350°C with conventional SiH4 

precursor. It also shows that the as-deposited silicon oxide films have 9.4 % 

increase in the film density compared to the thermal silicon oxide films, resulting 

in the Si-O-Si bridging bond angle of 138°. The post-metallization annealing in 

forming gas ambient at 400°C rather than post-deposition annealing at high 

temperatures in N2 is the most effective way to reduce both the oxide charge 

and interface trap densities, especially for devices fabricated on the native 

oxide-free surface.

For the fluorinated silicon oxide film deposition, the optimum gas flow 

ratio of CF4, as fluorine precursor, to Si2He is observed to be in the range of 8- 

10. The films deposited at a flow ratio of 10 give the film a dielectric constant of 

4.25 which is 12 % lower than 4.88 obtained for the fluorine-free silicon oxide 

films. The addition of fluorine into S i-0 network helps not only in reducing the 

effective oxide charges to as low as 1/6 of the value for the fluorine-free silicon 

oxide films, but also improves the breakdown property by significantly reducing 

early failures, resulting in the average dielectric breakdown field strength of 8.91 

MV/cm.

xiii
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These films have a strong potential for the use as interlayer dielectric 

material making available a low temperature and high quality film deposition 

process for submicron device fabrication in the microelectronics industry.

xiv
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CHAPTER 1 
INTRODUCTION

1.1 Overview

The present trend in the deposition of dielectric thin films for 

microelectronic integrated circuit applications is towards lower deposition 

temperatures. Low temperature deposition of dielectrics is advantageous for the 

reduction of diffusion related or temperature sensitive phenomenon such as 

hillock formation in metals, dopant redistribution, and lattice damage and 

stoichiometry degradation in compound semiconductors [1].

Numerous studies [2]-[6] have reported deposition of silicon oxide films 

as primary dielectric films for applications such as passivation layers, intermetal 

insulators, and lithographic masks. Recently, attention has also been given to 

the silicon oxide films as primary insulators in thin film transistors based on 

amorphous or polycrystalline silicon [7], enabling one to fabricate large arrays of 

thin film transistors for flat panel displays in conjunction with liquid crystal 

display technology to replace conventional cathode-ray tubes.

One of the widely preferred low temperature techniques for the 

deposition of the silicon oxide films is plasma enhanced chemical vapor 

deposition (PECVD). In the low pressure glow discharge plasma, high electron 

energy takes the place of thermal energy in activating the desired chemical 

reactions by dissociating the chemical vapor molecules to produce highly 

reactive free radicals. Properties of the PECVD silicon oxide films have been 

extensively studied in recent years, with regard to their applications in 

integrated circuits.

The PECVD silicon oxide films are typically obtained in the temperature 

range of 200-350°C by the chemical reaction of a silicon containing compound

1
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such as silane (SiH4) or tetra-ethyl-ortho-silicate (TEOS, Si(OC2H5)4) with a 

gaseous oxidant such as 0 2, N20 ,  and C 0 2 [7]-[14]. In general, 0^ is not 

recommended in conventional PECVD due to its high reactivity with SiH4, which 

may result in a general reduction in film quality, including nonreproducible 

deposition, increased particulates and pinhole densities, and nonuniform 

deposition [15]. Typically N20  has been the oxidant of choice due to the low 

bonding energy (2.08 eV) of N -0  in the molecule [16].

Numerous works have been reported on the physical, mechanical, and 

chemical properties of the silicon oxide films deposited by the use of SiH4 as 

silicon precursor. The SiH4-based PECVD silicon oxide process, however, 

possesses deposition temperature limitation, especially below 200°C. PECVD  

silicon oxide films deposited at temperature lower than 200°C show poor film 

integrity caused by undesirable chemical bonding groups. Though the use of 

helium as a dilution gas during the film deposition minimizes the formation of 

these bonding groups, the dilution process itself causes a significant decrease 

in the film deposition rate [10]. To compensate for the decrease in the 

deposition rate for the latter process, one requires either the use of much higher 

deposition temperatures which would be against the desirable trend or an 

increase in the deposition time which causes concern about the unwanted 

plasma radiation induced device degradation.

Disilane (Si2H6) is known to give better thermal processing budget to 

prepare silicon containing films due to its high reactivity resulting from the fact 

that Si2H6 has quite a long surface residence time and a high sticking coefficient 

compared to those for SiH4 [17], [18]. The pyrolysis of Si2H6 was studied first by 

Emeleus and Reid [19] in 1939 and then modeled experimentally by Bowrey 

and Purnell [20] in 1971. Roenigh et al. [21] reported Arrhenius parameters for 

SiH4 and Si2H6 decomposition kinetics. According to their study, activation
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energies for SiH4 and Si2H6 were 57.4-61.1 kcal/mol and 51.1-52.5 kcal/mol, 

respectively. The important contribution towards understanding of Si2H6 

chemistry was due to Gates [15] who analyzed the rates and mechanisms of 

chemisorption on the silicon surface for SiH4 and Si2H6 and confirmed that the 

reactive sticking coefficient at room temperature, SR, for SiH4 was less than 

0.001 (~ near zero coverage) on silicon (111) surface, while SR for Si2H6 was 

0.47. This suggests that the reactivity of Si2H6 over SiH4 is at least 1000 times 

greater on a clean surface.

The first successful usage of Si2H6 was towards deposition of silicon 

films by molecular beam epitaxy [22] and showed advantages of the Si2H6- 

based process in preparation of epitaxial films at much lower deposition 

temperatures compared to the conventional SiH4-based process. Gas-phase 

reaction mechanisms for the silicon oxide deposition from Si2H6 and N20  for 

pyrolytic atmosphere CVD were modeled by Giunta et al. [23]. They suggested 

that rapid reaction of the decomposition products SiH2 with N20 , suppresses 

the formation of larger silicon hydrides, generates the film precursor, 

silanone(SiH20 ), and hence causes a strong dependence of the growth rate on 

Si2H6 concentration in presence of excess N20  concentration. Several studies 

of Si2H6 application for the deposition of the silicon oxide films have been 

reported, mainly with the use of either excimer, ultraviolet, or synchrotron- 

induced photo CVD [18], [24]-[26].

1.2 General Principles of PECVD [27]

1.2.1 Nature of Plasma

The primary role of plasma is to produce chemically active species that 

subsequently react via conventional pathways. A key factor is that substitution 

of electron kinetic energy for thermal energy avoids excessive heating and 

consequent degradation of substrates. The plasmas used for semiconductor
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4

application are produced by the application of a high frequency electric field 

across a body of gas and are weakly ionized gases comprising of electrons, 

ions, and neutral species. The electron concentration ranges from 109 to 1012 

cm'3, the ratio of concentration of the charged species to neutral species ranges 

from 10'6 to 10'4, and the electron energy varies from 1-20 eV. One important 

characteristic of the glow discharge plasma is the electron temperature (104-105 

K), which is typically 30 to 1000 times greater than the average temperature for 

the ions and neutral species (25-300 K). This high electron energy relative to 

the low temperature neutral species makes the glow discharge useful in driving 

CVD reactions.

When the plasma process first starts, energy from the electric field is 

coupled into the gas almost entirely via the kinetic energy of a few free 

electrons. The electrons acquire energy rapidly from the applied electric field 

and lose it to collisions. Collisions between electrons and gas molecules in 

plasma can be characterized as either elastic or inelastic, according to whether 

or not the internal energies of the colliding bodies are maintained. In the elastic 

case, only a small amount of energy is transferred, while the inelastic case 

involves a much larger energy loss and the excitation of internal modes 

(electronic, vibrational or translations) of target molecules. Inelastic collisions 

between the high energy electrons and neutral molecules result in, among other 

processes, electron impact ionization and molecular dissociation. Electron 

impact ionization helps to sustain the glow discharge by producing secondary 

electrons. Meanwhile, molecular dissociation creates free radicals that 

contribute to the film deposition.

In many plasma deposition processes, inert carrier gases are normally 

used as carrier or dilute gases. At low pressure, inert gas can absorb electron 

energy from the glow discharge and be excited to metastable states which are
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summarized in Table 1.1. The metastable inert gas atoms can then transfer 

their energy to other reactant gases via inelastic collision. Thus, more ions and 

radical reactant gases are uniformly generated throughout the glow discharge. 

As a result, the deposition will be more uniform throughout the radius of reactor 

chamber.

1.2.2 Deposition Mechanism

The properties of plasma deposited films are strongly dependent on 

process parameters. Generally, the deposition mechanism of PECVD  

processes can be explained by four major steps. First, the primary reactions 

occur between electrons and reactant gases in the plasma to form a mixture of 

ions and free radical reactive species. Second, reactive species transport from 

the plasma to the substrate surface in parallel with various secondary inelastic 

and elastic reactions. Third, the reaction or adsorption of reactive species with 

or onto the substrate surface occurs. Finally, the rearrangement processes 

follow where active species or their reaction products incorporate into the film or 

re*emit from the surface back into the gas phase. However, many questions 

regarding plasma thin film deposition mechanism still remain unanswered.

In general, plasma deposition can be classified into two mechanisms, 

radical and ionic, depending on the type of species that interact with the solid 

surface during the plasma process. Both the radical and ionic mechanisms 

happen concurrently during the deposition process. Depending on the plasma 

process parameters, one mechanism may dominate the other.

1.2.2.1 Radical Mechanism

During the plasma deposition process, the generation rate and lifetime 

for neutral radicals are usually greater than they are for ions. These two effects 

make the radical concentration higher than that for ions. Hence, it is believed 

that neutral radicals are the major deposition agents under most deposition
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Table 1.1. Metastable energy levels and ionization energies of major inert 
gases used for thin film deposition in CVD.

Inert gas Metastable energy (eV) Ionization energy (eV)

He 19.8 24.53

Ne 16.6 21.56

Ar 11.5 15.76

Kr 9.9 14.0

Xe 8.32 12.13
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conditions. After being generated in the glow discharge and adsorbed on the 

substrate surface, the adsorbed radicals have to diffuse into a stable site to 

become a part of films. Surface diffusion of such adsorbed atoms is much 

slower, compared with diffusion in the CVD process, at normal plasma process 

temperature which is lower than 300°C.

At these low temperatures, surface diffusion and rearrangement of 

reactive species on the substrate become dominant and strongly affect the 

composition of weakly bonded and high diffusive species such as hydrogen. 

Thus, the films deposited at low temperatures normally contain more trapped 

radicals and defects. As a result, the films will be more porous and contain 

more hydrogen, resulting in poor thermal and electrical stability. The instabilities 

are due to a large amount of weakly bonded hydrogen that breaks easily under 

thermal or electrical stress and thus creates more dangling bonds in the film 

structure.

1.2.2.2 Ionic Mechanism

Coincidental with the large number of radicals generated during the 

plasma process, a small number of electron and ionic species are constantly 

bombarding the surface. Some ionic species react with the surface to become a 

part of the films, and others bounce off after neutralizing. Depending on the 

energy of the bombarding species and the surface state of the substrate, either 

deposition, densification, or sputtering may occur. Various ionic species exist 

during the plasma process with varying energies, so that all three reactions may 

happen at the same time. Because ionic species carry a charge, their 

attachment to the surface will be preferential. The constant bombardment of the 

surface by electrons and ions also speed up the rearrangement of adsorbed 

atoms on the substrate surface, resulting in higher compressive stress and a 

greater scratch resistance.
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1.3 Research Objectives

The research is directed towards developing a silicon oxide deposition 

process resulting in high quality and reliable films to be used as passivation 

layers and interlevel insulators in the integrated circuit fabrication. The work 

culminates in developing a fluorinated silicon oxide film deposition process.

In this work, the use of Si2H6, instead of SiH4, as silicon precursor to 

deposit the films in PECVD is extensively studied for the first time in the history 

of silicon oxide film deposition process. The research is divided into two major 

parts which are the silicon oxide film deposition for the first phase and the 

fluorinated silicon oxide film deposition for the second phase, as shown in Fig.

1.1. The equipment used for the film deposition is a Plasma Therm model VII- 

70 parallel plate plasma reactor system which uses a 13.56 MHz rf plasma 

source and has 500 W maximum output power as shown in Fig. 1.2. The 

electrode spacing was held constant at 1 inch. The top electrode was always 

maintained at 60°C for the film deposition.

In chapter 2, the plasma process characteristics of the silicon oxide films 

as a function of various process parameters such as gas flow ratio of N20  to 

Si2H6, rf input power, deposition temperature, total gas flow rate, and process 

pressure are addressed. This experiment enables not only to understand 

chemical reaction mechanisms but to optimize each and every process 

parameter that affects the film deposition and eventually the film properties.

In chapter 3, effect of deposition temperature on the chemical and 

electrical film properties is addressed with the help of chemical etch rate, 

infrared transmission spectroscopy, high-frequency capacitance-voltage (C-V) 

technique, and current-voltage (l-V) measurements. As the most important goal 

for this research is to decrease the deposition temperature as much as
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Fig. 1.1. Overall research outline. The research is divided into two 
parts, silicon oxide and fluorinated silicon oxide film deposition.
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Fig. 1.2. Schematic diagram of a Plasma Therm VII-70 parallel plate 
plasma reactor equipped with 13.56 MHz rf source and 1 inch electrode 
spacing.
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possible, careful investigation is made to find the lowest viable deposition 

temperature.

In chapter 4, structural properties of the silicon oxide films annealed at 

various temperatures in the range of 30 0-1100°C are presented. The  

dependence of the physical and chemical properties of the silicon oxide films on 

the post-deposition annealing process is characterized.

In chapter 5, effect of the native oxide removal on the substrate surface 

prior to the silicon oxide film deposition is detailed. The electrical properties of 

the silicon oxide films derived from C-V and l-V measurements are studied. In 

addition, the effect of annealing the as-deposited films either in N2 just after the 

film deposition or in forming gas ambient after the formation of metal electrode 

is discussed.

In chapter 6 , deposition characteristics for the fluorinated silicon oxide 

films incorporating CF4 as fluorine precursor into the silicon oxide deposition 

process, are addressed. The chemical and electrical film properties are 

examined as a function of flow rate ratio of CF4 to Si2H6 in the film deposition 

process.

In chapter 7, electrical characterization details for the fluorinated silicon 

oxide films, deposited by the optimum deposition condition as derived from 

Chapter 6 , are addressed. The results of C-V and l-V measurements are 

discussed. The improvements in film quality due to fluorine incorporation are 

summarized and comparisons made with the fluorine-free silicon oxide films.
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CHAPTER 2 

SILICON OXIDE FILM DEPOSITION

2.1 Introduction

The many results presented in this chapter have been published in 

Journal of Electronic Materials, volume 24, pages 1507-1510, 1995. Their 

permission was gratefully acknowledged.

The deposition variables such as gas flow ratio of N20  to Si2H6, 

deposition temperature, process pressure, total gas flow rate, and rf input 

power affect the film deposition in PECVD. It is necessary to understand these 

parameters that result in one mechanism becoming dominant between the 

radical and the ionic mechanisms, and how it effects the film properties. 

Therefore, each variable should be properly manipulated to optimize the film 

deposition process and to obtain high quality film properties. In this chapter, the 

first results on the silicon oxide films deposited by PECVD using Si2H6 and N20  

as silicon and oxygen precursors as a function of those variables in a 

conventional parallel plate plasma reactor are presented.

2.2 Experiment

Boron doped, chemically polished 10-20 £2-cm silicon wafers with (100) 

orientation were used as the substrates. The film deposition was carried out 

without any in-situ cleaning. After loading the wafers into the process chamber, 

the chamber was pumped to a base pressure of 1 x 10'3 Torr. High purity N20  

(99.99 %) was then first introduced into the chamber, followed by a mixture of 

4.8 % Si2H6 in helium. The deposition recipe in detail is shown in Fig. 2.1. The 

use of the inert gas, He, is known to increase the stoichiometry of the film by 

reducing the incorporation of hydrogen in SiH bonding groups, and of nitrogen 

in SiN and NH bonding groups [10].

12
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\  S tep  
P a r a m e t e r \

1 2 3 4 5 6 R em ark

n2 - ► - ►

Si^ 6

N p

c f 4
Fluorinated  
silicon oxide 
film

Chamber
pressure

Tem perature

rf power

Time (min) 2 1.5 1 5 - 1 5 2 1.5

Fig. 2.1. The detailed deposition recipe consisting of six different steps. 
The process chamber is pumped to a base pressure before starting step 1. The 
films are deposited during step 4.
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The thickness of the deposited silicon oxide films was measured by a 

Nanometrics 210XP thickness meter. Auger electron spectroscopy (AES) 

measurement on the films was carried out on a Physical Electronics model PHI- 

48 to determine the film composition. For the AES measurement, 100 nm thick 

silicon oxide film grown at 950°C by dry oxidation was used as a reference 

wafer to normalize the silicon and oxygen peaks. The etch rate was obtained by 

dipping the film for 1 min into P-etch solution consisting of 15 parts by volume 

48 % HF, 10 parts by volume 70 % H N 0 3, and 300 parts by volume of 

deionized water. Typical etch rate in the P-etch solution for the silicon oxide 

films prepared by various methods [7], [28] are summarized in Table 2.1.

2.3 Results and Discussion

Figure 2.2 shows the film deposition rate and the chemical etch rate in 

the P-etch solution as a function of the gas flow ratio of N20  to Si2H6. The 

deposited silicon oxide film thicknesses are in the range of 100-150 nm for the 

250°C  deposition temperature. The rf input power and the process pressure 

was 50 W  and 700 mTorr, respectively. The increase in the gas flow ratio 

results in decrease in both the deposition rate and the chemical etch rate. The 

increase in Si2H6 concentration causes higher film deposition rate presumably 

due to an increase in the number of active species in the glow discharge and 

drives the silicon oxide film more porous resulting in faster etch rate.

The gas flow ratio is the most important process parameter in 

determining the stoichiometry of the film [29]. The ratio for obtaining 

stoichiometric silicon oxide depends on the process condition used, as shown in 

Fig. 2.3. It can be seen that N20 /S i2He ratios, which are smaller than 50, result 

in silicon-rich oxide films while the ratio in the range of 50-150 gives the 

stoichiometric silicon oxide films with the atomic ratio of silicon to oxygen equal 

to 50 %. At ratios higher than 150, the film becomes oxygen-rich.
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Table 2.1. Typical etch rate in the P-etch solution for the silicon oxide films 
prepared by various methods.

Films Etch rate (nm/sec)

Sputtered silicon oxide 2-7

Atmospheric pressure CVD silicon oxide 1-2

Thermal silicon oxide 0.2

SiH4-based PECVD silicon oxide ~ 1.6
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The dependence of film deposition rate as a function of deposition 

temperature is illustrated in Fig. 2.4. The rf input power was 50 W, total flow 

rate was 140 seem, and N20/S !2H6 flow ratio was 55. Under these experimental 

conditions, it is evident from Fig. 2.4 that the deposition is limited by the mass 

transport process. For pyrolytic atmosphere pressure CVD of the silicon oxide 

films using Si2H6 and N20  as source materials, formation of a gas phase 

intermediary SiH20  precursor has been suggested [23]. Disiloxane, (SiH3)20 , 

gas phase intermediary precursor has been suggested for the silicon oxide films 

in PECVD by using SiH4 and N20  [10]. These precursor molecules reach the 

surface and undergo surface reaction by which hydrogen is replaced by 

oxygen. It is quite likely that intermediary gas phase precursors are also formed 

in PECVD utilizing Si2H6 and N20 . From Fig. 2.4, the deposition rate is seen to 

decrease with an increase in deposition pressure. This is consistent with lower 

flux of the active intermediary species transported to the surface through the 

boundary layer. Thermal dissociation study of Si2H6 has shown that Si2H6 

partially dissociates on a clean silicon (100) surface even below room 

temperature [30]. Hence, Si2H6 can also contribute to film deposition observed 

in this study at low temperature.

The peak deposition rates are dependent on the process pressure and 

are observed to be 22 nm/min and 14 nm/min for the deposition pressure of 300 

mTorr and 700 mTorr, respectively. The slight decrease in the deposition rate 

for higher deposition temperatures is believed to be due to the re-emission 

characteristics of the adsorbed active radical species on the surface. Films 

deposited at low deposition rate (7-15 nm/min) reveal reproducible deposition 

properties and good thickness uniformity of within ±  3 % across four inch 

diameter wafers.
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Deposition rate is plotted as a function of the total gas flow rate into the 

process chamber with the gas flow ratio of N20  to Si2H6 held at a constant value 

in Fig. 2 .S. The rf input power was 50 W, process pressure was 700 rnTorr, and 

the deposition temperature was 250°C. As evident from this figure, the 

deposition rate increases with increase in the total flow rate with deposition 

pressure held constant. This observation is consistent with a mass transport 

limited process.

Figure 2.6 shows the chemical etch rate of the films as a function of 

deposition temperature at 50 W rf power, constant N20 /S i2ht ratio of 55, and 

constant gas flow rate of 140 seem. The silicon oxide film deposited at room 

temperature at 300 mTorr has an etch rate of 7-8 nm/sec, which is four times 

faster than the etch rate of 1.7 nm/sec for the film deposited at 250°C at the 

same pressure. In addition, the silicon oxide films deposited at room 

temperature with higher pressure of 700 mTorr show almost twice the etch rate 

of 2.5 nm/sec, compared to 1.3 nm/sec etch rate of the silicon oxide deposited 

at 250°C. The faster etch rate for lower deposition temperature indicates less 

film integrity, which may be due to lower surface diffusion and rearrangement of 

active species on the substrate surface. For purposes of comparison, the P- 

etch solution used here etches silicon oxide films deposited at 350°C in PECVD 

utilizing SiH4 at a rate of 1.6 nm/sec, as summarized in Table 2.1. This 

suggests that the etch rate of the Si2H6-based PECVD silicon oxide films 

deposited at 200°C is comparable to that of the SiH4-based PECVD films 

deposited at 350°C.

The effect of the deposition rate on the rf discharge power is illustrated in 

Fig. 2.7 for three different pressure conditions. The deposition temperature is 

maintained at 250°C, total flow at 140 seem, and the N20 /S i2H6 ratio at 55. At 

low power (< 30 W), the reaction is limited by the number of active radical
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species created in the glow discharge. The low chamber pressure causes an 

increase in the mean free path resulting in low deposition rate. As the rf power 

increases, the deposition rate saturates and then decreases. This decrease in 

the deposition rate with high power is mainly due to the sputtering effects 

caused by higher energy of the bombarding species [27],

The deposition rate and the etch rate as a function of the process 

pressures are shown in Fig. 2.8. The deposition rate in the mass transport 

controlled regime is strongly affected by a change in the total pressure and is 

proportional to the diffusivity of the active radical species in the boundary layer. 

The diffusivity in the boundary layer is inversely proportional to the total 

pressure. Increasing pressure decreases the number of species arriving on the 

substrate surfaces, thus causing a fall in the deposition rate from 22 nm/min at 

100 mTorr to 6 nm/min at 1400 mTorr. The almost flat curve for pressures 

above 300 mTorr indicates lower dependence of etch rate on pressure. 

However, the etch rate has a minimum value of 1.3 nm/sec for the silicon oxide 

films deposited at 700 mTorr.

2.4 Conclusion

Stoichiometric, reproducible, and uniform PECVD silicon oxide films 

have been deposited between room temperature and 300°C using Si2H6 and 

N20  as silicon and oxygen precursors, respectively. The dependence of film 

properties for processing parameters was investigated. The stoichiometric 

silicon oxide films were obtained when the gas ratio of N20  to Si2H6 was in the 

range of 50-150. The deposition was also found to be nearly temperature 

independent indicating the mass transport limited regime. Films deposited at 

low deposition rate (7-15 nm/min) showed reproducible deposition properties 

and good thickness uniformity of within ± 3% across 4 inch diameter silicon 

wafers. The best process parameters were 700 mTorr for the pressure, 50 W
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for the plasma power, 50 for the gas flow ratio of N20  to Si2H6, and 140 seem 

for the total gas flow rate. The film deposition rate with this condition at the 

deposition temperature of 120°C was about 12-13 nm/min. This process shows 

significant promise as a low temperature substitute for the conventional SiH4- 

based PECVD silicon oxide deposition process in the integrated circuit 

technology.
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CHAPTER 3 

EFFECT OF DEPOSITION TEMPERATURE ON FILM QUALITY

3.1 Introduction

The many results presented in this chapter have been published in Thin 

Solid Films, volume 270, pages 512-516, 1995. Their permission was gratefully 

acknowledged.

Semiconductor devices are being scaled down to submicron dimensions 

to meet device requirements for high operaing speed, low power consumption, 

and high packing density. This requires the semiconductor industry to look for 

lower temperature processes. Silicon oxide is a common dielectric material in 

the integrated circuit technology for purposes such as interlevel isolation and 

dielectric passivation. It is desirable to deposit the silicon oxide films at as low a 

temperature as possible to avoid the various adverse effects accompanied with 

processing at elevated temperatures.

In this chapter, results of deposition of PECVD silicon oxide films at 

significantly lower temperatures using Si2H6, instead of SiH4i as the silicon 

source, are presented. For the first time, the chemical and electrical 

characteristics of the silicon oxide films deposited in the temperature range of 

30-250°C with the above Si2H6 process are studied. In particular, the effect of 

the film deposition temperature on the film properties measured by chemical 

etch rate, infrared transmission spectroscopy, high-frequency C-V technique, 

and l-V measurements are discussed.

3.2 Experiment

Boron doped, chemically polished 100 mm diameter p-type silicon wafers 

with (100) orientation and resistivity in the range of 5-15 Q-cm were used as the 

substrate material. The chamber pressure during film deposition was kept at

27

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



28

700 mTorr. The deposition rf power was 50 W. The total gas flow rate was 140 

seem while the N20  to Si2H6 gas ratio set at 50. The deposition temperature 

was the only process parameter varied in this experiment. The wafers for the 

electrical characterization were cleaned as per the standard RCA cleaning 

process [31], followed by a dip in dilute HF (100:1 by volume ratio of deionized 

water to 48 % HF).

The RCA cleaning procedure consists of two different steps. In the first 

step (called standard clean-1 or SC1), wafers are exposed to 5:1:1 solution of 

deionized w ater: 30 % H20 2 : 30 % NH4OH at 70°C for 5 min. This procedure is 

designed to remove organic surface films and to expose the surface to 

decontamination reactions. In the second step (called SC2), the rinsed wafer is 

exposed to 6:1:1 solution of deionized w ater: 30 % H20 2 : 37 % HCI at 7CfC for 

5 min. This procedure is designed to remove metallic contaminants that were 

not entirely removed by the first treatment.

The wafers were then rinsed in deionized water and blown dry using N2. 

Silicon oxide films of 100 nm thickness were deposited at different deposition 

temperatures within the 30-250°C temperature range. A 300 nm thick aluminum 

film was then thermally evaporated on the silicon oxide films. Metal-oxide- 

semiconductor (M O S) capacitors with predefined electrode area were 

fabricated by wet etching aluminum using standard photolithography 

techniques. The chemical solution, consisting of 1:1:17:1 by volume of 70 % 

HNO3 : CH3COOH : 85 % H3P 0 4: deionized water, was used as an aluminum 

etchant. The typical etch rate for a sputtered aluminum with this solution is 

about 50 nm/min at room temperature.

The gate electrode areas for the C-V and the l-V measurements were 

2.73 x 10'3 cm2 and 8.3 x 10'3 cm2, respectively. Post-metallization annealing 

was done at 400°C in N2 ambient for 30 minutes. The thickness of the silicon
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oxide films was measured by ellipsometry on an Applied Materials Ellipsometer 

II and by a Nanometrics 210XP thickness meter. The dielectric constant of the 

silicon oxide films was calculated from the accumulation capacitance and 

conductance at high-frequency (1 MHz) C-V measurements with a HP 4275A  

LCR meter. The ramp l-V characteristics were obtained with a HP 4140 voltage 

source and a Keithley 485 picoammeter.

Infrared transmission spectroscopic measurements were made on 200- 

220 nm thick silicon oxide films deposited on substrates that had not undergone 

any pre-deposition cleaning. The vibrational properties in the 400-4000 cm'1 

wave number range were observed using a Perkin Elmer Fourier transform 

infrared spectrophotometer 1600 with a resolution of 4 cm'1. A bare silicon 

wafer was used as the background reference.

3.3 Results and Discussion

The deposition rate and etch rate of the silicon oxide films as a function 

of the deposition temperature is shown in Fig. 3.1. The etch rate was obtained 

by dipping the films in the P-etch solution. The silicon oxide deposition by 

PECVD using Si2H6 and N20  chemistry is a mass transport limited process [32] 

especially in the temperature range above 150°C as evident from the nearly 

temperature independent deposition rate observed in Fig. 3.1. The fastest 

deposition rate observed in this study is 12.5 nm/min at 220°C. The faster etch 

rate for the films deposited at lower temperature reflects a increase in the film 

porosity, probably due to reduced surface diffusion and rearrangement of active 

species on the substrate surface [33]. This may result in a higher density of 

hydroxyl (OH)-containing bonds as explained later. The etch rate approaches a 

constant value of 1.3 nm/sec for films deposited at 150°C and above. This 

observed etch rate value of 1.3 nm/sec is comparable to the etch rate observed 

on silicon oxide films deposited by TEOS/ozone CVD at 400°C [34].
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Figure 3.2 shows the infrared transmission spectra of the silicon oxide 

films deposited at various deposition temperatures from 30°C to 250°C. A 

decrease in the transmission intensity of the hydroxyl-containing bonds located 

at 3380-3620 cm'1 and at 940 cm'1 is observed with an increase in the 

deposition temperature [5]. This gradual disappearance of the hydroxyl- 

containing peaks with increasing deposition temperature is consistent with the 

improvement in the film integrity reflected by a decrease in the etch rate in Fig. 

3.1.

In the silicon oxide, the basic structural unit is the S i04 tetrahedron with a 

silicon atom at the center, bonded to four oxygen atoms placed at the comers 

as shown in Fig. 3.3. Each oxygen atom belongs to two tetrahedra and is thus 

bonded to two silicon atoms. The vibrational mode associated with the Si-O-Si 

stretching is frequently used to study the structural property of the silicon oxide 

films. The infrared transmission spectra for stoichiometric silicon oxide film 

exhibits three characteristic peaks [35] which occur approximately at 450, 800, 

and 1075 cm'1. The lowest frequency vibration near 450 cm'1 is a Si-O-Si 

rocking mode in which the oxygen atom motion is out of the plane of the Si-O-Si 

bond. The intermediate frequency and the weakest transmission at about 800 

cm'1 is a Si-O-Si bending vibration mode in which the oxygen atom motion is in 

the plane of the Si-O-Si bond and along the direction of the bisector of Si-O-Si 

bridging bond angle. The strongest transmission near 1075 cm'1 is a stretching 

vibration in which the oxygen atom motion is in the plane of the Si-O-Si bond 

and in a direction parallel to a line joining the two silicon atoms.

The Si-O-Si stretching peak and its full width at half maximum (FWHM) 

as a function of the deposition temperature is shown in Fig. 3.4. As the 

deposition temperatures increase, the wave number corresponding to the Si-O- 

Si stretching decreases from 1073 cm’1 to 1054 cm'1 while the FWHM increases
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Fig. 3.2. Infrared transmission spectra of the as-deposited silicon oxide 
films as a function of deposition temperature in the range of 30-250°C. The 
arrows indicate the location of absorption peaks in the vibrational spectra.
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Fig. 3.3. Three-dimensional representation of two neighboring S i0 4 cell, 
bridged by an oxygen atom. Directions for three characteristic vibration motions 
are also marked.
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from 83 cm"1 to 112 cm"1. It is now well accepted [1], [11], [36], [37] that shifts in 

the stretching wave number toward lower values and increases in the FWHM  

are related to smaller values of the average Si-O-Si bridging bond angle which 

is believed to be about 144° for thermally grown silicon oxide and somewhat 

smaller than 144° for PECVD films [38]. As the Si-Si distance is directly related 

to the Si-O-Si bond angle, changes in wave number with compaction can be 

explained in terms of changes in the bond angle. By assuming that the density 

of silicon oxide scales inversely as the cube of the Si-Si distance, a decrease in 

the Si-O-Si bond angle results in an increase in the film density. From Fig. 3.2, 

the hydroxyl content decreases with increasing deposition temperature. An 

increase in the Si-OH content is known to result in more porous silicon oxide 

CVD films [3], causing faster etch rate for the silicon oxide films deposited at 

lower deposition temperatures.

The infrared transmission spectra as a function of the deposition 

temperature after conventional furnace anneal at 400°C in N2 ambient for 30 

min is shown in Fig. 3.5. For the annealed case, the hydroxyl-containing peak 

located at 940 cm"1 has nearly disappeared even for the silicon oxide deposited 

at 30°C.

Figure 3.6 indicates the relative dielectric constant of the as-deposited

and annealed silicon oxide films as a function of the deposition temperature.

The dielectric constant is calculated from the observed values of the

capacitance in accumulation of MOS devices fabricated with the deposited

films. The observed capacitance was corrected for series resistance [39], as

described in Appendix A. The dielectric constant has been reported to be

proportional to the hydroxyl-containing species in the films. The increase in the

dielectric constant due to H20  and OH content can be explained by the fact [3] 

that these are dipolar species with relatively large dipole moments |!h2o=1 -84
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debye and (I0h=1-5 debye (1 debye=3.338 x 10'30 C-m), respectively, with the 

relative dielectric constant of 78.2 for liquid water being large. Hence, the silicon 

oxide films deposited at lower temperatures with higher Si-OH content result in 

higher values for the relative dielectric constant. The dielectric constant of the 

as-deposited silicon oxide films decreases from 7.8 to 5.2 as the deposition 

temperature increases from 30°C to 200°C. Similarly, the dielectric constant of 

the annealed silicon oxide films decreases from 7 to 4.6. Assuming that the 

anneal temperature at 400°C is low enough not to change the thickness of the 

silicon oxide films, the decreased values of the dielectric constant indicate that 

even though the annealing is carried out after the gate electrode fabrication, it is 

able to partially reduce the hydroxyl-related bonds. The smallest value that of 

4.6 for the relative dielectric constant obtained in this study, is still higher than 

the corresponding value of 3.9 for the thermally grown silicon oxide. The N2 

ambient gas during annealing is chemically stable at the 400°C annealing 

temperature used and can not result in significant nitridation [40].

Time zero dielectric breakdown characteristics of the silicon oxide films 

deposited at different deposition temperatures are shown in Fig. 3.7. The details 

of the ramp l-V characteristic are basically described as follows [7]. As a current 

flows through the silicon oxide, some electrons are captured into deep bulk 

traps, creating a space charge. At a suitably high current, the charge build-up is 

enough to significantly affect the electric field at the injecting interface which 

opposes the ramp voltage and on a logarithmic plot a trapping ledge is 

observed. If all of the traps are filled, or if a dynamic equilibrium is achieved 

between trapping and high field detrapping, then the curve may go through the 

ledge onto a new Fowler-Nordheim characteristic before breakdown. The ramp 

l-V measurements, here, are taken at 25°C with the voltage ramp rate set at 1 

V/sec. The polarity of the field causes carrier accumulation at the substrate
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surface. This for p-type substrate used in this study corresponds to electron 

injection from the aluminum gate. Current density, J, in the silicon oxide film as 

a function of the applied electric field, E, indicates higher leakage currents for 

the films deposited at lower temperatures. However, the leakage current density 

of 5 x 10'8 A/cm2 at 0.5 MV/cm field strength for the silicon oxide film deposited 

at the lowest temperature of 30°C is of the same order as through the silicon 

oxide film deposited by PECVD using SiH4 as the silicon source at 350°C [7]. 

The J-E characteristics in Fig. 3.7 have similar features for all the deposition 

temperatures considered. The current through the silicon oxide film saturates at 

high electric field, known as the trapping ledge [41], [42]. The trapping ledge 

seems to be caused by the hydroxyl-containing bonds which either act as deep 

traps or recombination centers in the silicon oxide films [2]. Further experiments 

are required for a better understanding of the parameters related to the trapping 

ledge. At about 10 MV/cm, the intrinsic dielectric breakdown of the silicon oxide 

films is observed. For the film deposition at 150°C, the dielectric breakdown 

field is greater than 10 MV/cm.

In Fig. 3.8, J/E2 is plotted against 1/E. The slope corresponds to the 

barrier height [43] as shown in Fig. 3.9. The slope of the linear part of this curve 

is observed to increase with increasing deposition temperature. From this, the 

barrier height values of 3.1 eV and greater obtained for the oxide films 

deposited at 120°C and above are close to the reported value of 3.2 eV. For the 

silicon oxide films deposited at 30°C, the observed barrier height of 1.59 eV is 

half that of the reported value, indicating existence of a large number of traps or 

energy states in the film.

A distribution of the non-destructive dielectric breakdown field of the 

silicon oxide films deposited at various deposition temperatures is shown in Fig. 

3.10. In the measurements, a non-destructive breakdown field is defined as the
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electric field at which the current level reaches 83 nA which is equivalent to a  

current density of 10 pA/cm2. Fifty devices for each case were measured at 

room temperature and voltage was increased at a ramp rate of 1 V/'sec biasing 

the device towards accumulation. No initial device failures such as the ones 

caused by pin-holes in the films were observed. Figure 3.10 shows a very 

consistent distribution with the peaks occurring at higher values of applied field 

as the film deposition temperature is increased. The average value of non­

destructive breakdown field, summarized in Table 3.1, of the silicon oxide films 

deposited at 30°C was 2.1 MV/cm. However, it increased to 3.4 MV/cm for the 

films deposited at 90°C, to 4.5 MV/cm for the films deposited at 120°C, and to 

4.8 MV/cm for the films deposited at 150°C.

3.4 Conclusion

The characteristics of the silicon oxide films prepared by plasma 

enhanced chemical vapor deposition using Si2H6 and N20  as a function of the 

deposition temperature in the range of 30-250°C were examined. For deposition 

temperature above 150°C, the deposition rate and the P-etch rate were 

observed to be relatively independent of temperature. The film deposition rate 

increased slightly and the P-etch rate decreased with deposition temperature in 

the range of 30-150°C. Film density and the dielectric constant improved with 

deposition temperature. Infrared transmission spectra indicated a decrease in 

hydroxyl-containing peaks in the silicon oxide films located at 940 cm'1 and at 

3380-3630 cm'1 with increasing deposition temperature. A post-metallization 

anneal at 400°C for 30 min in N2 showed further improvement in the dielectric 

property of the deposited films.

The leakage current density through the silicon oxide film decreased with 

deposition temperature. The leakage current density of 5 x 10'8 A/cm2 for 

devices biased towards accumulation for the field strength of 0.5 MV/cm
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Table 3.1. Average non-destructive dielectric breakdown field strength for the 
silicon oxide films deposited at different temperatures.

Film deposition 
temperature (°C)

Non-destructive 
dielectric breakdown 
field (MV/cm)

30 2.1

60 3.4

120 4.5

150 4.8
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through silicon oxide film deposited at 30°C is comparable to the current 

through oxide films deposited at 350°C with conventional SiH4 precursor. The 

Fowler-Nordheim plots indicate a barrier height of 3.0 eV for oxide films 

deposited at 90°C and above. The lower values of the effective barrier height 

were obtained in the silicon oxide films deposited at lower temperatures, 

probably due to incorporation of a larger number of traps. The average value of 

non-destructive dielectric breakdown field increased from 2.1 MV/cm for 30°C  

deposited samples to 4.8 MV/cm for the 150°C deposited samples.

The Si2H6 precursor provides superior PECVD silicon oxide films at lower 

temperatures than the traditionally used precursor SiH4. The etch rate of film 

deposited with Si2H6 is comparable to that obtained by TEOS/ozone CVD at a 

higher temperature of 400°C. This process, hence, shows promise for 

depositing dielectric layers for microelectronics processes that require low 

temperatures.
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CHAPTER 4 

STRUCTURAL PROPERTIES OF SILICON OXIDE FILMS

4.1 Introduction

The many results presented in this chapter have been published in 

Applied Physics Letters, volume 67, pages 2986-2988, 1995. Their permission 

was gratefully acknowledged.

It is generally accepted [44] that the short range order in the amorphous 

silicon oxide films on a microscopic scale is composed of ring networks of 

tetrahedra which link in such a way as to produce a distribution of 

intertetrahedral Si-O-Si bond angles whose mean is about 144°. This angle 

corresponds to that at which calculation predicts the bond energy per silicon 

oxide molecule to be a minimum. One of the interesting physical properties of 

the amorphous silicon oxide films is the plastic densification produced by either 

large hydrostatic pressure (> 8 GPa at room temperature) or a combination of 

high pressure and temperature. These densifications may be relaxed only by 

heating to very high temperature (> 900°C). The densified, amorphous silicon 

oxide films may also be grown thermally on silicon substrates by low 

temperature processing or deposited by CVD.

In this chapter, the dependence of the structural properties of the silicon 

oxide films prepared by PECVD using Si2H6 and N20  at 120°C on the post­

deposition annealing process is presented. The film characteristics in terms of 

bond stretching motion and relative dielectric constant are discussed in detail.

4.2 Experiment

Chemically polished, 4" diameter boron doped silicon wafers with (100) 

orientation and 5-15 Q-cm resistivity were used as the substrates. The 

deposition process parameters were maintained the same throughout this

47
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study. The deposition temperature was set at 120°C while the top electrode 

temperature was 60°C. A 140 seem gas mixture of 4.8 % Si2H6 in He and pure 

N20  was introduced into the process chamber to deposit 100 nm thick silicon 

oxide films while the gas flow ratio of N20  to Si2H6 was fixed at 50 in order to 

ensure the stoichiometry of the silicon oxide films. The process pressure and rf 

power were 700 mTorr and 50 W, respectively. These conditions gave a 

deposition rate of 12.5 nm/min and thickness uniformity of within ±  3 % across 

four inch wafers. The conventional RCA cleaning followed by a dip in 100:1 

parts by volume of deionized water-HF (48 %) was used as pre-deposition 

cleaning procedure.

The thickness of the deposited silicon oxide films was measured using 

an Applied Materials Ellipsometer II. The post-deposition annealing processes 

were carried out in conventional tube furnace flowing N2 at different 

temperatures for 30 min. The vibrational properties in the 400-4000 cm'1 wave 

number range were observed using a Perkin Elmer Model 1600 Fourier 

transform infrared spectrophotometer with a resolution of 4 cm'1. A bare silicon 

wafer was used for background subtraction purposes.

Aluminum gate MOS capacitors with predefined area of 2.6 x 10'3 cm2 

were fabricated using a standard photolithography technique to investigate the 

dielectric constant of the silicon oxide films annealed at different temperatures. 

Forming gas anneal with 5 % H2 in N2 ambient at 40CPC for 30 min was carried 

out as the post-metallization anneal (PMA) prior to C-V measurements.

4.3 Results and Discussion

In Fig. 4.1, the chemical etch rate in the P-etch solution is plotted as a 

function of the post-deposition annealing temperature. The chemical etch rate 

was obtained by dipping the films in the P-etch solution. The etch rate of the as- 

deposited silicon oxide films was found to be 0.81 nm/sec. As the annealing
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temperature increases, the etch rate decreases. The etch rate ratio of the as- 

deposited to the annealed silicon oxide films at 1100°C was 7.4. Higher etch 

rates obtained indicate that the as-deposited silicon oxide films may have 

strained bonds, micropores, and impurities in the network. The stress induced 

cracking which is known to occur during high temperature processing, 

particularly in films prepared at low temperatures, has not been observed even 

at 1100°C.

Infrared transmission spectra of the silicon oxide films annealed at 

different temperatures are shown in Fig. 4.2. Three characteristic peaks located 

at 1075 cm'1, 800 cm'1, and 450 cm'1 corresponding to Si-O-Si asymmetric 

stretching, bending, and rocking motion, respectively, are evident [34], [45], 

[46]. Also from the figure, transmission intensities of the hydrogen containing 

bonds [47] such as Si-H (2270 cm'1, 880 cm'1), Si-OH (3620 cm'1), H20  (1620 

cm'1) are below the spectrophotometer’s detection level. It is claimed [48] that 

the detection limit for a 100 nm film is five times higher than the 0.5-1 at.% limit 

estimated for 500 nm films [10]. This indicates less than 5 at.% of bonded 

hydrogen content in the films studied.

The Si-O-Si stretching vibration mode is commonly used to study the 

structural property of the silicon oxide films. The Si-O-Si stretching peak wave 

number and its relative peak intensity as a function of the annealing 

temperature are plotted in Fig. 4.3. As the annealing temperature increases, the 

stretching peak wave number increases: for example, from 1056 cm'1 for as- 

deposited silicon oxide films to 1077 cm'1 for silicon oxide films annealed at 

1100°C. Also, the relative intensity of the stretching peak increases with 

annealing temperature and is up to 2.5 times higher for films annealed at 

1100°C compared with as-deposited films.
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Previous studies [36], [49] had reported that the position of the stretching 

peak wave number (co) is related to the film density (p ),

dP
(4.3.1)

and to the mean Si-O-Si bridging bond angle (0) ,

dO o _ i  3
—  = —28 g cm .
d p

(4.3.2)

The changes in the film density (a p /p )  and 6 calculated using these 

relationships are plotted in Fig. 4.4. The Si-O-Si stretching peak wave number 

of 100 nm thick thermal silicon oxide films grown at 1000°C in our laboratory is 

located at 1076 cm'1 and is used as the reference wave number for the 

undensified silicon oxide films. Assuming [36], [50] that p and 6 of the 

undensified amorphous silicon oxide films are 2.2 g/cm3 and 144°, the film 

density and Si-O-Si bridging bond angle of the as-deposited silicon oxide films 

are calculated to be 2.4 g/cm3 and 138°, as summarized in Table 4.1. This 

results in 9.4 % densification of the as-deposited silicon oxide films compared to 

the undensified silicon oxide films. It is believed that the high temperature 

annealing favors the relaxation of the silicon oxide film network [51], 

presumably by reduction of porosity and hydrogen-containing species.

The effect of high temperature annealing in terms of change in dielectric 

constant was also investigated using C-V measurement and is shown in Fig.

4.5. The dielectric constant is calculated from the measured values of the 

capacitance in the accumulation region of MOS devices with silicon oxide films,
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Table 4.1. Summary of structural properties of the silicon oxide films.

Film property As-deposited
film

Annealed film 
at 1100°C

Thermal S i0 2 
at 1000°C

Si-O-Si stretching 
wave number 

(cm*1)
1056 1077 1076

Film density 
(g/cm3)

2.4 - 2.2 2.2

Si-O-Si bridging 
bond angle (°)

138 -144 144
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annealed at different temperatures prior to aluminum evaporation. Increase in 

annealing temperature caused the reduction of dielectric constant of the silicon 

oxide films. For instance, the dielectric constant of the as-deposited silicon 

oxide films was 5.88 whereas that of the silicon oxide films annealed at 1100°C 

was 4.16. Dielectric constant has been known to be proportional to the hydroxyl 

content in the film [3], thereby suggesting the presence of reduced number of 

the hydroxyl-containing bonds in the silicon oxide films annealed at higher 

temperature. It was also found that the PMA resulted in further reduction of the 

dielectric constant. This may be due to hydrogen related passivation [52] known 

to occur during forming gas anneal. More detailed study is in progress to 

understand the bearing of these results on the electrical properties of the silicon 

oxide films.

4.4 Conclusion

The results reported in this chapter indicate that the structural properties 

of the PECVD silicon oxide films deposited at 120°C using Si2H6 and N20  are 

not significantly different from the conventional SiH4-based silicon oxide films 

deposited at 250-350°C. The etch rate of the as-deposited silicon oxide films 

was found to be 0.81 nm/sec. The etch rate ratio of the as-deposited to the 

annealed silicon oxide films at 1100°C was 7.4. Infrared transmission 

measurements indicated less than 5 at.% of bonded hydrogen content in the 

silicon oxide films studied. The shift of Si-O-Si stretching peak wave number of 

the as-deposited films compared to the undensified films was attributed to 9.4%  

increase in the film density, resulting in smaller Si-O-Si bridging bond angle of 

138°. It was also believed that the high temperature annealing resulted in the 

reduction of hydroxyl containing species in the film and, in turn, drove the 

dielectric constant towards that of thermal silicon oxide films.
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CHAPTER 5 

EFFECT OF NATIVE OXIDE REMOVAL ON FILM QUALITY

5.1 Introduction

The many results presented in this chapter have been published in 

Journal of Vacuum Science & Technology B, volume 14, pages 727-731, 1996. 

Their permission was gratefully acknowledged.

In this chapter, the electrical properties of the silicon oxide films 

deposited at 120°C using Si2H6 and N20  derived from C-V and l-V  

measurements are presented. The effect of native oxide removal on the 

substrate surface prior to the film deposition is examined. Also, the effect of 

annealing the as-deposited films either in N2 (post-deposition annealing) or in 

forming gas ambient after the formation of aluminum electrode (post­

metallization annealing) is discussed.

5.2 Experiment

Boron doped (100) oriented silicon wafers, 4 inch in diameter and 10 

O'Cm resistivity were used as the substrate material. The deposition 

temperature was maintained at 120°C with the top electrode temperature at 

60°C. A gas mixture containing 40 seem of 4.8 % S i ^  in He and 100 seem of 

pure N20  which resulted in the gas flow ratio of N20  to Si2H6 of 50 was 

introduced into the process chamber to deposit 100 nm thick silicon oxide films . 

The deposition pressure and rf power were 700 mTorr and 50 W, respectively. 

Under these conditions, film deposition rate of about 13 nm/min was obtained.

The post-deposition annealing was performed in a tube furnace in N2 

ambient for 30 min at different temperatures, followed by thermal evaporation of 

250 nm thick aluminum on the silicon oxide films. MOS capacitors were 

fabricated using standard photolithography techniques with a predefined gate
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area of 2.7 x 10'3 cm2 and then subjected to the post-metallization annealing in 

5 % H2 in N2 ambient at 400°C for 30 min. The thicknesses of the deposited 

silicon oxide films were measured using an Applied Materials ellipsometer 

model II. The C-V measurements were carried out by superimposing a 25 mV 

ac signal at 1 MHz with a HP 4275A LCR meter. A dc voltage sweep rate of 1 

V/sec was used. The capacitance values observed were corrected for the 

presence of series resistance, based on the procedures in Appendix A. The l-V 

characteristics were obtained with a HP 4140 voltage source and a Keithley 485 

picoammeter.

5.3 Results and Discussion

5.3.1 Effect of Native Oxide on C-V Curves

The substrate wafers used in this work were cleaned as per the standard 

RCA cleaning procedure. They were then either loaded directly into the 

deposition chamber after this cleaning procedure or were subjected to an 

additional immersion in a dilute HF solution (100:1 by volume of deionized 

water : 48 % HF) before loading into the deposition chamber. The samples 

immersed in the dilute HF in the latter case were rinsed with deionized water 

and blown dry with a N2 jet.

The C-V curves for the devices on the as-deposited silicon oxide films 

processed under identical conditions except for the pre-deposition dip in the 

dilute HF are shown in Fig. 5.1. Neither post-deposition nor post-metallization 

annealing was performed before these measurements. There are four different 

types of charges associated with the silicon oxide-silicon system [53]. The 

overall effect of these charges is to shift the actual C-V curve with respect to the 

reference curve for a device having no charges. For our case, the work function 

difference (<I>ms) between the gate material and the substrate is -0.83 V for the 

substrate doping used. The devices on the films cleaned with the RCA
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Fig. 5.1. High frequency normalized capacitance as a function of applied 
gate voltage for two different pre-deposition cleaning procedures which are 
RCA and RCA followed by a dip in a dilute HF. The reference curve marked is 
drawn for <&ms=  -0-83 V and with no oxide or interface charges. Neither post­
deposition nor post-metallization annealing was performed on these samples.
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procedure showed the flat band voltage (^fb) of -3.66 V, corresponding to the 

flat band voltage shift ( aVfb) of -2.83 V with respect to the reference curve 

shown in Fig. 5.1. The devices on the films cleaned with RCA followed by a dip 

in the dilute HF solution (RCA/HF) to etch off the native oxide on the surface 

had a Vfb of about -17 V. Such a large value of the flat band voltage shift for the 

devices on the native oxide free surface was in good agreement with the result 

reported elsewhere [54]. The C-V curve for the latter also showed distortion in 

the shape referred to as stretch-out along the voltage axis when compared to 

the shape of the reference curve.

We can use a Vfb to calculate an effective oxide charge density ( Q0)

located at the silicon oxide-silicon interface from the relationship

C0XAVfb
Qo = -------------------  (5-3.1.1)

where Cox is the oxide capacitance per unit area and q is the magnitude of the 

electron charge. The average values for Q0 for the RCA and the RCA/HF 

cleaning procedures were 9.3 x 1011 and 4.8 x 1012 cm'2, respectively.

In the high-frequency capacitance method, capacitance is measured as 

a function of gate bias with measurement frequency being sufficiently high so 

that the interface traps do not respond. Although interface traps do not follow 

the ac gate voltage in a high-frequency C-V measurement, they follow very 

small changes in gate bias as the MOS capacitor is swept from accumulation to 

inversion. Because interface traps do not respond to the ac gate voltage, they 

contribute no capacitance to the high-frequency C-V curve. However, they 

cause the high-frequency C-V curve to stretch out along the gate bias axis as
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the interface trap occupancy may be changed in addition to changing surface 

space charge.

From the corrected capacitance (C„\  and the calculated value of• • K, / t/A

obtained from the equations in Appendix A, the semiconductor space charge 

region capacitance (C 5) at each applied bias for the C-V measurements is

easily determined from

C C^ ox'-'c

C - C' - 'O X  ' “ ' C

(5.3.1.2)

Once the space charge capacitance is known, the semiconductor 

surface potential ( 'F s) is calculated by the use of the computer program

attached in Appendix B, assuming that the minority carrier concentration is 

negligible compared to the majority carrier concentration (This is certainly the 

case in the accumulation and depletion regions of the C-V curves). The 

semiconductor surface potential, except when the surface potential is equal to 

zero, is obtained from [55]

Cs('¥s ) = q~£sN A 
“V 2 kT

l - e  kT + e  kT
2 qOF (  qVs \

kT -1

*  kT kT

2q®F 
+  e kT

'  q % '  
’ kT kT

(5.3.1.3)

where £ s is the dielectric constant of the silicon, q is the magnitude of the 

electron charge, k is the Boltzmann's constant, T  is the temperature, N A is the 

substrate carrier concentration, and O F is the Fermi potential.
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For a flat band condition where the surface potential is zero, the space 

charge capacitance is calculated from [56]

Q ( %  =  0 ) =
i  k T

(5.3.1.4)

Interface trap density { D it) can be calculated by the high-

frequency C-V method developed by Terman [57]. From the slope of the 

semiconductor surface potential versus the gate voltage (VG), the interface trap 

capacitance Cit ) per unit area is obtained by

d v . A-1

\ d V G j
- 1 - c s(%) (5.3.1.5)

where CSC¥S) is the semiconductor capacitance per unit area. The D it at the 

flat band condition is obtained from the equation

r»  (XSJ n \  C i t i e s  ° )  .2 i r i
D it \ * s  — — ----------------------  'n cm e\T . (5.3.1.6)

The calculated interface trap densities for the RCA and the RCA/HF 

cleaning procedures were 5 x  1011 and 2.4 x  1012 cm'2eV‘1, respectively. It is 

clear that the samples, with the native oxide etched off the surface prior to the 

film deposition, had the effective oxide charge density and the interface trap 

density that were nearly five times higher than for the samples with the native 

oxide. This may be attributed to the interfacial bonding imperfections, caused by
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the energetic electron induced bond breaking processes in the plasma on the 

surface where hydrogen or fluorine atoms are terminated [9], [58]. These 

broken silicon bonds act as positive hole traps [59]. These traps located at the 

silicon oxide-silicon interface play a critical role in making the C-V curves 

stretch-out along the dc gate voltage axis as seen in Fig. 5.1.

5.3.2 Improvement of the Film Quality by Annealing

Since many device processes use a dip into a dilute HF solution as a 

final cleaning step before the film deposition process [60], the effect of 

annealing on the electrical properties of the films cleaned with the RCA/HF  

procedure was investigated. Here, two different annealing processes, that of the 

post-deposition annealing and the post-metallization annealing, were examined. 

The C-V curves for the samples annealed at different post-deposition annealing 

temperatures are plotted in Fig. 5.2. The C-V curves generally shifted towards 

right along the voltage axis upon annealing, indicating smaller magnitude of Qa

in the films. The films also indicated a smaller value for the film dielectric 

constant as the annealing temperature was raised as previously shown in Fig.

4.5. Increase in capacitance values under strong inversion on the annealed film 

samples is attributed to lateral spreading of the charges beyond the gate in 

strong inversion [59]. Figure 5.2 also indicates a decrease in the stretch-out 

along the voltage axis for the C-V curves with increase in the annealing 

temperature, resulting in almost the same capacitance gradient at flat band 

condition as the case of thermal silicon oxide grown at 1000°C in our laboratory 

in dry 0 2 ambient. The C-V curve for the latter is also shown in Fig. 5.2.

In Fig. 5.3, the observed capacitance of the above samples after post­

metallization annealing is plotted as a function of the gate voltage. From the 

location of the C-V curves for the as-deposited films in Fig. 5.3, it is seen that 

there is no memory of the earlier post-deposition annealing of the samples. The
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Fig. 5.2. Normalized high frequency capacitance for devices on the silicon 
oxide films cleaned with RCA followed by a dip in dilute HF as a function of 
applied gate voltage for post-deposition annealing at different temperatures in 
N2 ambient for 30 min. For comparison purposes, values for a thermal silicon 
oxide film grown at 1000°C are also shown.
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Fig. 5.3. Normalized high frequency capacitance for devices on the silicon 
oxide films shown in Fig. 5.2 as a function of applied gate voltage after 
subjecting the samples to post-metallization annealing in 5 % H2 in N2 ambient 
at 400°C for 30 min. The values for the as-deposited films cleaned with two 
different pre-deposition procedures, RCA and RCA/HF, are also shown.
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VFB for all samples was observed to be in the range of -3.15 ± 0.4 V. These 

values are very close to VFB of -3.06 V for the films cleaned with the RCA 

procedure and subjected to the post-metallization annealing. It suggests that 

the effect of the native oxide removal on the charge distribution in the films can 

be minimized if the films are annealed in forming gas ambient after metallization 

[56]. However, the increase in inversion capacitance was still observed for all 

samples.

A bias-temperature (BT) stress test (± 5 V bias at 200°C for 20 min) was 

also performed on the as-deposited silicon oxide films cleaned with the RCA/HF 

procedure. The measured VFB difference before and after the BT test was

0.515 V, corresponding to the mobile ionic charge density of 1.7 x 1011 cm'2 in 

the films which was almost the same value as for the samples cleaned with the 

RCA procedure.

The calculated effective oxide charge densities Qa for the samples in 

Fig. 5.2 and Fig. 5.3 are plotted in Fig. 5.4. Prior to the post-metallization 

annealing, the oxide charge density decreases with the post-deposition 

annealing temperature as indicated earlier from 4.5 x 1012 cm'2 for the as- 

deposited silicon oxide films to 8 x 1011 cm'2 for the silicon oxide films annealed 

at 1100°C. This is still a large value compared to 2.8 x 1011 cm'2 observed on 

the thermally grown silicon oxide films in this work. However, there is a 

significant reduction in the effective oxide charge density after the post­

metallization annealing, resulting in its value in the range of 4-5 x 1011 cm'2 

regardless of the condition of the post-deposition annealing used. This suggests 

that the annealing in a hydrogen containing ambient reduces the effective oxide 

charges much more effectively than in a nitrogen ambient at much higher 

temperatures. An interesting result is that no significant difference in the
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Fig. 5.4. Effective oxide charge density in the silicon oxide films cleaned 
with RCA followed by a dip in a dilute HF before and after poet-metallization 
annealing as a function of post-deposition annealing tem peratures. 
Experimental data indicated at 25°C are for the as-deposited films. The 
observed value after the post-metallization annealing for the as-deposited films 
on RCA cleaned substrates is also shown (a) for comparison purposes.
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effective oxide charge density after post-metallization annealing was observed 

for the samples on the as-deposited silicon oxide films cleaned with the two 

different pre-deposition cleaning procedures. The observed effective oxide 

charge density for the RCA cleaning procedure was 4.3 x 1011 cm'2 while that 

for the RCA/HF cleaning procedure was 5 x 1011 cm'2 which are close enough 

to be within the measurement scatter.

The calculated interface trap densities D it, under the flat band condition

(0.26 eV above the valence band edge), for the samples cleaned with the 

RCA/HF procedure are plotted in Fig. 5.5. The C-V curves shown in Fig. 5.2 

and 5.3 are utilized to obtain the data shown in Fig. 5.5. It is clear that the post­

metallization annealing in H2 ambient passivates the interface trap charges 

much more effectively than the post-deposition annealing at much higher 

temperatures in N2. The D it values for this cleaning procedure were calculated

to be in the order of 1012and 1011 cm'2eV'1 for before and after the post­

metallization annealing, respectively. The D it value obtained after the post­

metallization annealing for the samples on the as-deposited films on the RCA 

cleaned substrates without the final dip in the dilute HF also showed almost the 

same value ( -  2 x 1011 cm'2eV'1). These results support the generally stated 

position [61], [62] that the annealing in a hydrogen-containing ambient after 

metallization can reduce the interface state density as well as the oxide charges 

in the films. This hydrogen related passivation is attributed to formation of Si-H 

bonds in the oxide bulk as well as the interface, and results in the overall 

improvement of the film quality.

The ramp l-V characteristics of silicon oxide films for different post­

deposition annealing temperatures followed by post-metallization annealing are 

shown in Fig. 5.6. The current conduction mechanism of the silicon oxide films 

at smaller values of electric field, E, (< 3.5 MV/cm) seems to be identical for all
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Fig. 5.5. Interface trap density under the flat band condition before and 
after poet-metallization annealing as a function of post-deposition annealing 
temperatures. The substrates were cleaned with the RCA/HF procedure. 
Experimental data at 25°C are for the as-deposited films. The observed value 
after the post-metallization annealing for the as-deposited films on RCA cleaned 
substrates is also shown (a) for comparison purposes.
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electron injection from the gate.
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cases, presumably dominated by the hopping of the thermally excited electrons 

from one isolated trap to another [63]. For the silicon oxide films with the post­

deposition annealing temperature of 500°C or lower for both pre-deposition 

cleaning procedures used, the hopping mode of conduction dominates till 

catastrophic dielectric breakdown condition is reached. However, for the silicon 

oxide films subjected to the post-deposition annealing at 700°C and higher, the 

current increases at about 3.5 MV/cm showing a linear relationship for /n(J/E2) 

versus 1/E. This behavior is similar to the Fowler-Nordheim dominated 

conduction process. The model to explain this behavior of current conduction 

processes is not available at this time.

A distribution of catastrophic dielectric breakdown fields of the as- 

deposited silicon oxide films cleaned with the RCA and the RCA/HF procedures 

is shown in Fig. 5.7. The measurements were carried out after the post- 

metallization annealing step. Fifty devices were used in the measurement done 

at room temperature and the voltage was increased at a ramp rate of 0.5 V/sec 

with the gate biased negative with respect to the substrate. The distribution 

showed no significant differences except for more widely distributed breakdown 

for the devices on silicon oxide films cleaned with the RCA procedure, 

particularly at the moderate values of the electric field. The early breakdown (< 

3 MV/cm) of the samples cleaned with the RCA and the RCA/HF procedure, 

presumably caused by the particles or micropores in the films, was seen on 27 

% and 30 % of devices tested, respectively. The intrinsic breakdown (> 8 

MV/cm) of the samples cleaned with the RCA and the RCA/HF procedure was 

64 % and 66 %, respectively. The measured average dielectric breakdown field 

was 7.1 MV/cm for the RCA and 7.3 MV/cm for the RCA/HF cleaning 

procedure.
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Fig. 5.7 Distribution of occurrence of catastrophic dielectric breakdown as 
a function of electric field for the as-deposited silicon oxide films cleaned with 
two different pre-deposition cleaning procedures. The measurements were 
performed after poet-metallization annealing at 400°C for 30 min in a forming 
gas ambient. T0x is a silicon oxide thickness.
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The silicon oxide film properties related to the pre-deposition cleaning 

procedure are summarized in Table 5.1 and 5.2. The quality degradation 

caused by the native oxide removal on the substrates prior to film deposition 

can be reduced by performing the post-metallization annealing at 400°C in 

forming gas ambient, resulting in no significant differences for characteristics of 

charge distribution and dielectric breakdown behavior.

5.4 Conclusion

In summary, the effect of native oxide removal from the substrate surface 

before film deposition and the improvement of electrical properties of PECVD  

silicon oxide films deposited at 120°C using Si2H6 and N20  by annealing are 

examined. The films deposited on the native oxide free surface showed five 

times more effective oxide charge and flat band interface trap densities than the 

films deposited on native oxide. In the former case, post-deposition annealing in 

N2 reduced the effective oxide charge densities with the higher annealing 

temperature resulting in smaller charge density values. The improvement in the 

film quality due to reduction in both the effective oxide charge and the interface 

trap density was accomplished much more effectively by the post-metallization 

annealing at 400°C in forming gas for 30 min. The values for both these charge 

densities were comparable after this post-metallization annealing regardless of 

the substrate cleaning procedure used and regardless of the post-deposition 

annealing in N2. The films deposited on substrates without native oxide and 

annealed at 700°C and higher temperatures during post-deposition annealing 

had higher current densities at electric fields greater than 3.5 MV/cm. No 

significant difference in the dielectric breakdown field was observed after post­

metallization annealing for the samples having undergone the two different pre­

deposition cleaning procedures. The silicon oxide film quality deposited at 

120°C followed by annealing at 400°C in the forming gas ambient shows
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Table 5.1. Summary of high-frequency C-V measurements for the silicon 
oxide films cleaned with two different pre-deposition cleaning procedures.

Pre-depo

Effective oxide charge 
density

(x 1011 cm'2)

Interface trap density 
at flat band condition 

(x 1011 cm'2e V 1)

cleaning
As-
deposited

After
PMAa

As-
deposited

After
PMAa

RCA 9.3 4.3 5.0 1.9

RCA/HF 48.0 5.0 24.0 2.0

aPMA means the post-metallization annealing at 400°C for 30 min in 5 %  
H2 in N2 ambient.
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Table 5.2. Intrinsic dielectric breakdown distribution for devices cleaned with 
two different pre-deposition cleaning procedures.

Pre-depo
Dielectric breakdown measured after PMAb

cleaning
Eava(MV/cm) < 3 MV/cm > 8 MV/cm

RCA 7.1 2 7 % 6 4 %

RCA/HF 7.3 3 0 % 6 6 %

aEav means the average catastrophic dielectric breakdown field.

bPMA means the post-metallization annealing at 400°C for 30 min in 5 % 
H2 in N2 ambient.
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potential for application as passivating and insulating layers in the 

microelectronics industry.
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CHAPTER 6 

FLUORINATED SILICON OXIDE FILM DEPOSITION

6.1 Introduction

As the complexity of integrated circuits increases, the role of interlayer 

dielectric films deposited at low temperatures and with low dielectric constants 

has become more important to prevent the degradation of device operating 

speed caused by parasitic capacitances [64], [65]. The rate of signal 

transmission within the device is related to the delay constant ( RC)

RC=Pm£oAL
TmTox

where p m is the resistivity of the interconnection metal, L m is the length of the 

interconnection metal, and eox is the dielectric constant of the intermetal 

dielectric. Tm and Tox are the thickness of the interconnection metal and 

intermetal dielectric, respectively. A low RC  can be achieved by reducing the 

resistance of the interconnection metal, the dielectric constant of the intermetal 

dielectric, or by modifying the interconnection metal schemes. The most 

preferred way to reduce the delay constant at this moment is the use of a 

intermetal dielectric with a low dielectric constant.

One of the intermetal dielectrics which has received much attention 

recently is fluorinated silicon oxide (FxSiOy), where incorporation of fluorine into 

the S i-0 network causes the reduction of the dielectric constant as a result of it 

being the most electronegative and the least polarizable element in the periodic 

table. Different approaches [66]-[69] in depositing fluorinated silicon oxide films 

include PECVD, electron cyclotron resonance plasma CVD or atmospheric
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pressure CVD using silicon precursors such as SiF4l FSi(OC2H5)3 or Si(OC2H5)4 

in the presence of NF3> CF4, N20  or C2F6.

In this chapter, details of deposition of PECVD fluorinated silicon oxide 

films at 120°C utilizing CF4 as the fluorine source into the silicon oxide 

deposition process with Si2H6 and N20  are discussed. The chemical and 

electrical properties of the films are studied as a function of the flow rate ratio of 

CF4to Si2H6 in the film deposition process.

6.2 Experiment

The starting materials used in this study were p-type chemically polished 

4" diameter silicon wafers with (100) orientation and 10 O cm resistivity. The 

wafers were cleaned as per the standard RCA cleaning procedure. Films of 

nominally 100 nm thickness were deposited by flowing 40 seem of 4.8 % Si2H6 

in He, 100 seem of N20 , and 0-48 seem of CF4 in the deposition chamber. The 

CF4 flow rate was the only process parameter varied in this experiment which 

resulted in the flow rate ratio of CF4 to Si2H6 varying from 0 to 24. The 

deposition temperature was maintained at 120°C with the top electrode at 60°C. 

The process pressure and rf power were 700 mTorr and 50 W, respectively.

The thickness and refractive index of the films were measured using an 

Applied Materials ellipsometer model II. The etch rate was obtained by dipping 

the films in the P-etch solution. The vibrational properties in the 600-1400 cm'1 

wave number range were observed using a Perkin Elmer Model 1600 Fourier 

transform infrared spectrophotometer with a resolution of 4 cm'1. A bare silicon 

wafer was used as a background reference. Aluminum gate MOS capacitors 

with an area of 2.7 x 10'3 cm2 were fabricated using standard photolithography 

techniques and annealed in a forming gas (5 % H2 in N2) ambient at 400°C for 

30 min prior to C-V measurements. The C-V measurements were carried out by 

superimposing a 25 mV ac signal at 1 MHz on a dc voltage with a HP 4275A
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LCR meter. A dc voltage sweep rate of 1V/sec was used. The dielectric 

constant of the film was calculated from the values of capacitance and 

conductance in accumulation.

6.3 Results and Discussion

In Fig. 6.1, film deposition rate and chemical etch rate in the P-etch 

solution are plotted as a function of flow rate ratio of C F4 to Si2H6. The 

deposition rate increases with increasing the flow rate ratio until the flow rate 

ratio is 12 and then becomes independent of the gas flow ratio with its 

maximum value at 14.3 nm/min. The deposition rate without the addition of CF4 

was about 13.5 nm/min. The film etch rate without CF4 flow was approximately 

2 nm/sec. As the flow rate ratio increases, the etch rate increases gradually up 

to about 3.5 nm/sec at the flow rate ratio of 22 and then shows a dramatic 

increase to 5.8 nm/sec for the flow ratio of 24. Higher etch rates reflect that the 

film deposited at higher flow rate ratio may have more strained bonds and 

micropores associated with more fluorine incorporation into the Si-0 network.

Infrared transmission spectra of the films deposited at different flow rate 

ratio of CF4 to Si2H6 are shown in Fig. 6 .2 . The characteristic peak of Si-O-Si 

asymmetric stretching motion located around 1075 cm'1 is evident. Also from 

the figure, the peak intensity of Si-F stretching motion [70] located at 924 cm'1 

becomes distinct and bigger as the flow rate ratio increases. The Si-O-Si 

stretching vibration mode is commonly used to study the structural property of 

the silicon oxide films. The Si-O-Si stretching peak wave number obtained from 

infrared transmission measurements and refractive index obtained from 

ellipsometric measurements for the films as a function of flow rate ratio of CF4 

to Si2H6 are plotted in Fig. 6.3. As the flow rate ratio increases, the peak wave 

number increases: for example, from 1059 cm'1 for films deposited at ratio of 0, 

corresponding fluorine-free silicon oxide, to 1070 cm'1 for films deposited at
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Fig. 6.1. Deposition rate and etch rate in the P-etch solution of the films as 
a function of flow rate ratio of CF4 to Si2H6 during film deposition. Films were 
deposited at 120°C by flowing 40 seem of 4.8 % Si2H6 in He (2 seem of Si^He), 
100 seem of N20 , and 0-48 seem of CF4. The process pressure and rf power 
were 700 mTorr and 50 W, respectively.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



82

Flow rate ratio 
of Cf| to sy-i6

Si-0 stretching

CO

CO

0
o
c
CO

E
CO
c
0
v _

20

2 4
I -

Si-F stretching

1400 1200 1000  800

Wave number (cm '1)

Fig. 6 .2 . Infrared transmission spectra of the films deposited with different 
flow rate ratios of CF4to Si2H6. The process conditions were the same as in Fig. 
6.1. The characteristic peaks of S i-0 and Si-F stretching motion are marked.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



83

1075 1.51
E
o

1.50k_
0
.Q
E
3
C

1070

1.49

1065 
0 
>
0
£

._  1060 
COI
01
CO 1055

1.48

1.47

1.46
5 1 50 1 0 20 25

X
0
TJ
c

0
_>
o
0

*0
cc

Flow rate ratio of CFdto S i9H2 '  ' 6

Fig. 6.3. Si-O-Si asymmetric stretching peak wave number and refractive 
index of the film as a function of flow rate ratio of CF4 to Si2H6 during film 
deposition.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



84

ratio of 24. Meanwhile, the refractive index decreases as the flow rate ratio 

increases from 1.50 for films deposited at ratio of 0 to 1.468 for films deposited 

at ratio of 24. The stretching wave number and refractive index have not 

reached the values of the silicon oxide films grown by thermal oxidation in dry 

0 2 at 1000°C in our laboratory which are 1076 cm'1 for the stretching peak 

wave number and 1.46 for the refractive index.

The Lorentz-Lorenz relationship links the refractive index ( n) of the film 

to the film density (p  )through

n~ — 1 

n 2 + 2

M  _ 4 kR 

P 3
(6.3.1)

where R and M  are the molecular polarizability and the molecular weight, 

respectively. If no significant change in the molecular weight M  is assumed, 

then decrease either in the film density or in the molecular polarizability causes 

the decrease in the refractive index. Hence, a replacement of S i-0  bonds by Si- 

F bonds in fluorinated silicon oxide films shows two distinct effects. First, 

fluorine incorporation promotes the structural relaxation of film network, 

resulting in decrease in film density as evident from the shift of the stretching 

wave number to higher values. There is an ample evidence that for silicon oxide 

films, the stretching wave number increases with decreasing film density [70]. 

Second, fluorine incorporation causes less polarizability of films, driving the 

films to a smaller value for the dielectric constant. It is also observed that a 

linear plot of the Si-O-Si stretching peak wave number (co) vs. refractive index 

for films deposited at different flow rate ratios yielded dri/dco = -2.9 x 10'3 cm

which is somewhat higher in magnitude than -1.7 x 10'3 cm for silicon oxide 

films [49] thermally grown at temperatures between 700°C and 1000°C.
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The effect of fluorine incorporation into the S i-0  network in terms of 

change in flat band voltage was also studied using C-V measurement and is 

shown in Fig. 6.4. The devices on the fluorine-free silicon oxide films showed 

the flat band voltage of -1.75 V, corresponding to the flat band voltage shift of 

-0.92 V with respect to the work function difference of -0.83 V. As the addition of 

fluorine into the films increases, the flat band voltage approached the value of 

the work function difference indicating a decrease in the net effective positive 

charge density at the silicon-insulator interface. However, the films deposited at 

flow rate ratio of 14 and higher showed that the flat band voltage returned to the 

value of fluorine-free silicon oxide films, suggesting deterioration of the interface 

and the film resulting from larger concentration of fluorine [71].

The relative dielectric constant is calculated from the measured values of 

the capacitance in the accumulation region of MOS devices and is plotted as a 

function of flow rate ratio of CF4 to Si2H6 in Fig. 6.5. The dielectric constant of 

the films deposited at flow ratio of 0 for fluorine-free silicon oxide was 4.82. 

Increase in flow rate ratio caused a reduction of the dielectric constant of the 

films. However, no more decrease in the dielectric constant was observed for 

films deposited at a ratio of 8 and higher, resulting in a nearly constant value of 

4.25 for the dielectric constant. This value is 12 % lower dielectric constant 

observed on the fluorine-free silicon oxide films. The minimum value of 4.25 is 

close to the value of 4.16 for the fluorine-free silicon oxide films deposited at 

120°C by PECVD and annealed at 1100°C. The dielectric constant depends on 

the hydroxyl content in the film [3]. Presence of fluorine-containing species 

during film deposition is expected to favor a replacement of the hydroxyl- 

containing bonds by Si-F bonds and, in turn, drive the film dielectric constant to 

a lower value. From the results of both the flat band voltage and the dielectric 

constant measurements, the optimum flow rate ratio of CF4 to Si2H6 seems to
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be in the range of 8-10, which corresponds to 16-20 seem of CF4 for 2 seem of 

Si2H6 flow in our deposition chamber.

6.4 Conclusion

The results in this work show the importance of the flow rate ratio of CF4 

to Si2H6 to get high-quality PECVD fluorinated silicon oxide films deposited at 

120°C with Si2H6 as the silicon source. As the flow rate ratio increases, the 

deposition rate increases, the films become more porous and less polarizable. 

However, too much incorporation of fluorine into S i-0  network degrades the 

electrical and physical properties of the films.
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CHAPTER 7 

HIGH QUALITY FLUORINATED SILICON OXIDE FILM

7.1 Introduction

In this chapter, electrical properties of fluorinated silicon oxide films 

deposited with the gas flow ratio of CF4 to Si2H6 set to 10 are detailed. Results 

on the effective oxide charge density and the interface trap density as a function 

of the energy level location deduced from the high-frequency C-V  

measurements are presented. The film reliability estimated with the ramp l-V 

techniques is also discussed. The improvements in the film quality due to 

fluorine incorporation are summarized and comparisons made with the fluorine- 

free silicon oxide films.

7.2 Experiment

Chemically polished, boron doped 4 inch silicon wafers with (100) 

orientation and 10 Q cm  resistivity were used as the substrates. The wafers 

were cleaned as per the standard RCA cleaning procedure. The fluorinated 

silicon oxide films of nominally 100 nm thickness were deposited by flowing 40 

seem of 4.8%  Si2H6 in He, 100 seem of N20 , and 20 seem of CF4 in the 

deposition chamber. The CF4 gas line was closed for the silicon oxide film 

deposition. The deposition temperature was maintained at 120°C with the top 

electrode temperature at 60°C. The deposition pressure and rf power were 700 

mTorr and 50 W, respectively.

Aluminum gate MOS capacitors were fabricated using standard 

photolithography techniques with a predefined gate area of 2.7 x 10'3 cm2 and 

then subjected to the post-metallization annealing in 5 % H2 in N2 ambient for 

30 min at 400°C. The thickness of the deposited films was measured using an 

Applied Materials ellipsometer model II. The C-V measurements were carried
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out by superimposing a 25 mV ac signal at 1 MHz with a HP 4275A LCR meter. 

A dc voltage sweep rate of 10 mV/sec was used. The l-V characteristics were 

obtained with a HP 4140 voltage source and a Keithiey 485 picoammeter.

7.3 Results and Discussion

The C-V curves for the silicon oxide and fluorinated silicon oxide films 

are shown in Fig. 7.1. The work function difference between the gate material 

and the substrate for the substrate doping used here is -0.83 V. The devices on 

the silicon oxide films without fluorine showed the flat band voltage of -1.75 V 

which corresponds to an additional flat band voltage shift of -0.92 V after the 

contribution due to the work function difference is taken into account. The 

devices on the fluorinated silicon oxide films had smaller flat band voltage of 

about -1 V.

The C-V curve for the latter showed a slight distortion, particularly near 

the accumulation and in the depletion regions, referred to as stretch-out along 

the voltage axis. A careful investigation based on an earlier study by Hughes 

[72] indicates that this is associated with donor-type interface traps located in 

the lower half of the energy band gap.

The effective oxide charge density values calculated from the shift of the 

flat band voltage for the silicon oxide and the fluorinated silicon oxide films were 

2.56 x 1011 cm'2 and 4.12 x 1010cm'2, respectively. It indicates that the oxide 

charges for the fluorinated silicon oxide films were decreased by a factor of 1/6 

compared to that observed on the silicon oxide films. This may be attributed to 

replacement of the hydroxyl or defect-related bondings in the oxide network by 

fluorine.

The interface trap densities calculated from the procedures described in 

Chapter 5 for the silicon oxide and the fluorinated silicon oxide films are plotted 

as a function of the energy level location from the majority band edge
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Ev in Fig. 7.2. The interface trap density distributions seem to follow the W- 

shape having two minimums as reported elsewhere73. For the fluorinated silicon 

oxide films, two minimums of 1.99 x 1011 cm'2eV'1 at 0.165 eV and 1.07 x 1011 

cm'2eV'1 at 0.395 eV both from the top of the valence band were obtained. 

Meanwhile for the silicon oxide films, the observed two minimums were 1.25 x 

1011 cm‘2eV'1 at 0.15 eV and 2.13 x 1011 cm‘2eV*1 at 0.36 eV both from the top 

of the valence band. The interface trap density distributions for the two films 

show slight differences in that the interface trap density values for the 

fluorinated silicon oxide films in the energy range (E - Ev) of about 0.15 eV and 

lower are slightly higher and in the range of 0.35-0.55 eV are slightly lower than 

those for the corresponding values in the silicon oxide films. These are 

consistent with the observed shapes of the C-V curve.

A typical l-V characteristic curve of the MOS structure fabricated on the 

fluorinated silicon oxide films is shown in Fig. 7.3. This time-zero dielectric 

breakdown measurements are taken at room temperature with the voltage ramp 

rate set at 0.5 V/sec. The polarity of the field causes carrier accumulations at 

the substrate surface, corresponding to electron injection from the gate. The 

hopping current dominates at low electric fields (< 2 MV/cm). The onset of 

current injection occurs at the electric field of about 2 MV/cm. The electric field 

which drives the films into intrinsic breakdown phenomenon starts at about 8.5 

MV/cm. The inserted plot shows the linearity for /n(J/E2) versus 1/E relationship 

consistent with the simple Fowler-Nordheim mechanism [7]. The measured 

value of the slope was about 2.88 eV which is somewhat smaller than the well- 

accepted barrier height of 3.2 eV and may indicate an additional tunneling 

component from the metal gate to the silicon conduction band.

Distribution of the destructive dielectric breakdown field strength for the 

fluorinated silicon oxide films along with the distribution for the silicon oxide
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films without fluorine are shown in Fig. 7.4 and summarized in Table 7.1. The 

data for the fluorine-free silicon oxide films used in Fig. 5.7 are shown for 

comparison purposes. Fifty devices were used in the measurement. The early 

breakdowns at field values of < 3 MV/cm were observed on 27 % of devices on 

the silicon oxide films and on 2 % of devices on the fluorinated silicon oxide 

films. At the higher end, 88 % of devices on the fluorinated silicon oxide films 

had the breakdown field strength of 8 MV/cm and higher, compared to only 64 

% for the devices on the silicon oxide. The measured average dielectric 

breakdown field strength for the fluorinated silicon oxide films was 8.91 MV/cm  

which was 1.81 MV/cm higher than the value of 7.1 MV/cm measured on the 

devices on the silicon oxide films. This indicates that significantly fewer devices 

on the fluorinated silicon oxide films have early breakdowns and that there is an 

overall shift of the breakdown distribution to higher values of electric field. This 

may be one of the most promising effect of fluorine addition into the silicon 

oxide films which improves the film quality by reducing significant portions of 

early failures.

7.4 Conclusion

In summary, electrical characteristics of the fluorinated silicon oxide films 

prepared by plasma enhanced chemical vapor deposition at 120°C using Si2H6 

as silicon precursor and CF4 as fluorine precursor were studied. The addition of 

fluorine into S i-0  network results in smaller shift in flat band voltage due to 

oxide and interface charges and significantly fewer early breakdown compared 

to the fluorine-free silicon oxide films. These films have a strong potential for the 

use as interlayer dielectric material making available a low temperature and 

high quality film deposition process for submicron device fabrication.
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devices were used in the measurement done at room temperature. Tox stands 
for oxide thickness.
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Table 7.1. Comparison of intrinsic dielectric breakdown distributions for the 
silicon oxide and the fluorinated silicon oxide films.

Films
Dielectric breakdown measured after PMA

Eav (MV/cm) < 3 MV/cm > 8 MV/cm

S i02 7.1 2 7 % 64%

FxSiOy 8.9 2 % 8 8 %
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CHAPTER 8 

SUMMARY

PECVD silicon oxide and fluorinated silicon oxide films prepared at low 

temperature with Si2H6 as silicon precursor, as interlevel dielectrics in 

microelectronics devices, were studied.

The film deposition was limited by the mass transport regime, resulting in 

nearly temperature independent deposition rates. The stoichiometric silicon 

oxide films were obtained when the gas flow ratio of N20  to Si2H6 was in the 

range of 50-150. Films deposited at low deposition rate of 7-15 nm/min reveal 

reproducible deposition characteristics and a thickness uniformity of within ±  3 

% across 4 inch diameter wafer. The characterization process for the silicon 

oxide films deposited at 120°C showed that the film etch rate was comparable 

to that obtained for films deposited by TEOS-based PECVD at 400°C and the 

leakage current was comparable to the value for the films deposited at 350°C  

with conventional SiH4 precursor.

The structural properties of the silicon oxide films deposited at 120°C  

were also investigated. The shift of Si-O-Si stretching peak wave number of the 

as-deposited silicon oxide films compared to the undensified thermal silicon 

oxide films was attributed to 9.4 % increase in the film density, resulting in 

smaller Si-O-Si bridging bond angle of 138°. It was also believed that the high 

temperature annealing resulted in the reduction of hydroxyl-containing species 

in the film and, in turn, drove the dielectric constant towards that of the thermal 

silicon oxide films.

The effect of native oxide removal from the silicon substrate surface and 

annealing on the silicon oxide films deposited at 120°C was studied. The
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effective oxide charge and the interface trap densities for the as-deposited 

silicon oxide films with the native oxide etched off the substrate surface prior to 

the film deposition were nearly five times higher than for the as-deposited films 

without the removal of the native oxide. Post-deposition annealing in N2 

reduced the effective oxide charges for the films deposited on substrates 

without the native oxide. However, a 30 min post-metallization anneal at 400°C  

in 5 % H2 in N2 ambient reduced both the effective oxide charge density and the 

interface trap density much more effectively. The charge densities and the 

dielectric breakdown field values were comparable after this post-metallization 

annealing regardless of the substrate cleaning procedure and the post­

deposition annealing cycle in N2.

Fluorinated silicon oxide films have been deposited at 120°C using CF4, 

N20  and Si2H6 and the dependency of film properties on gas flow ratio of CF4 to 

Si2H6 was studied. The optimum gas flow ratio of CF4 to Si2Ffe was observed to 

be in the range of 8-10. This process condition resulted in a dielectric constant 

of 4.25 which was 12 % lower than the value obtained for fluorine-free silicon 

oxide films. A linear relationship of the Si-O-Si stretching peak wave number 

(CO) vs. refractive index (n)  for the fluorinated silicon oxide films deposited at 

different flow rate ratios yielded a value of -2.9 x 10'3 cm for dn/dco.

Electrical characteristics of the fluorinated silicon oxide films deposited 

with the gas flow ratio of CF4 to Si2H6 set at 10 showed that the addition of 

fluorine into S i-0  network resulted in a decrease in the effective oxide charges 

to as low as 1/6 of the value for the fluorine-free silicon oxide films. It also 

improved the film breakdown property by reducing early failures, resulting in the 

measured average dielectric breakdown field strength of 8.91 MV/cm.
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APPENDIX A 

SERIES RESISTANCE CORRECTION

By high-frequency m easurem ent of the capacitance and the 

conductance of a MOS capacitor in strong accumulation, the series resistance 

( Rs) can be determined from

9m
0 0 0 0 

G- +4 7T-/-C-
(A.1)

where /  is the measurement frequency and Gm and Cm are the measured

conductance and capacitance, respectively. The corrected oxide capacitance 

(C or) in strong accumulation is obtained from

C - Cox '-m 1 + G m Y

In fC ,m J
(A.2)

Once the series resistance is known, the influence of it on the 

capacitance can be calculated for determining the true corrected capacitance 

( Cc) at each applied bias from

Q  =
(G i  + 4 k  2f 2C2m)cm

'm ((3 i + 4 n 2f 2c l ) R s
(A.3)
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APPENDIX B 

C-V MEASUREMENT PROGRAM

This program in Basic language edited by Mr. Golden Hwaung is used to 

measure high-frequency C-V characteristics of MOS capacitor system. The 

main computer (IBM PC) is connected to a HP 4275A LCR meter interfaced 

with a HP 4140B power source. The minimum step for the applied gate voltage 

is programmed to be 10 mV. The procedure in Appendix A is used to obtain the 

corrected capacitance from the measured values of capacitance and 

conductance. The procedure described in Chapter 5 is also used to calculate 

the semiconductor surface potential.

10 REM THE PROGRAMMER IS GOLDEN
20 OPTION BASE 1
30 DIM A(1501), B(1501), C (1501), D(1501), E(1501), R (1501),

K(1501), W(1501)
40 PRINT "THIS PROGRAM IS TO DO THE CV MEASUREMENT, 

PLEASE PUT YOUR SAMPLE IN THE PROBE STATION, TURN  
ON THE HP 4140B AND HP4275A"

50 PRINT "IF THE PROGRAM BREAKS FOR SOME REASON OR  
YOU WANT TO DO THE MEASUREMENT AGAIN, TYPE CV  
THEN HIT ENTER KEY TO RE-RUN THE PROGRAM"

60 LINE INPUT "WHAT IS THE WAFER NAME : ";W$
70 INPUT "WHAT IS THE START VOLTAGE :”;S
80 S = S x 100
90 INPUT "WHAT IS THE STOP VOLTAGE :";0

100 0  = 0 x 100
110 INPUT "WHAT IS THE STEP VOLTAGE :";E
120 E = E x 100
130 OPEN "GPIB0" FOR OUTPUT AS #1
140 OPEN "GPIB0" FOR INPUT AS#2
150 PRINT #1, "ABORT"
160 PRINT # 1, "REMOTE 16"
170 PRINT # 1, "REMOTE 17"
180 PRINT #1, "OUTPUT 16#3; A6E"
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190 PRINT # 1, "OUTPUT 17#23; T1A2B3C1D0F17H1I0X1R31E"
200 PRINT # 1, "OUTPUT 16#3; M3E"
210 N = 1
220 PRINT # 1, "OUTPUT 16#3; B1E"
230 PRINT # 1, "OUTPUT 16#7; PBO.CR"
240 PRINT #1, "OUTPUT 16#1; E"
250 FOR A = 1 TO 100
260 NEXT A
270 PRINT # 1, "OUTPUT 16#3; W1E"
280 FOR B = 1 TO 2000
290 NEXT B
300 PRINT #1, "ENTER 17"
310 INPUT #2, A$, B$
320 PRINT #1, "OUTPUT 16#3; W7E"
330 PRINT "WAFER'S NAME W$
340 P R IN T  "VOLT" T A B (1 0 ) "C A P A C ITA N C E " T A B (24 )

"C O N D U C T A N C E " T A B (39 ) "R E S IS T A N C E " T A B (52 ) 
"CORRECTED CAPACITANCE"

350 FOR M = S TO O STEP E
360 K = M /  100
370 PRINT # 1, "OUTPUT 16#3; B1E"
380 PRINT # 1, "OUTPUT 16#11; PB" + STR$(K) +", CR"
390 PRINT #1, "OUTPUT 16#1; E"
400 REM FOR A = 1 TO 100
410 REM NEXT A
420 PRINT #1, "OUTPUT 16#3; W1E"
430 REM FOR B = 1 TO 5000
440 REM NEXT B
450 PRINT # 1, "ENTER 17"
460 INPUT #2, AS, B$
470 A$ = RIGHT$(A$,11)
480 B$ = RIGHT$(B$,11)
490 A(N) = VAL(AS)
500 B(N) = VAL(B$)
510 R(N) = B (N )/[(B (N )2 + (2 x 3.141592 x 106)2 x A (N )2]
520 K(N) = [B(N)2 + (2 x 3.141592 x 106)2 x A(N)2]
530 D(N) = K(N) x A(N)
540 E(N) = [B(N) - K(N) x R(N)]2 + [2 x 3.141592 x 106 x A(N)]2
550 C(N) = D(N) /  E(N)
560 PRINT K TAB(9) A(N) TAB(23) B(N) TAB(38) R(N) TAB(51) C(N) 
570 PRINT #1, "OUTPUT 16#3; W7E"
580 N= N + 1
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590 NEXT M 
600 N = 1
610 INPUT "DO YOU WANT TO PRINT OUT (Y/N) :";C$
620 IF C$ = "Y" OR C$ = "y" THEN 640 ELSE 630
630 IF C$ = "N" OR C$ = "n" THEN 730 ELSE 610
640 INPUT "DO YOU TURN ON THE PRINTER (Y) :";C$
650 IF C$ = "Y" OR C$ = "y" THEN 660 ELSE 640
660 LPRINT "WAFER'S NAME :";W$
670 L P R IN T  "VOLT" T A B (10) "C A PA C ITA N C E" TA B (24) 

"C O N D U C TA N C E " T A B (39 ) "R E S IS TA N C E " TA B (52) 
"CORRECTED CAPACITANCE"

680 FOR M = S TO O STEP E 
690 K = M /1 0 0
700 LPRINT K TAB(9) A(N) TAB(23) B(N) TAB(38) R(N) TAB(51) C(N) 
710 N = N + 1
720 NEXT M
730 N = 1
740 INPUT "DO YOU WANT TO STORE IT (Y/N) :";C$
750 IF C$ = "Y" OR C$ = "y" THEN 770 ELSE 760
760 IF C$ = "N" OR C$ = "n" THEN 970 ELSE 740
770 LINE INPUT "WHAT IS THE FILE NAME YOU WANT TO STORE

:";F$
780 INPUT "HOW DO YOU WANT TO STORE DATA ? NORMAL (N) 

OR REVERSE (R) :",B$
790 IF B$ = "N" OR B$ = "n" THEN 810 ELSE 800
800 IF B$ = "R" OR B$ = "r" THEN 890 ELSE 780
810 OPEN "O", 3, F$
820 FOR M = S TO O STEP E
830 K = M /1 0 0
840 PRINT #3, CHR$(9), K, CHR$(9), A(N), CHR$(9), B(N), CHR$(9), 

R(N), CHR$(9), C(N)
850 N = N + 1
860 NEXT M
870 CLOSE #3
880 GOTO 970
890 OPEN "O", 3, F$
900 N = INT(ABS(0-S) /  ABS(E)) + 1 
910 FOR M = O TO S STEP -E
920 K = M /  100
930 PRINT #3, CHRS(91, K, CHR$(9), A(N), CHR$(9), B(N), CHR$(9), 

R(N), CHR$(9), C(N)
940 N = N - 1
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950 NEXT M
960 CLOSE#3
970 INPUT "DO YOU W ANT TO CALCULATE TH E SURFACE  

POTENTIAL ( Y / N ) D $
980 IF D$ = "Y" OR B$ = "y" THEN 1020 ELSE 990
990 IF D$ = "N" OR B$ = "n" THEN 1000 ELSE 970

1000 PRINT "THAT'S IT, HAVE A NICE DAY"
1010 END
1020 IN P U T  "W H A T IS T H E  E Q U IL IB R IU M  E L E C T R O N  

CONCENTRATIONS NP 
1030 INPUT "WHAT IS THE EQUILIBRIUM HOLE CONCENTRATIONS  

:“,PP
1040 INPUT "WHAT IS THE GATE AREA :",A
1050 REM INPUT "WHAT IS THE THICKNESS D
1060 REM CO = ES x A /  D x 3.9 /  11.7
1070 ES = 11.7 x 8.854 x 1 0 '14
1080 RP = EXP[-2 x {0.0259 x LOG(PP /  1.5E+10)} x 38.61 ]
1090 N = 1
1100 FOR M=S TO O STEP E
1110 TEST = C(N) - CO
1120 IF TEST > 0  THEN 1130 ELSE 1140
1130 CO = C(N)
1140 N = N + 1
1150 NEXT M
1160 N = 1
1170 DEF FNF(A,B) = [EXP(-A) + A - 1] + B x [EXP(A) - A -1 ]
1180 L = SQR [ES / (1.6 x 10' 19 x RP x 38.61)]
1190 PRINT TAB(10) "VOLT" TAB(31) "SURFACE POTENTIAL"
1200 CF = A x ES x 1011 / L
1210 FOR M = S T O O  STEP E
1220 K = M /  100
1230 IF CO = C(N) THEN 1440 ELSE 1240
1240 CT = C(N) x CO /  [CO - C(N)] x 1011
1250 IF CT > CF THEN W = -0.4 ELSE W = 0.0001
1260 F W >  0 THEN H = 0.1 ELSE H =  40
1270 IF CT = CF THEN 1390 ELSE 1280
1280 IF W > O THEN 1350 ELSE 1290
1290 G = 1 - EXP(38.61 x W)
1300 J = 1 - EXP(-38.61 x W)
1310 WB = 38.61 x W
1320 IF FNF(WB.RP) < 0.0001 THEN 1370 ELSE 1330
1330 CS = A x ABS (ES x [J + RP x (-G)] /  [1 .414 x L x
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SQR{FNF(WB,RP)}])
1340 G O T 0 1360
1350 OS = A x SQR (ES x 2 x 1.6 x 10'19 x PP) /  (2 x SQR (W + 0.0259 

x EXP (38.61 x W) x RP)}
1360 IF ABS [(1011 x CS - CT)] < H THEN 1420 ELSE 1370
1370 W  = W + 0.0005
1380 IF W = 0 THEN 1370 ELSE 1410
1390 W(N) = 0
1400 GOTO 1430
1410 IF W >  0.8 THEN 1390 ELSE 1280
1420 W(N) = W
1430 PRINT TAB(10) K TAB(31) W(N)
1440 N = N + 1
1450 NEXT M
1460 N = 1
1470 INPUT
1470 INPUT "DO YOU WANT TO PRINT OUT (Y/N) :",A$
1480 IF A$ = "Y” OR A$ = "y" THEN 1500 ELSE 1490
1490 IF A$ = "N" OR A$ = "n" THEN 1580 ELSE 1470
1500 INPUT "DO YOU TURN ON THE PRINTER (Y) :",A$
1510 IF A$ = "Y" OR A$="y" THEN 1520 ELSE 1500 
1520 LPRINT TAB(10) "VOLT" TAB(31) "SURFACE POTENTIAL"

TAB(52) "CORRECTED CAPACITANCE"
1530 FOR M = S T O O  STEP E
1540 K = M /1 0 0
1550 LPRINT TAB(10) KTAB(31) W(N) TAB(52) C(N)
1560 N = N + 1
1570 NEXT M
1580 N = 1
1590 INPUT "DO YOU WANT TO STORE IT (Y/N) :",A$
1600 IF A$ = "Y" OR A$ = "y" THEN 1620 ELSE 1610
1610 IF A$ = "N" OR A$ = "n" THEN 1000 ELSE 1590
1620 LINE INPUT "WHAT IS THE FILE NAME YOU WANT TO STORE  

:",F$
1630 INPUT "HOW DO YOU W ANT TO STORE DATA ? NORMAL (N) 

OR REVERSE (R) :",B$
1640 IF B$ = "N" OR B$ = “n" THEN 1660 ELSE 1650
1650 IF B$ = "R" OR B$ = "r" THEN 1730 ELSE 1630
1660 OPEN "O", 3, F$
1670 FOR M = S T O O  STEP E
1680 K = M /  100
1690 PRINT #3, CHR$(9), K, CHR$(9), W(N), CHR$(9), C(N)
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1700 N = N + 1
1710 NEXT M
1720 G O T 0 1000
1730 OPEN "O", 3. FS
1740 N = INT(ABS(0 - S) /  ABS(E)) + 1
1750 FOR M = O TO S STEP -E
1760 K = M /  100
1770 PRINT #3, CHR$(9), K, CHR$(9), W(N), CHR$(9), C(N) 
1780 N = N -1
1790 NEXT M
1800 GOTO 1000
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