Research Article

Low-temperature sintering and microwave dielectric properties of $CaMg_{1-x}Li_{2x}Si_2O_6$ (x = 0–0.3) ceramics

Fangyi HUANG^a, Hua SU^{a,b,*}, Yuanxun LI^{a,b}, Huaiwu ZHANG^a, Xiaoli TANG^a

 ^aState Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054, China
 ^bJiangxi Guo Chuang Industrial Park Development Co., Ltd., Ganzhou 341000, China

Received: December 24, 2019; Revised: May 22, 2020; Accepted: May 22, 2020 © The Author(s) 2020.

Abstract: In this study, low-temperature fired CaMg_{1-x}Li_{2x}Si₂O₆ microwave dielectric ceramics were prepared via the traditional solid-state reaction method. In this process, 0.4 wt% Li₂CO₃–B₂O₃–SiO₂– CaCO₃–Al₂O₃ (LBSCA) glass was added as a sintering aid. The results showed that ceramics consisted of CaMgSi₂O₆ as the main phase. The second phases were CaSiO₃ always existing and Li₂SiO₃ occurring at substitution content x > 0.05. Li⁺ substitution effectively lowered sintering temperature due to 0.4 wt% LBSCA and contributed to grain densification, and the most homogeneous morphology could be observed at x = 0.05. The effects of relative density, the second phase, and ionic polarizability on dielectric constant (ε_r) were investigated. The quality factor ($Q \times f$) varied with packing fraction that concerned the second phase. Moreover, the temperature coefficient of the resonant frequency (τ_f) was influenced by MgO₆ octahedral distortion and bond valence. Excellent dielectric properties of the CaMg_{1-x}Li_{2x}Si₂O₆ ceramic was exhibited at x = 0.05 with $\varepsilon_r = 7.44$, $Q \times f = 41,017$ GHz (f = 15.1638 GHz), and $\tau_f = -59.3$ ppm/°C when sintered at 900 °C. It had a good application prospect in the field of low-temperature coefficieration (LTCC) substrate and devices.

Keywords: low permittivity; low-temperature sintering; crystal structure; microwave dielectric properties

1 Introduction

Microwave dielectric ceramics constitute key materials used in microwave band communication (mainly from 300 MHz to 300 GHz). With the rapid development of information technology, microwave dielectric ceramics with low dielectric constant (ε_r), high quality factor ($Q \times f$) value, and near-zero temperature coefficient of resonant frequency (τ_f) were extensively studied [1]. Besides, low-temperature co-fired ceramics (LTCC) technology facilitates the production and integration of miniature microwave devices. Therefore, it is widely applied in the field of wireless communications [2–7]. In order to co-fire with silver electrodes, the sintering of LTCC temperature materials should be approximately 900 °C or lower, but most microwave dielectric ceramic densification is achieved and good properties are obtained only during high-temperature sintering. Therefore, LTCC with low permittivity and perfect microwave dielectric properties has become a

^{*} Corresponding author.

E-mail: uestcsh@163.com

significant research object. Typical low permittivity microwave dielectric ceramic material systems mainly include Al₂O₃, silicates, tungstate, phosphates, and garnet structure compounds. As examples, the ceramics of ZnAl₂O₄, Li₂TiMO₅ (M = Ge, Si), LiYGeO₄, AGeO₃ (A = Mg, Zn), Li₂AGeO₄ (A = Zn, Mg), Ba₂MGe₂O₇ (M = Mg, Zn), CaAl₂O₄, Ba_{1-x}Sr_xZnSi₃O₈, BaAl_{2-2x}(ZnSi)_x Si₂O₈, and NaCa₄V₅O₁₇ have been investigated in recent decades [8–17]. CaSiO₃, Zn₂SiO₄, and Mg₂SiO₄ are three materials mainly studied in the silicate system.

Sun *et al.* [18] studied the effect of Mg^{2+} substitution of Ca²⁺ on the microwave dielectric properties of CaSiO₃, after which, the ceramic acquired the dielectric properties of CaMgSi₂O₆ sintered at 1290 °C: ε_r = 7.46, $Q \times f = 59,638$ GHz, and $\tau_f = -46$ ppm/°C. Consequently, a series of studies on CaMgSi₂O₆ were carried out. According to these studies, many investigations concentrated on the ion substitution for Mg ions to CaMgSi₂O₆ ceramics were conducted to enhance the microwave dielectric properties, indifferently to sintering temperature decrease [19,20]. Furthermore, to meet the requirements of LTCC applications, the sintering temperature of CaMgSi2O6 ceramics was reduced by adding glass or fluorides with low melting points [21-23]. However, good microwave dielectric properties were achieved in a few certain studies when the sintering temperature was reduced [24].

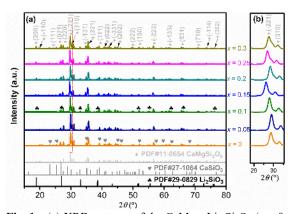
Li-ion substitution has been proved to be an effective method to decrease the sintering temperature of the ceramics without deterioration of properties [25–28]. Certain materials, such as Li₂WO₄ containing Li-ion, demonstrated an ultra-low sintering temperature [25-27]. Besides, Du et al. [28] found that Li_{2x}Mg_{2-x}SiO₄-3 wt% Li2CO3-B2O3-Bi2O3-SiO2 (LBBS) (substitution content x = 1) ceramic (sintered at 900 °C) exhibited good dielectric properties of $\varepsilon_r = 6.1$, $Q \times f = 44,500$ GHz, and $\tau_{\rm f} = -13$ ppm/°C. The contribution of Li⁺ substitution to sintering temperature could be attributed to the vacancies caused by the unequal substitution, and similar phenomena could be seen in Al³⁺ substitution for Mg²⁺ and Si^{4+} [22], and Cr^{3+} substitution for Mg²⁺ [20]. Furthermore, Li₂CO₃-B₂O₃-SiO₂-CaCO₃-Al₂O₃ (LBSCA) glass has been reported to effectively reduce the sintering temperature of ceramics [6,29]. In the present study, the effects of Li^+ substitution for Mg^{2+} on crystal structure and microwave dielectric properties of $CaMg_{1-x}Li_{2x}Si_{2}O_{6}$ (x = 0–0.3) ceramics, with 0.4 wt% LBSCA glass as a sintering aid, were investigated.

2 Experimental

The CaMg_{1-x}Li_{2x}Si₂O₆ (x = 0, 0.05, 0.1, 0.15, 0.2, 0.25, and 0.3) ceramics were synthesized via the solid-state reaction method with highly pure raw materials: CaCO3 (99%, Ke-Long Co., Ltd., Chengdu, China), MgO (98%, Ke-Long Co., Ltd., Chengdu, China), Li₂CO₃ (99.9%, Aladdin, Shanghai, China), and SiO₂ (99.9%, Aladdin, Shanghai, China). Different compositions of the ceramics were weighed according to the stoichiometric formula. The mixed raw powders were milled with zirconia balls and distilled water in nylon containers for 12 h. The slurries were subsequently dried in air for 24 h and calcinated at 900 °C for 3 h. Following, the pre-sintered powders were re-milled with 0.4 wt% LBSCA glass for 6 h and dried for 24 h. The LBSCA glass was obtained through the quenching method. Following weighing at the molar ratio of Li₂CO₃:B₂O₃:SiO₂:CaCO₃:Al₂O₃=52:31.06:11.99: 2.25:2.25, the mixed analytical grade raw powder was ball-milled with ethanol for 48 h, dried at 40 °C or lower, and melted in alumina crucible at 1000 °C for 2 h. Next, the alumina crucible was instantly removed from the furnace, and the molten glass was quenched in cold distilled water [29]. The crushed glass powder was added to the pre-sintered powders. The second-milled powder with LBSCA glass was mixed with 10 wt% PVA to obtain granulations that were squashed into cylinders of 12 mm in diameter and 6 mm in thickness. Sintering of these cylinders was achieved at the temperatures of 875, 900, and 925 °C.

In order to obtain the microwave dielectric properties of the ceramics, the network analyzer based on Hakki-Coleman resonator method was used, while the $\tau_{\rm f}$ value could be calculated according to Eq. (1). The microstructure images of the polished and thermally etched surfaces were observed via scanning electron microscopy (SEM: Versa3D; FEI, USA). Moreover, the bulk density was calculated via the Archimedes principle. Regarding the crystal phase compositions of the CaMg_{1-r}Li_{2r}Si₂O₆ ceramics, they were identified via X-ray diffraction (XRD: MinFlex 600; Rigaku, Japan), while crystal structure refinement could be obtained via the XRD diffraction data input to Fullprof software. Refined results were applied to draw the crystal structure charts with VESTA software. The $\tau_{\rm f}$ $(ppm/^{\circ}C)$ values were calculated according to the following equation:

$$\tau_{\rm f} = \frac{f_T - f_0}{f_0 \left(T - T_0 \right)} \times 10^6 \tag{1}$$

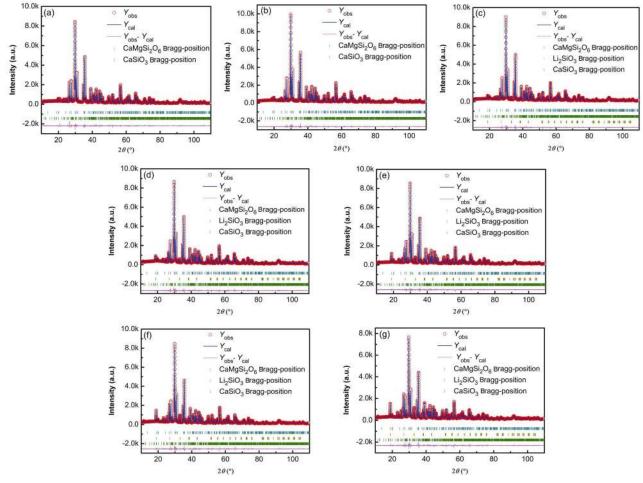

where f_T and f_0 are the resonant frequencies at T (85 °C) and T_0 (25 °C), respectively.

3 Results and discussion

The phase composition was confirmed through XRD patterns, as presented in Fig. 1(a), when the CaMg_{1-x}Li_{2x}Si₂O₆ ceramics were sintered at 900 °C. It could be observed that the main phase CaMgSi₂O₆ (PDF#11-0654) and the second phase CaSiO₃ (PDF#27-1064) always existed indifferently to x (0–0.3) variation. When $x \ge 0.1$, another second phase, Li₂SiO₃ (PDF#29-0829) appeared. The unexpected phase CaSiO₃ of wollastonite structure was generated through the following reaction (Eq. (2)), due to low calcination temperature (900 °C) and the same sintering temperature. This signified that the raw materials had not completely reacted at a calcination temperature of 900 °C. Besides, the formation of Li₂SiO₃ was due to the reaction (Eq. (3)) of SiO₂ and Li₂CO₃ within the raw powder. From these results, it could be initially determined that lower than 0.2 solid solubility of Li⁺ occurred in the lattice of CaMgSi₂O₆ phase. The presence of three crystal phases would definitely affect the microwave dielectric properties of the ceramics. Figure 1(b) shows the amplification of diffraction peaks $(-2 \ 2 \ 1)$ and $(3 \ 1 \ 0)$. The diffraction peaks shifted nonlinearly with the doping amount, which had a close relationship with the unit cell parameters.

$$CaCO_3 + SiO_2 \rightarrow CaSiO_3 + CO_2 \uparrow$$
 (2)

$$Li_2CO_3 + SiO_2 \rightarrow Li_2SiO_3 + CO_2 \uparrow$$
(3)

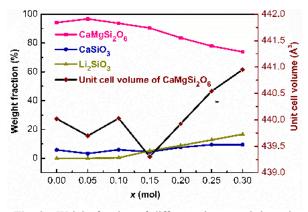

Fig. 1 (a) XRD patterns of the $CaMg_{1-x}Li_{2x}Si_2O_6$ (x = 0, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3) samples sintered at 900 °C; (b) the amplification of diffraction peaks (-2 2 1) and (3 1 0) of the $CaMgSi_2O_6$ phase.

In order to further analyze the relationship between microstructure, phase composition, and microwave dielectric properties of the ceramics, XRD data of the CaMg_{1-x}Li_{2x}Si₂O₆ samples sintered at 900 °C were refined with the Fullprof software. The theoretical models were monoclinic CaMgSi₂O₆ (a = 9.7397 Å, b = 8.9174 Å, and c = 5.2503 Å), triclinic CaSiO₃ (a =7.9400 Å, b = 7.3200 Å, and c = 7.0700 Å), and orthorhombic Li_2SiO_3 (*a* = 9.3600 Å, *b* = 5.3950 Å, and c = 4.6750 Å). The refined plots of XRD patterns are exhibited in Figs. 2(a)-2(g) ($0 \le x \le 0.3$), which indicated that the calculated patterns (Y_{cal}) fitted well with the observed patterns (Y_{obs}) . The reliability factors (R_p , R_{wp} , R_{exp} , and χ^2 (> 0) are the profile factor, weighted profile factor, expected weighted profile factor, and reduced chi-square, respectively) in Table 1 could also help explain that structural information, such as lattice parameters of CaMgSi₂O₆ phase summarized from the refinement results, was credible. Figure 3 and Table 1 demonstrate that the weight fraction of CaSiO₃, the lattice parameters (especially aand c), and the unit cell volume (V) shared the same trend as x increased. The fact proved that the content of Li^+ substitution, as well as the CaSiO₃ phase, influenced the lattice structure, which eventually affected the microwave dielectric properties. However, the diffraction peaks shifted and the unit cell volume changed inconsistently, even in the opposite trend. Besides, the refinement results of XRD data could be applied in crystal structure drawings of the three phases of the CaMg_{1-x}Li_{2x}Si₂O₆ ceramics with VESTA software, as presented in Figs. 4(a)-4(c). The performance of the synthesized ceramics would be affected by the three different structures synergistically and these would be discussed further. Moreover, the diffraction peak intensities (Fig. 2) and the content of CaMgSi₂O₆ phase (Fig. 3) demonstrated the same tendency when Li⁺ substitution content increased. The microwave dielectric properties influenced by crystal structure features and the second phase could be investigated via V, bond valence, oxygen octahedron distortion

calculated from bond length, and the mixture rules. Figures 5(a)–5(g) present the morphologies of the CaMg_{1-x}Li_{2x}Si₂O₆ ceramic samples sintered at 900 °C. When x = 0, the component was porous and the grain size was small, due to insufficiently high sintering temperature. Minor changes existed from Figs. 5(b) to 5(g), i.e., x value was in the interval of 0.05–0.3, considering the porosity and grain size. While when x =0.05, the ceramic demonstrated good homogeneity in relative terms. In contrast, it was presented that the largest bulk density arises at x = 0.1 in the latter Fig. 6(b), which corresponded well with the SEM images. The enhancement of bulk density could be attributed to

Table 1 Lattice parameters and reliability factors of the CaMg_{1-x}Li_{2x}Si₂O₆ (x = 0, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3) samples sintered at 900 °C

x (mol)	0	0.05	0.1	0.15	0.2	0.25	0.3
<i>a</i> (Å)	9.74637	9.73884	9.74091	9.73582	9.74028	9.7464	9.75047
b (Å)	8.93890	8.94310	8.94625	8.94136	8.94578	8.94955	8.95045
<i>c</i> (Å)	5.25052	5.24970	5.25083	5.24769	5.25003	5.25222	5.25402
$V(Å^3)$	440.02	439.698	440.005	439.303	439.925	440.544	440.951
$R_{\rm p}$ (%)	9.00	7.86	7.97	9.01	8.19	9.37	9.44
$R_{\rm wp}$ (%)	10.4	8.54	8.58	10	9.04	10.5	10.6
R_{\exp} (%)	9.08	8.77	9.25	8.9	9.04	8.76	9.01
χ^2	1.317	0.9481	0.8611	1.273	1.001	1.425	1.384


Fig. 2 Structural refinement patterns of the CaMg_{1-x}Li_{2x}Si₂O₆ samples sintered at 900 °C: (a) x = 0, (b) x = 0.05, (c) x = 0.1, (d) x = 0.15, (e) x = 0.2, (f) x = 0.25, and (g) x = 0.3.

O vacancies due to Eq. (4):

$$\text{Li}_{2}\text{CO}_{3} \xrightarrow{\text{CaMgSi}_{2}\text{O}_{6}} \rightarrow 2\text{Li}_{Mg}' + \text{V}_{O}'' + \text{CO}_{2} \uparrow (4)$$

The generation of vacancy defects was conducive to ion diffusion and promoted the sintering [30]. However, the grain size distribution became gradually uneven as xvalue increased, accompanied with the occurrence of blurred grain boundaries. This could be originated from the portion increase of the second phases and the cell volume of CaMgSi₂O₆ main phase. The appearance of pores might be due to the Li⁺ volatilization [28]. Undoubtedly, Li⁺ substitution could contribute to sintering temperature reduction and densification improvement of the CaMg_{1-x}Li_{2x}Si₂O₆ ceramics, which would lead to significant influences on microwave dielectric properties.

The $Q \times f$ values of the samples are presented in Fig. 7(a). Regardless of sintering temperatures, $Q \times f$

Fig. 3 Weight fraction of different phases and the unit cell volume of CaMgSi₂O₆ phase of the CaMg_{1-x}Li_{2x}Si₂O₆ (x = 0, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3) ceramics sintered at 900 °C.

values reached the optimal values at x = 0.05, where the main phases occupied the dominant positions. As known, the quality factor is primarily determined by the structure and composition of the ceramic material itself. The loss due to crystal structure characteristics constitutes an intrinsic loss, while the losses caused by nonintegrity, such as the second phase, impurities, pores, cracks, and grain boundaries are called extrinsic losses [31]. In this study, no pure CaMgSi₂O₆ phase existed in the samples, and the highest weight fraction (Fig. 3) and peak intensity (Fig. 2) of CaMgSi₂O₆ were reached at x = 0.05. Consequently, the $Q \times f$ value was severely affected by both the second phase and the crystallinity simultaneously. Moreover, the packing fraction is an

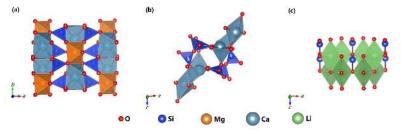
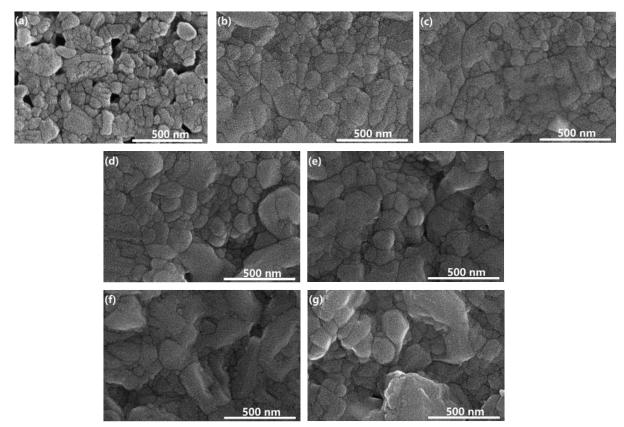
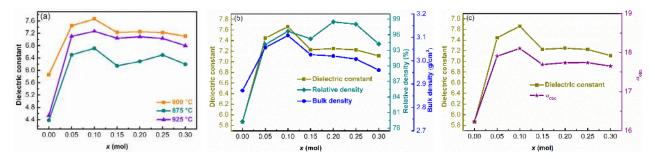




Fig. 4 Schematic of different phases in the $CaMg_{1-x}Li_{2x}Si_2O_6$ ceramics: (a) monoclinic $CaMgSi_2O_6$, (b) triclinic $CaSiO_3$, and (c) orthorhombic Li_2SiO_3 .

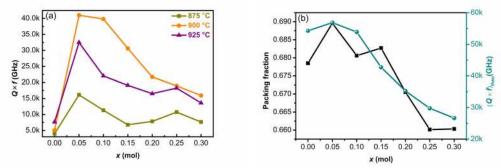


Fig. 5 SEM morphologies of the CaMg_{1-x}Li_{2x}Si₂O₆ samples sintered at 900 °C: (a) x = 0, (b) x = 0.05, (c) x = 0.1, (d) x = 0.15, (e) x = 0.2, (f) x = 0.25, and (g) x = 0.3.

www.springer.com/journal/40145

Fig. 6 (a) Dielectric constant of the CaMg_{1-x}Li_{2x}Si₂O₆ (x = 0, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3) samples sintered under different temperatures; (b) the dielectric constant, bulk density, and relative density, and (c) the dielectric constant and observed ionic polarizability of the CaMg_{1-x}Li_{2x}Si₂O₆ (x = 0, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3) samples sintered at 900 °C.

Fig. 7 (a) Quality factor of the CaMg_{1-x}Li_{2x}Si₂O₆ (x = 0, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3) samples sintered under different temperatures; (b) the packing fraction and the theoretical quality factor of the CaMg_{1-x}Li_{2x}Si₂O₆ (x = 0, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3) samples sintered at 900 °C.

intrinsic loss and is closely related to lattice vibration. The packing fraction of crystal was determined by the number of formula units per cell unit (Z), V, and the volume of atom in the cell, as described in Eq. (5) [32]:

Packing fraction (%) =
$$\frac{\text{Volume of atoms in the cell}}{V} \times Z$$

(5)

It could be observed that the packing fraction is inversely proportional to V. Figures 3 and 7(a) presented that V and the $Q \times f$ value of the samples sintered at 900 °C were in the opposite trend for $0 \leq x \leq 0.1$ and $0.15 \leq x \leq 0.3$, whereas $Q \times f$ values varied with the packing fraction combining Figs. 7(a) with 7(b). In particular, the packing fraction depicted in Fig. 7(b) was the sum of the products of the packing fraction of each phase and its volume fraction, implying that packing fraction here took the second phase into account. Therefore, it was explained again that the impact of the second phase on the $Q \times f$ value was high. The $(Q \times f)_{\text{theo}}$ values calculated from the mixture rule [33]:

$$\left(\mathcal{Q} \times f\right)^{-1} = \sum \frac{V_i'}{\left(\mathcal{Q} \times f\right)_i} \tag{6}$$

where V'_i and $(Q \times f)_i$ are the volume fraction

and $Q \times f$ of each phase, respectively (the $Q \times f$ values of CaSiO₃ and Li₂SiO₃ were 25,398 GHz [34] and 9849 GHz [35], respectively), were in the same trend as the measured ones when combining Figs. 7(a) and 7(b). And the measured values were smaller than those of the theoretical ones, confirming the effect of the second phase on the $Q \times f$ value. Moreover, the effect of relative density on $Q \times f$ value could be ignored when $0.05 \le x \le 0.3$. The relative density values of the ceramics sintered at 900 °C were above 94%; the highest $Q \times f$ value did not occur at the largest density. Therefore, it could be easily deduced that the intrinsic loss had an equal impact on the $Q \times f$ value to extrinsic loss, and moderate substitution content of Li⁺ could decrease the sintering temperature not at the cost of sacrificing the quality factor.

Figure 6(a) presents the variations in dielectric constant with x value at three different sintering temperatures: 875, 900, and 925 °C. At any sintering temperature in the experiment, the maximum ε_r was obtained at x = 0.1. In general, ε_r is related to relative density, the second phase, and ionic polarizability. Figure 6(b) presents the relationship between ε_r , relative density, and bulk density of samples sintered at 900 °C. The relative density (ρ) was calculated through Eq. (7). The theoretical density (ρ_{theo}) was decided via Eq. (8) [16] in the multiphase system.

$$\rho = \frac{\rho_{\text{bulk}}}{\rho_{\text{theo}}} \tag{7}$$

$$\rho_{\text{theo}} = \frac{W_1 + W_2 + W_3 + W_4}{W_1 / \rho_1 + W_2 / \rho_2 + W_3 / \rho_3 + W_4 / \rho_4}$$
(8)

where ρ_{bulk} represents the bulk density; ρ_1 , ρ_2 , ρ_3 , ρ_4 , W_1 , W_2 , W_3 , and W_4 represent the theoretical density and weight fraction of CaMgSi₂O₆ phase, CaSiO₃ phase, Li₂SiO₃ phase, and LBSCA glass, respectively; for LBSCA glass, $\rho_4 = 2.36 \text{ g/cm}^3$ [29]. The microwave dielectric constants of CaMg_{1-x}Li_{2x}Si₂O₆ samples were consistent with the trends of ρ . Meanwhile, the influence of porosity on ε_r (ε_{rc}) could be obtained according to Eq. (9):

$$\varepsilon_{\rm mea} = \varepsilon_{\rm rc} \left[1 - \frac{3p(\varepsilon_{\rm rc} - 1)}{2\varepsilon_{\rm rc} + 1} \right]$$
(9)

where *p* represents porosity that is opposite to the relative density and $\varepsilon_{\rm rc}$ is the dielectric constant corrected by the porosity. The results are listed in Table 2. When combined with the relative density, it was indicated that $\varepsilon_{\rm r}$ was severely affected by ρ and the porosity as Li⁺ substitution content increased. Moreover, the observed and theoretical ionic polarizability, $\alpha_{\rm obs}$ and $\alpha_{\rm theo}$, could be calculated through Clausius–Mosotti equation: Eqs. (10) and (11), which was based on the oxide additivity rule [36], and ionic polarizabilities of cations and oxygen were reported by Shannon [37]. The error between $\alpha_{\rm obs}$ and $\alpha_{\rm theo}$ ($\Delta \alpha$) was calculated by Eq. (12).

$$\alpha_{\rm obs} = \frac{V(\varepsilon_{\rm r} - 1)}{4b(\varepsilon_{\rm r} + 2)} \tag{10}$$

$$\alpha_{\text{theo}} \left(\text{CaMg}_{1-x} \text{Li}_{2x} \text{Si}_2 \text{O}_6 \right) = \alpha_{\text{Ca}} + (1-x)\alpha_{\text{Mg}} + (2x)\alpha_{\text{Li}} + 2\alpha_{\text{Si}} + 6\alpha_{\text{O}} \quad (11)$$

$$\Delta \alpha = \left| \frac{\alpha_{\rm obs} - \alpha_{\rm theo}}{\alpha_{\rm theo}} \times 100\% \right|$$
(12)

where *b* is a constant of $4\pi/3$. The calculation results of samples sintered at 900 °C are presented in Table 2.

In Fig. 6(c), both $\varepsilon_{\rm r}$ and $\alpha_{\rm obs}$ increased first and consequently decreased with *x*. $\alpha_{\rm theo}$ increased linearly with *x*, as attributed to the 2 mol Li⁺ (1.2 Å³) substitution for 1 mol Mg²⁺ (1.32 Å³). The $\Delta \alpha$ is low, as listed in Table 2, facilitating the reliability of the $\alpha_{\rm obs}$. Besides, $\alpha_{\rm obs}$ was obtained only through the data of CaMgSi₂O₆ main phase and it produced consonance well with $\varepsilon_{\rm r}$, when the weight fraction of the second phase increased with *x* value. More importantly, combined with the mixture rule:

$$\ln \varepsilon_{\rm r} = \sum V_i' \ln \varepsilon_{\rm ri} \tag{13}$$

where ε_{ri} represents dielectric constant of each phase $(\varepsilon_r \text{ (CaSiO}_3) = 6.69 \text{ [34]}, \varepsilon_r \text{ (Li}_2\text{SiO}_3) = 7.7 \text{ [35]})$, it could be inferred that ε_r was affected by more ionic polarizability and ρ than the second phase combined with the above analysis.

In general, the $\tau_{\rm f}$ value is determined by the linear expansion coefficient (α_1) and the temperature coefficient of dielectric constant (τ_{ε}) as presented in Eq. (14).

$$\tau_{\rm f} = -\left(\alpha_{\rm l} + \frac{1}{2}\tau_{\rm \epsilon}\right) \tag{14}$$

where α_1 is an empirical constant of approximately 10 ppm/°C. Consequently, τ_f was mainly affected by τ_{ε} , which was closely related to the oxygen polyhedral distortion (MgO₆ octahedral distortion in CaMgSi₂O₆ system). The octahedral distortion (δ) could be calculated via Mg–O bond length, obtained through XRD refinement results, according to Eq. (15). The bond valence, through which the bond strength could be evaluated, V_i of atom *i* was the sum of all valences v_{ij} from *i*, calculated via Eqs. (16) and (17) [38].

$$\delta = \frac{1}{6} \sum \left(\frac{R_i - R_A}{R_A} \right) \tag{15}$$

$$V_i = \sum v_{ij} \tag{16}$$

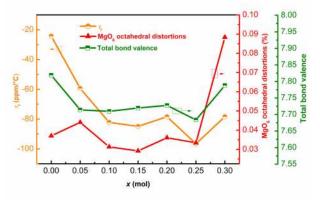

$$v_{ij} = \exp\left(\frac{R_{ij} - d_{ij}}{b}\right) \tag{17}$$

Table 2 ε_{rc} , α_{obs} , α_{theo} , and $\Delta \alpha$ of the CaMg _{1-x} Li _{2x} Si ₂ O ₆ (x = 0, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3) samples sintered
--

	-10)003)11100)		81-x $2x = 2 = 0$ (*	- , , ,		· · · ·	
x (mol)	0	0.05	0.1	0.15	0.2	0.25	0.3
$\varepsilon_{\rm rc}$	7.3245	7.5208	7.4895	7.1692	6.8827	6.8982	7.14515
$lpha_{ m obs}$	16.2407	17.9076	18.1070	17.6952	17.7391	17.74181	17.65243
$lpha_{ m theo}$	18.280	18.334	18.388	18.442	18.496	18.550	18.604
$\Delta \alpha$	0.12556	0.02381	0.01551	0.04220	0.04266	0.04555	0.05390

www.springer.com/journal/40145

where R_i , R_A , R_{ij} , and d_{ij} represent the bond length, average bond length, bond valence parameter, and the length of a bond between Mg and oxygen in the MgO₆ octahedron, respectively. Besides, b is commonly a constant equal to 0.37 Å, while R_{ij} as 1.661, 1.624, 1.466, and 1.933 Å for Mg–O, Si–O, Li–O, and Ca–O bond, respectively [39,40]. All bond length information and the calculated results are presented in Table 3. As presented in Fig. 8, $\tau_{\rm f}$ and δ of cylinders sintered at 900 °C exhibited the same tendency as x value increased, except the porous samples of x = 0, which was due to insufficient sintering. The results well agreed with Lai et al. [41,42], which implied that the dependence of $\tau_{\rm f}$ value on δ was high. Besides, the curve of total bond valence (V_{total}) presented in Fig. 8 also corresponded well with the one of $\tau_{\rm f}$ value, which could be explained by the result that higher bond valence results in lower $|\tau_{\rm f}|$ [43,44]. These phenomena in turn illustrated that although the second phases of CaSiO₃ and Li₂SiO₃ were observed, the structural characteristics played an important role in τ_{f} .

Fig. 8 $\tau_{\rm f}$, MgO₆ octahedral distortion, and total bond valence of the CaMg_{1-x}Li_{2x}Si₂O₆ (x = 0-0.3) samples sintered at 900 °C.

Table 3 Bond length, MgO₆ octahedral distortion, and total bond valence of the CaMg_{1-x}Li_{2x}Si₂O₆ (x = 0, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3) samples sintered at 900 °C

	Bond type	<i>x</i> (mol)							
	Bolid type	0	0.05	0.1	0.15	0.2	0.25	0.3	
	Ca1_O1 \times 2	2.31047	2.35409	2.34517	2.33304	2.32141	2.35621	2.3735	
	Ca1_O2 \times 2	2.32076	2.33614	2.33668	2.32433	2.32405	2.34619	2.36359	
	Ca1_O3(1) \times 2	2.55516	2.54331	2.54059	2.53846	2.51846	2.55902	2.55934	
	Ca1_O3(2) \times 2	2.75265	2.73447	2.73326	2.70526	2.72712	2.70602	2.75991	
	Si1_O1	1.60651	1.61744	1.6289	1.63807	1.64629	1.63474	1.61091	
Bond length (Å)	Si1_O2	1.53561	1.57943	1.57741	1.57922	1.57977	1.56284	1.51783	
	Si1_O3(1)	1.71107	1.70073	1.68919	1.68452	1.69012	1.65136	1.67279	
	Si1_O3(2)	1.65246	1.66076	1.66353	1.68722	1.68435	1.70171	1.64362	
	Mg1_O2 \times 2	2.09544	2.04691	2.06264	2.06631	2.04905	2.10107	2.13182	
	Mg1_O1(1) \times 2	2.06176	2.04468	2.04461	2.03722	2.04421	2.03025	2.02068	
	Mg1_O1(2) \times 2	2.15943	2.13825	2.13008	2.12265	2.13009	2.11822	2.16782	
$\delta($	$\delta(\%)$		0.044068	0.031303	0.02919	0.03606	0.03340	0.08836	
	Mg1_O2	0.30907	0.35239	0.33772	0.33439	0.35036	0.30441	0.28013	
	Mg1_O1(1)	0.33853	0.35452	0.35459	0.36174	0.35497	0.36862	0.37828	
	Mg1_O1(2)	0.25999	0.27530	0.28145	0.28716	0.28144	0.29062	0.25416	
	Si1_O1	1.03713	1.00694	0.97623	0.95233	0.93141	0.96094	1.02487	
	Si1_O2	1.25618	1.11588	1.12199	1.11651	1.11486	1.16705	1.31802	
Bond valence	Si1_O3(1)	0.78181	0.80397	0.82944	0.83997	0.82736	0.91873	0.86703	
Bond valence	Si1_O3(2)	0.91600	0.89568	0.88900	0.83387	0.84036	0.80184	0.93815	
	Ca1_O1	0.36052	0.32043	0.32825	0.33919	0.35002	0.31860	0.30405	
	Ca1_O2	0.35063	0.33636	0.33587	0.34727	0.34753	0.32734	0.31231	
	Ca1_O3(1)	0.18609	0.19214	0.19356	0.19468	0.20549	0.18416	0.18400	
	Ca1_O3(2)	0.10912	0.11461	0.11499	0.12403	0.11691	0.12378	0.10700	
	$V_{ m total}$	7.81910	7.71407	7.70960	7.71968	7.72752	7.68368	7.78799	

www.springer.com/journal/40145

4 Conclusions

In this study, the effects of Li^+ substitution for Mg^{2+} on the microwave dielectric properties and microstructure, and the correlation between performance and structure of the CaMg_{1-x}Li_{2x}Si₂O₆ ceramics sintered at 875, 900, and 925 °C with 0.4 wt% LBSCA as sintering aid, were investigated. The phase compositions detected from the XRD patterns, which were composed of at least two phases (CaMgSi₂O₆ and CaSiO₃ existed when x varied from 0 to 0.3, and Li_2SiO_3 occurred since x exceeded 0.05), were confirmed by the Rietveld refinement results. SEM micrographs demonstrated that welluniform morphologies were observed at x = 0.05. The optimal $O \times f$ value was reached where the fraction of the second phase was the lowest, indicating that the Q \times f value was highly influenced by the second phase, V, and the packing fraction, but the relative density had much less effect on the $Q \times f$ value. The $\varepsilon_{\rm r}$ was not only affected by the relative density, but also was affected by the ionic polarizability, which was closely related to Li^+ ions, and to the second phase. The τ_f values presented nonlinear variations with x and depended highly on the MgO₆ octahedral distortion and the bond valence, despite the existence of the second phase in CaMg_{1-x}Li_{2x}Si₂O₆ ceramics. Excellent microwave dielectric properties of CaMg1-xLi2xSi2O6 ceramics sintered at 900 °C were: $\varepsilon_r = 7.44$, $Q \times f =$ 41,017 GHz (f = 15.1638 GHz), and $\tau_f = -59.3$ ppm/°C when x = 0.05.

Acknowledgements

This study was supported by the National Natural Science Foundation of China (Grant Nos. 61771104 and U1809215).

References

- Hsiang HI, Chen CC, Yang SY. Microwave dielectric properties of Ca_{0.7}Nd_{0.2}TiO₃ ceramic-filled CaO–B₂O₃–SiO₂ glass for LTCC applications. *J Adv Ceram* 2019, 8: 345–351.
- [2] Weng ZZ, Han ZY, Xiao F, et al. Low temperature sintering and microwave dielectric properties of Zn_{1.8}SiO_{3.8} ceramics with BaCu(B₂O₅) additive for LTCC applications. Ceram Int 2018, 44: 14145–14150.
- [3] Zhang P, Sun KX, Liu L, *et al.* A novel low loss and low temperature sintering Li₃(Mg_{1-x}Ca_x)₂NbO₆ microwave dielectric ceramics by doping LiF additives. *J Alloys Compd* 2018, **765**: 1209–1217.
- [4] Li EZ, Yang HC, Yang HY, et al. Effects of Li₂O-B₂O₃-SiO₂

glass on the low-temperature sintering of $Zn_{0.15}Nb_{0.3}Ti_{0.55}O_2$ ceramics. *Ceram Int* 2018, **44**: 8072–8080.

- [5] Ma XH, Kweon SH, Im M, et al. Low-temperature sintering and microwave dielectric properties of B₂O₃added ZnO-deficient Zn₂GeO₄ ceramics for advanced substrate application. J Eur Ceram Soc 2018, 38: 4682–4688.
- [6] Chen HW, Su H, Zhang HW, *et al.* Low-temperature sintering and microwave dielectric properties of (Zn_{1-x}Co_x)₂SiO₄ ceramics. *Ceram Int* 2014, **40**: 14655– 14659.
- [7] Song XQ, Du K, Li J, *et al.* Low-fired fluoride microwave dielectric ceramics with low dielectric loss. *Ceram Int* 2019, 45: 279–286.
- [8] Cheng K, Li CC, Xiang HC, et al. LiYGeO₄: Novel lowpermittivity microwave dielectric ceramics with intrinsic low sintering temperature. *Mater Lett* 2018, 228: 96–99.
- [9] Cheng K, Tang Y, Xiang HC, et al. Two novel low permittivity microwave dielectric ceramics Li₂TiMO₅ (M = Ge, Si) with abnormally positive tf. J Eur Ceram Soc 2019, 39: 2680–2684.
- [10] Fang WS, Cheng K, Xiang HC, et al. Phase composition and microwave dielectric properties of low permittivity AGeO3 (A = Mg, Zn) ceramics. J Alloys Compd 2019, 799: 495–500.
- [11] Li CC, Xiang HC, Xu MY, et al. Li₂AGeO₄ (A = Zn, Mg): Two novel low-permittivity microwave dielectric ceramics with olivine structure. J Eur Ceram Soc 2018, 38: 1524– 1528.
- [12] Liu B, Hu CC, Huang YH, *et al.* Crystal structure, infrared reflectivity spectra and microwave dielectric properties of CaAl₂O₄ ceramics with low permittivity. *J Alloys Compd* 2019, **791**: 1033–1037.
- [13] Song XQ, Du K, Li J, et al. Crystal structures and microwave dielectric properties of novel low-permittivity Ba_{1-x}Sr_xZnSi₃O₈ ceramics. *Mater Res Bull* 2019, **112**: 178–181.
- [14] Yin CZ, Li CC, Yang GJ, et al. NaCa₄V₅O₁₇: A low-firing microwave dielectric ceramic with low permittivity and chemical compatibility with silver for LTCC applications. J Eur Ceram Soc 2020, 40: 386–390.
- [15] Li CC, Yin CZ, Chen JQ, et al. Crystal structure and dielectric properties of germanate melilites Ba₂MGe₂O₇ (M = Mg and Zn) with low permittivity. J Eur Ceram Soc 2018, 38: 5246–5251.
- [16] Qin TY, Zhong CW, Qin Y, et al. Low-temperature sintering mechanism and microwave dielectric properties of ZnAl₂O₄-LMZBS composites. J Alloys Compd 2019, **797**: 744–753.
- [17] Song XQ, Lu WZ, Wang XC, et al. Sintering behaviour and microwave dielectric properties of BaAl_{2-2x}(ZnSi)_xSi₂O₈ ceramics. J Eur Ceram Soc 2018, 38: 1529–1534.
- [18] Sun HP, Zhang QL, Yang H, et al. (Ca_{1-x}Mg_x)SiO₃: A low-permittivity microwave dielectric ceramic system. *Mater Sci Eng: B* 2007, **138**: 46–50.
- [19] Li H, Chen XQ, Zhang PC, et al. Influence of Mn²⁺ introduction on microwave dielectric properties of

CaMgSi₂O₆ ceramic. *Ceram Int* 2019, **45**: 24425–24430.

- [20] Tang B, Xiang QY, Fang ZX, et al. Influence of Cr³⁺ substitution for Mg²⁺ on the crystal structure and microwave dielectric properties of CaMg_{1-x}Cr_{2x}/3Si₂O₆ ceramics. Ceram Int 2019, 45: 11484–11490.
- [21] Lai YM, Su H, Wang G, et al. Improved microwave dielectric properties of CaMgSi₂O₆ ceramics through CuO doping. JAlloys Compd 2019, 772: 40–48.
- [22] Wang HP, Li DH, Yang QH, et al. Sintering behavior and microwave dielectric properties of CaMgSi₂O₆ ceramics with Al₂O₃ addition. *Mater Res Bull* 2014, 54: 66–72.
- [23] Wang HP, Xu SQ, Zhai SY, *et al.* Effect of B₂O₃ additives on the sintering and dielectric behaviors of CaMgSi₂O₆ ceramics. *J Mater Sci Technol* 2010, **26**: 351–354.
- [24] Joseph T, Sebastian MT, Sreemoolanadhan H, et al. Effect of glass addition on the microwave dielectric properties of CaMgSi₂O₆ ceramics. Int J Appl Ceram Technol 2009, 7: E98–E106.
- [25] Chang SY, Pai HF, Tseng CF, et al. Microwave dielectric properties of ultra-low temperature fired Li₃BO₃ ceramics. *J Alloys Compd* 2017, 698: 814–818.
- [26] Thomas D, Sebastian MT. Temperature-compensated LiMgPO₄: A new glass-free low-temperature cofired ceramic. J Am Ceram Soc 2010, 93: 3828–3831
- [27] Zhou D, Randall CA, Pang LX, *et al*. Microwave dielectric properties of Li₂WO₄ ceramic with ultra-low sintering temperature. *J Am Ceram Soc* 2011, **94**: 348–350.
- [28] Du XY, Su H, Zhang HW, et al. Effects of Li-ion substitution on the microwave dielectric properties of lowtemperature sintered ceramics with nominal composition Li_{2x}Mg_{2-x}SiO₄. Ceram Int 2018, 44: 2300–2303.
- [29] Jing XL, Tang XL, Tang WH, et al. Effects of Zn²⁺ substitution on the sintering behaviour and dielectric properties of Li₂Mg_{1-x}Zn_xSiO₄ ceramics. Appl Phys A 2019, **125**: 415.
- [30] Fan YZ, Zhou ZY, Liang RH, et al. The effect of A-site nonstoichiometry on the microstructure, electric properties, and phase stability of NaNbO₃ polycrystalline ceramics. J Eur Ceram Soc 2019, 39: 4712–4718.
- [31] Li EZ, Yang X, Yang HC, et al. Crystal structure, microwave dielectric properties and low temperature sintering of (Al_{0.5}Nb_{0.5})⁴⁺ co-substitution for Ti⁴⁺ of LiNb_{0.6}Ti_{0.5}O₃ ceramics. Ceram Int 2019, 45: 5418–5424.
- [32] Kim ES, Chun BS, Freer R, et al. Effects of packing fraction and bond valence on microwave dielectric properties of A²⁺B⁶⁺O₄ (A²⁺:Ca,Pb,Ba; B⁶⁺:Mo,W) ceramics. J Eur Ceram Soc 2010, **30**: 1731–1736.
- [33] Wu MJ, Zhang YC, Xiang MQ. Synthesis, characterization and dielectric properties of a noveltemperature stable (1-x)CoTiNb₂O_{8-x}ZnNb₂O₆ ceramic. *J Adv Ceram* 2019, 8: 228–237.
- [34] Ouyang LH, Wang WQ, Fan HC, et al. Sintering behavior

and microwave performance of $CaSiO_3$ ceramics doped with $BaCu(B_2O_5)$ for LTCC applications. *Ceram Int* 2019, **45**: 18937–18942.

- [35] Lai YM, Tang XL, Zhang HW, *et al.* Relationship between the structure and microwave dielectric properties of non-stoichiometric Li_{2+x}SiO₃ ceramics. *Ceram Int* 2017, 43: 2664–2669.
- [36] Shannon RD, Rossman GR. Dielectric constant of MgAl₂O₄ spinel and the oxide additivity rule. *J Phys Chem Solids* 1991, **52**: 1055–1059.
- [37] Shannon RD. Dielectric polarizabilities of ions in oxides and fluorides. J Appl Phys 1993, 73: 348–366.
- [38] Cheng K, Li CC, Yin CZ, *et al.* Effects of Sr^{2+} substitution on the crystal structure, Raman spectra, bond valence and microwave dielectric properties of $Ba_{3-x}Sr_x(VO4)_2$ solid solutions. *J Eur Ceram Soc* 2019, **39**: 3738–3743.
- [39] Yee TA, Suescun L, Rabuffetti FA. Bond valence parameters for alkali- and alkaline-earth-oxygen pairs: Derivation and application to metal–organic compounds. *J Solid State Chem* 2019, 270: 242–246.
- [40] Brese NE, O'Keeffe M. Bond-valence parameters for solids. Acta Crystallogr Sect B 1991, 47: 192–197
- [41] Lai YM, Tang XL, Huang X, et al. Phase composition, crystal structure and microwave dielectric properties of Mg_{2-x}Cu_xSiO₄ ceramics. J Eur Ceram Soc 2018, 38: 1508– 1516.
- [42] Lai YM, Su H, Wang G, et al. Low-temperature sintering of microwave ceramics with high Qf values through LiF addition. J Am Ceram Soc 2019, 102: 1893–1903
- [43] Xia WS, Li LX, Ji LJ, *et al.* Phase evolution, bond valence and microwave characterization of (Zn_{1-x}Ni_x)Ta₂O₆ ceramics. *Mater Lett* 2012, 66: 296–298.
- [44] Park HS, Yoon KH, Kim ES. Effect of bond valence on microwave dielectric properties of complex perovskite ceramics. *Mater Chem Phys* 2003, 79: 181–183.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit http://creativecommons. org/licenses/by/4.0/.