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The low temperature s p e c i f i c  heat  of a-cerium f r e e  from 

o ther  a l l o t r o p i c  m o d i f i c a t i ~ n s  has been measured f o r . t h e  

f i r s t  t i m e  a t  standard pressures.  The low temperature data  

i s  represented by the  equation: C = 9.79T + ( 1 2 / 5 ) n ~ ~ ( ~ / l 1 7 ) ~  

where C i s  i n  mjlmole-deg K .  

The. l o w  temperature s p e c i f i c  heats  of a' near ly  pure 

B-cerium sample (91%B - 9 % ~ )  and s i x  B-stabil ized Ce-Y a l loys  

0 
were a l s o  determined between 2.5 and 20 K. Four p r inc ipa l  

r e s u l t s  were obtained: 1)  a l l  s i x  a l loys  'showed magnetic 

ordering.  charac te r i s  t i c  of B -cerium, t h e  ordering temperatures 

were found t o  be l i nea r ly  dependent on the  cerium concentra- 

t i o n .  2) The magnetic s p e c i f i c  heat  of 8-cerium wasfound t o  

.depend, o n . t h e  cube of4the absolute temperature i n  agreement 



with  the  p r e d i c t i o n  of' sp in  wave ;theory f o r  an an t i f e r ro -  

magnetic mater.ia1.' 3.) The entropy associated with t he  

magnetic ordering was found t o  be R In 2 ,  which was explained 

P 
i n  terms of hexagonal c r y s t a l  field s p l i t t i n g .  4) The two 

exci ted  doublets r e s u l t i n g  froin the  hexagonal c r y s t a l  f i e l d  

were estimated t o  be 85 _+ 5 and :110 . - + 1 0 ' ~  above t h e  ground, 
. . 

state. 
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INTRODUCTION 

Metal l ic  cerium has been t h e  top ic  of numerous theoret -  1 

. . 

i c a l  and experimental s t ud i e s  o r ig ina t ing  mainly from i t s  

var iab le  e . lectronic and a . l lo t ropic  natures.  .It can e x i s t  i n  

a t  l e a s t  four dxfferent  a l l o t r o p i c  forms, t h r ee  of which 

occur between room temperature 'and l i qu id  ni trogen.  A t  room 

temperature and o n e  atmosphere pressure t he  s t a b l e  a l l o t rope  

0 
i s  F.C.C. (a = 5.16A) Y-cerium.' Upon cooling a sample a t  . '  

normal pressure t he  Y-allotrope begins t o  transform t o  a 

0 0 

second a l l o t rope ,  ' B-cerium (D.H. C. P. ,  2 = 3.68AY c = 11.92~4) 

a t  250'~. Further  cooling r e s u l t s  i n  t he  remaining Y t rans-  . . 

0 
forming t o  a t h i r d  a l l o t rope ,  a-cerium (F.C.C1.;= = 4.858) 

c/. 0 

a t  116 K. Unless spec i a l  'precautions a r e  taken a sample of 

Y-cerium c o o l e d , t o  cryogenic temperatures a t  normal pressure 

w i l l  invar iably  . . contain a mixture of t he  u and..@ phases. 

Presently t he re  'is considerable controversy concerning 

the  e l ec t ron ic  configurat ion of a-cerium (1,2,3,4,5 ;6). ' \ 

Positron ann ih i la t ion  experiments (1) suggest a-cerium has 

one 4 f .  - e lec t ron ,  magnetic s u s c e p t i b i l i t y  measurements ( 3 , 4 )  

i nd i ca t e  it has, a p a r t i a l l y  f i l l e d  41  band, while neutron 

d i f f r a c t i o n  r e s u l t s  (5) suggest a-cerium has no 42 e lec t rons .  

I n  p a r t ,  t h i s  uncer ta in ty  i s  due t o  the  f a c t  t h a t  e s sen t i a l l y  



al1,experiments performed on cerium were done on mult i  phase 

(a. plus B )  samples and not on .pure sirigle phase a-cerium. 

Because 'of t h i s  lack of r e l i a b l e  data  and great  i n t e r e s t  

i n  t h e  e l ec t ron ic  nature of a-cerium a study of i t s  low tem- 

perature spec i f i c  heat  was undertaken. A t  l ow temperatures 

t he  s p e c i f i c  heat of  most metars can be wr i t t en  a s  (7,8): 
. . .  

C(tota1) = C(e1ectronic) + C(1att ice)  (1) 
. . 

where C (e lec t ronic)  and C ( l a t t i c e )  are respect ively  t h e  e lec-  

t r o n i c  and l a t t i c e  con t r ibu t ions . ' to  the  t o t a l  spec i f i c  heat .  

I n  t h e  f r e e  e lec t ron  approximation the  e lec t ron ic  component 

. . i s  given by (7,8) : 

2 2 
C(e1ectronic) = (1/3)n k VN(E)T (2) 

. . 

= VT (3) 

where k = Boltzmann's constant'  

v = molar volume 

N(E) = densi ty of e l ec t ron ic  s t a t e s  a t  t he  Fermi surface  

Y = e lec t ron ic  spec i f i c  heat constant .  

The important f ea tu re  t o  no t ice  is  the  e lec t ron ic  s p e c i f i c  

heat '  i s  d i r e c t l y  proport ional  t o  t he  temperature and t h e  pro- 

po r t i ona l i t y  constant ,  Y ,  i s  i n  t u r n  proport ional  t o  t he  

densi ty  of e l ec t ron ic  s t a t e s  a t  t he  Fermi surface.  The de r i -  

va t ion  of Equation 2 shows N(E) , aAd hence Y ,  i s  an average. 

property and s o  no d e t a i l s  of t he  energy bands can be 



exp l i c i t ly  obtained 'from the e lectronic  specif ic  heat.  None- 
. , 

the less ,  Y i s  a useful  parameter especially fo r  comparing one 

metal,  t o  another (9 ,'lo) . 
' 

The l a t t i c e  contribution t o  the spec i f ic  heat fo r  metals 

a t  low temperatures i s  usually analyzed i n  terms of the  Debye 

approximation which' leads t o  (7,8) : 

where R = gas constant 

T = absolute temperature 

8 = Debye charac ter i s t ic  temperature. 

Substi tution of Equations 3 and 5 i n t o  Equation 1 gives 

3 
C(tota1) = yT + BT . ( 6 )  

Within t h i s  model f o r  T << 8 a plot  of C/T vs T~ w i l l  be 

l i n e a r .  The intercept  a t  T = O'K gives Y d i rec t ly  while 8 

i s  obtained.from the slope. Thus, the first objective of 

. t h i s  study was t o  prepare pure a-cerium and measure i t s  low 

temperature spec i f ic  heat thereby providing re l i ab le  experi- 

mental va1.up.a f o r  y and 8 t o  be ,used t o  support or  re fu te  

current modele . 
The second objective of t h i s  work was a. study o f ' t h e  

D . H . C .  P. 8-allotrope. Magnetic suscept ib i l i ty  (3,4) and 



/ 

neutron 'diffraction experiments (5) have established that 

@-cerium undergoes an antiferromagnetic transition at 13'~. 
. . 

Crystal field effects in B-cerium (11) based on specific heat 

measurements (12,13) have been considered, and an article by 

Gschneidner and ~moluchowski (6) considered among other topics 

the electronic structure of the $-allotrope. Unfortunately, 

as was the case for a-cerium, all measurements were in fact 

done on multi phase cerium samples and so interpretations 

based on these measurements are open to question. 

.To study the electronic and magnetic nature of $-cerium 

. a two-fold approach was used here. First, an attempt was made 

to prepare pure single phase 8-cerium. The second approach 

was to utilize the observations that yttrium, when added to 

cerium, stabilized the ~-~has'e in cerium with respect to both 

the cv and Y phases (14,15). The result-s of low temperature 

specific heat measurements on the' B-stabilized Ce-Y alloys at 

several concentrations could then possibly be extrapolated to 

obtain values for the pure 8-phase. A combination of these 

specific heat measurements with similar measurements on B- 

cerium should yield reliable information about the electronic 

and magnetic nature of the D.H.C.P. allotrope. 



SAMPLE PREPARATION 

Table 1 contains a chemical analys is  of the  metals used 

i n  t h i s  p ro jec t .  . 

. . 
A s  discussed above one cannot obtain' s i n g l e  phase a- 

cerium by simply cooling Y-cerium from room temperature t o  

cryogenic temperatures. Therefore, a t h r ee  s t e p  technique 

based on the  pressure-temperature di,agram proposed by 

Gschneidner and co-workers (16) was used t o  prepare a-cerium, 
I 

see  Figure 1. 
. . 

I 

I n  t h e  f i r s t  s t e p  a well  annealed sample of y-cerium was 

compressed t o  10,000 atmospheres pressure t o  convert it t o  t he  

a -a l lo t rope .  F igure .2  shows the  pressure c e l l . '  The .piston- 

d ie '  combination was made of tungsten-'carbide . A s o f t  i r on  
- 

s h e l l  surrounded the  d i e  t o  protect  t h e  operator  i n  c a s e  of 

f a i l u r e  of t he  d i e  o r  p is ton.  The d i e  and s h e l l  were i n  t u rn  

i n s ide  a metal container  which was f i l l e d  with l i qu id  ni trogen 

a s  required i n  t he  second s t ep .  , 
The second s tep ,was  t o  cool  the  whole assembly, housing 

a s  w e l l  as  sample, . with l i qu id  ni trogen . . while maintaining t h e  

pressure a t  10,000 atmospheres. Af.ter reaching l i qu id  n i t ro -  



I 

Table 1. Chemical analys is  of components (impurity l eve l s  
a r e  given i n  atomic ppm) 

Impurity tea Ce 
b 

Y 

H 417 972 353 
C I - - 18 0 

N 40 30 76 
0 551 1190 972 
F ,  - - - 
Mg 8 4 4 
A 1  6 6 30 
S i  30 30 20 \ 
Ca 7 30 2 
Sc 4 30 10 
C r  2 5 10 
Mn 0.3 0.6 0 . 1  
Fe 40 20 200 
N i  10 4 20 
Cu 4 4 - 20 
Zn 0.7 0 .6  0.2 
Y 20 160 M 
La 10 5 1 
Ce M M 0.6 
Pr 10 ' 70 0.2 
Nd 50 200 1.0 
Sm N.D. N.D. N.D. 
Eu N.D. N.D. N.D. 
Gd 40 140 4 
Tb <6 20 1 

,DY 7 50 0.8 
Ho 5 20 2 
E r  10 20 1 
Tm 0 .1  0 .1  . N.D. 

Yb <1 0.5 N.D. 
Lu 0.2 0.3 1 
Ta 30 60 3 
Th 40 50 1 

M - Major component; < - Less than; N.D. - Not detected;  
- Not analyzed f o r .  

used i n  preparat ion of a and B a l lo t ropes .  

b ~ e  'used i n  preparat ion of Ce-Y a l loys .  
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Figure 1. Temperature-pressure cycle to prepare a-cerfum, 



Figure 2 .  

1 

Details .of pressure c e l l  used t o  prepare a-cerium 



gen temperature, the  t h i r d  s t e p  was t o  re lease  the  pressure.  

The sample was maintained a t  7 7 ' ~  f o r  loading i n t o  t h e ,  ca l -  

orimeter a f t e r  whicfi it was cooled t o  4.  ~ O K .  This loading 

procedure i s  described i n  more d e t a i l  i n  a l a t t e r  sec t ion .  
I 

Suff ice  i t  t o  say here t h a t  s ing le .phase  a-cerium containing 
, , 

0.25% B-cerium o r  less was obtained v i a  t h i s  technique. 

.The procedure used i n  t he  pas t  t o  prepare 8-cerium was t o  

begin with a Y-cerium sample, cool  it t o  cryogenic 'tempera- * 

t u r e s ,  then warm i t  back t o  room temperature. After  t h i s  

f i r s t  c y c l e . t h e  sample would contain about 25-50% 8-cerium 

with t he  r e s t  Y-cerium. Further  cycling as many a s  100 times 

normally resu l ted  i n  a maximum of only about 60-75% B-cerium 

t h e  remaining being Y o r  a-cerium depending on the  tempera- 
, 

t u r e .  A .loo% 8-cerium sample was desired f o r  t he .p re sen t  

. \ 

study. 

The technique used.here  i n  an attempt t o  prepare pure 

B-cerium was based i n  pa r t  on the  work of Koch and McHargue 

(17). They found the  degree of completion of t he  transforma- 

t i o n  Y-$ was dependent on the  o r i g i n a l  gra in  s i z e  of t h e  Y- 

cerium. Spec i f ica l ly  , they found t h a t  Y-cerium containing 

la rge  gra ins  (-5 mm average diameter) yielded more 8-cerium 



on cooling than did a Y-cerium sample containing small grains 
' .  . .  ~. 

(0.005 t o  0 .1  mm average diameter). It the re fore  appeared , 

reasonable t h a t  as l a rge  a s  possible grains should be prepared 

f o r  a Y-cerium sample which.should then be. thermally cycled t o  
. * 

induce the  Y-B transformat.ion. . . 

Large gra ins  of Y-cerium were prepared a s  follows. A 

cerium sample was melted i n  a conventional a r c  melter  i n t o  the  

shape of a f inger  approximately 3" long and 5/16" i n  diameter. 

The sample was f i r s t  sealed i n  a tantalum cruc ib le  and then i n  

a quartz tube, and heated t o  975 '~  f o r  24 hours.. It was then  

. ,  given a 5 s t e p  heat  treatment t o  induce gra in  growth: (1) . . 

heated t o  1 0 2 5 ~ ~  f o r  12 hours, (2) cooled t o  975OK. f o r  12 

hours, ( 3 )  heated t o  1025'~ f o r  12 hours, ( 4 )  cooled t o  975 '~  

and held t he re  f o r  10 days, (5) a i r  cooled t o  room temperature. 

This method of gra in  growth u t i l i z e s  t h e  induced s t r a i n  which 

r e s u l t s  from thermally cycling cerium through the  a l l o t r o p i c  

0 
transformation occurring a t  1000 K .  

0 1 0 0 0 ~ ~  
6-Ce(B.C.C., a= 4.11A) Y-Ce(F.C.C., g =  5.162) (7) 

Grain s i z e  a f t e r  t h i s  procedure was 2-3 mm. 

The sample was then cycled t h i r t y  times between room tem-  

0 
perature  and 4.2 K t o  induce the  Y-B transformation. Because 

of t h e  sample's l a rge  grains and t h e i r  preferred.  o r i en t a t i on  



t he  r e l a t i v e  am0unt.s of t he  Y and B phases present could not 

.be  determined by conventional x-ray d i f f r a c t m e t e r  techniques. 

Theref o re  l ow temperature di latometry, a method described and 

used by . ~ i c h n e i d n &  and co-workers (16) ,  was used t o  determine 

. t h e  r e l a t i v e  amount of a and B present  i n  the  sample. These 

measurements indicated the  sample was 9 1 2  5% 8 phase with t he  

rest a-phase. To da te  t h i s  i s  the highest  t3.-phase f r a c t i o n  ' . 

ever prepared i n  pure cerium samples. 

8-Stabil ized Ce-Y Alloys 

For ~ m v e n i e n t  reference the  Ce-Y phase diagram (15) i s  . 
. 

reproduced i n  Figure 3 .  The s i x  f i l l e d  c i r c l e s  show t h e  loca- 

t i ons  and anneal temperatures of t he  a l loys .  A l l  s i x  were 

prepared by melting weighed amounts of Ce and Y i n  a conven- 

t i o n a l  a r c  melter. Contamination by a i r  was kept t o  a minimum 

by handling and s to r ing  the  metals and a l loys  i n  a dry argon 

atmosphere. After  a r c  melting t h e  a l loys  were sealed i n  Ta 
# 

, crucibles  and quartz tubes and given t h e  h e a t  treatments 

summarized i n  Table 2. 

A s  seen from the Ce-Y phase diagram, Figure 3 ,  s u f f i c i e n t  

amounts of Y added t o  Ce r e s u l t s  i n  t he  s t a b i l i z a t i o n  of 8- 

cerium. It w a s  f e l t  t he  96.1 a /o  cerium a l loy  which was i n  

t h e  y-s tabi l ized region may be induced' t o  transform t o  the  
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Figure 3. Cerium-yttrium phase diagram showing locations of alloys used in 
these experiments 



Table 2. Summary of t he  anneal t i m e s  and temperatures of the  
' s i x  $-s tabi l ized Ce-Y a l loys  

Alloy' - . Anneal ' t i m e  Anneal temperature 

(OC) (a10 cej . . (days) 

8-phase by thermal cycling between r o w  temperature and 4 .2 '~ .  

6 To check t h i s  t h e  a l l oy  was quenched t o  room t k m -  

perature  a f t e r  i t s  heat  treatment then cycled 30 times between 

0 
4.2 K and r o w  temperature. Examination by a conventional 

x-ray d i f f r a c t m e t e r  showed the  a l l oy  was approximately 85- 

90% )-phase with t h e  remainder Y-phase. 

The other  f i v e  a l loys  were a i r  cooled t o  room temperature 

f o l l a r i n g  t h e i r  heat  treatment and examined with t h e  x-ray , 

d i f f r a c t m e t e r .  A s  expected from t h e p h a s e  diagram a l l  f i v e  

a l l oys  w e r e  s ing le  phase D.H.C.P.. t o  within a d e t e c t i o n  l i m i t  



i APPARATUS 

I 

An ad iaba t ic  calorinieter w a s  designed and constructed 

f o r  these  experiments. I n  simplest form the  operat ing prin-  

c i p a l  was t o  thermally i s o l a t e  a sample from i t s  surroundings. 

A known amount of heat  w a s  supplied t o  t he  sample and the  

r e s u l t i n g  r ise i n  temperature was noted. The spec i f i c  heat 

was then given by the  r a t i o  of t he  heat input  t o  t he  rise i n  

temperature .. 

Two modifications of the  calorimeter  were used i n  these  

c 

experiments. F i r s t  a spec i a l  l i qu id  ni t rogen ' loading modifi- 

ca t ion  was. required because the  a-cerium sample had t o  be 

mounted i n  t he  calorimeter '  while a t  7 7 ' ~ .  The second, ca l led  

the'normal modification, was used f o r  the  cases where t h e  r 

samples were loaded i n t o  the  calorimeter  a t  room temperature. . 

The a c t u a l  operat ing procedure, a s  w e l l  as  t he  methods of da t a  

acquis i t ion  and reduction a r e  only b r i e f l y  mentioned s ince  

they have. been ca re fu l ly  described by R. R. Joseph (18)'. 

Calorimeter, Normal Modification 

Deta i l s  of t h e  normal modification a r e  shown i n  Figure 4. 

The addendum consisted of a gold pla ted  copper block t o  which 

were attached: 1) t h e  sample hea te r ,  1940 Cl (room temperature 

value) non-inductively wound manganin w i r e ;  2) a germanium 
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Figure 4 .  Details of the calorimeter, normal modification 



r e s i s t ance  thermometer, 3) the  gold pla ted  copper aux i l i a ry  

'holder ,  and 4) f i v e  gold pla ted  copper s e t  screws t o  clamp 

the  aux i l i a ry  holder  i n t o  place. A s t a i n l e s s  s t e e l  vacuum 

jacket 'surrounded.the sample-addendum combination. Woods 

metal was used a t  t he  l id - jacke t  j o in t  f o r  'convenient demount- 

ing.  

To make a run the  sample was cooled t o  4 . 2 O ~  by r a i s i n g  
. . 

i t  i n t o  thermal contact with the  l iqu id  helium bath. After  

bath ,  -temperature was reached, t y p i c a l l y  one t o  f i v e  hours , .  

t he  sample was lowered t o  break thermal contact  and the  run 

begun. Five t o  nine hours were usual ly  required t o  complete 

a spec i f i c  heat  run. 

Calorimeter, Liquid Nitrogen Loading Modification 

The p r inc ipa l  design requirement of t h i s  modification of 

t he  calorimeter  was t he  capabi l i ty '  of loading the  a-cerium 

sample while i t  was under l i qu id  ni trogen.  A s  discussed i n  

' . d e t a i l  i n  an e a r l i e r  sec t ion  once a-cerium was prepared i t  had 

0 
t o  be kept below about,180 K t o  prevent i t  from transforming 

back t o  t he  y-phase. 

Upon completion of. t he  temperature-pressure cycle the  

a-cerium was d r i l l e d  and tapped while under l i qu id  ni trogen 

and then threaded onto a cppper plug which was i n  t u rn  clamped 



i n t o  the  copper block, see  Figure 5.  The intermediate copper 

plug'  was necessary because. the  l a rge r  thermal contract ion of 
I 

. - @-cerium with respect  t o  copper caused the  a-cerium sample t o  

. , , f a l l  out of place when clamped d i r e c t l y  t o  the  copper block. . . 

. . 

Next . t h e  samp'le was immersed i n  l i qu id  ni trogen which was con- 

ta ined i n  the  s t a i n l e s s  steelavacuum jacket .  Because of the  . . 

poor thermal  copductivity of t he  s t a i n l e s s  steel vacuum jacket 
I 

it was possible t o  make e i t h e r  a  s o f t  solder  o r  Woods metal 

connection a t  t h e  l id - jacke t  j o in t  while the  sample was 

immersed i n .  l i qu id '  ni trogen jus t ' .  one inch away! The f i n a l  

s t e p  was t o  pump out t he  l i qu id  ni trogen and cool  t o  4 . 2 ' ~ .  

Data Acquisition and Reduction 
. . 

Data acquis i t ion  was bas i ca l ly  a  four  s t e p  procesa. 

F i r s t  ,,' t he  sample temperature was measured. Second, two 

simultaneous operations were ca r r i ed  out: a)  an e l e c t r i c  

current  was supplied t o  the  sample hea te r  causing a rise .,in 

temperature, and b) an e l e c t r i c  i n t e r v a l  t i m e r  was s t a r t e d ,  

see ~ i k r e  6 .  The t h i r d  s t e p  was t o  end the  heat  pulse by 

simultaneous l y  shu t t ing  off  the  e l e c t r i c  current  and i n t e r v a l  

t i m e r .  . Fourth and l a s t  t h e  increased sample temperature was 

measured. The procedure' w a s  , then repeated f o r  the  next data . 

point .  



Figure 5 .  Details of the calorimeter, liquid nitrogen 
loading modification. Additional details  i n  
Figure 4 



OREEN PEW OF TEXAS IWOTr). 

SERWRITER X 

OERUANIUY ~ t s ~ s r ~ u c e  K ~ I T ~ ~ ~ ;  7% ,, 
TnCnYOYTrEn Y ICnwOLT 

L. N 

Q I U  S O 1  O.'SY - THERMOMETER 
CUROLYT 

10 nc c r L  

. / 

LOW T n c n W L  

I ROTAUV SWITCH 

10 K 

won 
IOO a 
STANOUlD 
RCSlSrORS 

6 v 
OAR 

M T T E  

8 0 

Figure 6 .  Calorimeter circuit diagram 



Data reduction consisted of a ca lcu la t ion  of the  sample 

spec i f i c  heat  based on the  following equation ( a l l  calcula-  

t i ons  were done o n  an IBM 360165 computer) : 

where C = s p e c i f i c  heat  of sample 

. . 
N = number of moles o r  gram-atoms of sample 

IH = hea te r  cur ren t ,  values ranged between 0.1' t o  2.0 ma 

RH(T) = temperature dependent hea te r  res i s tance ,  RH(T) was 

measured from 2 .s°K (17100) t o  2 0 O ~  (17320) 

AQ - I I ~ I ~ ~ R ~ ,  a one percent correct ion f o r  t he  heat 

generated i n  t he  e l e c t r i c a l  leads between the  bath 

: and the  addendum, RL i s  t he  res i s tance  of t h i s  

por t ion of t he  leads (190) 

A t  = elapsed time of heat pulse,  t yp i ca l ly  20-80 seconds, 

A t  and IH were adjusted t o  give AT R, ~ 1 2 5 ' ~  

TF = temperature of sample a f t e r  heat pulse,  temperature 

was measured with a So l i t i on  germanium res i s tance  

thermometer which was ca l ib ra t ed  against  t he  T618 

temperature s c a l e  (19) 

TI = temperature of sample before heat pulse 



CAdd(T) = temperature dependent addendum heat  capacity 

CAdd(T) w a s  measured between 2.5 and, 2 0 ' ~  

2 P lo t s  of C vs T and C/T vs T w e r e  a l s o  generated by t h e  

computer .. 

. " .  , Accuracy Check 

T h e  accuracy of t h e  apparatus was checked by measuring 

the  s p e c i f i c  heat of a 1965 Calorimetry Conference coppe'r 

standard. Two separate  runs w e r e  made and the  r e s u l t s  were 

compared t o  t he  smoothed values (20,21) i n  Figure 7 ,  where 

t h e  points  are t he  present r e s u l t s  and the  line i s  the  bes t  

v a l u e s  f o r  t he  1965 Calorimetry Conference copper. An over- 

al .1 accuracy and precis ion of -1% was indicated.  



2 Figure 7.  C/T vs T plot for copper 
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. . 

RESULTS AND DISCUSSION. * 

The spec i f ic  heat pf a-ceri.um between 2.5 and 20°K i g  

shown i n  Figure 8. The smooth data indicates the  sample was 

f r ee  of the other cerium al lotropes .  Since 8-cerium i s  known 

t o  magnetically order a t  about 1 3 ' ~  (3,5) i t s  presence would 

be indicated by a p e a k  i n  the spec i f ic  heat a t  13'~. We 

estimate w e  can detect  the  presence of approximaeely 0.25% B 

because of  the  ' l a rge  spec i f ic  heat' associated with the mag- 

ne t i c  ordering of t h i s  phase. Figure 9 shows the standard 

2 
C/T vs  T plot  of the  low temperature d a t a  which was least -  

squares f i t t e d  by computer t o  give Y = 9.79 - + 0.10 (mjlmole- 

2 
deg K ) and 8 = 117 + 5'~. 

These Y and 8 values agree reasonably well with the high 

pressure (11 kbar) spec i f ic  heat r e s u l t s  of Phi l ips ,  Ho, and 

2 
Smith (22) who found y = 11.3 (mj/mole-deg K ) and 8 = 200'~. 

The large difference between the  present 8 value and tha t  of 

Phil ips and co-workers i s  conkis'tent with the observed in- 

crease .in @-cerium Debye temperature with increasing pressure 

as reported by Vornov, Vereshchagin, and Goncharova (23). In 

f a c t  t h e .  present value of 1 1 7 O K  fo r  the  Debye temperature 

c 

compares very w e l l  with the  value of 118 '~ as obtained by 



Figure .8. Specific heat vs temperature for a-cerium 





extrapola t ion t o  atmospheric pressure of t'he high pressure . 

room temperature da ta  o£ vornov and co-workers. 

The e lec t ron ic  s p e c i f i c  beat  constants  as  determined from 
. . 

Mukhopadhyay and Ma jumdar 's (24) densi ty  of s t a t e s  values f o r  

2 .  a-cerium a r e  3.7 (mj/mole-deg K ) f o r  t h r ee  5 d elect rons  and 

2 2.9 (mjlmole-deg K ) f o r  t he  four e lec t rons .  These values,  

I 

respect ively ,  a r e  2% and 3% times smaller than the  observed 

value. Probably t h i s  i s  due t o  electron-phonon and e lect ron-  

e l e c t r o n  in t e r ac t ions  which cause an enhancement of the  

observed e lec t ron ic  s p e c i f i c  he,at constant.  This enhancement' 

i s  somewhat l a rge r  than the  f a c t o r  of two observed f o r  Sc (25), 

Y (26) and t h e  heavy lanthanides (26) f o r  which densi ty  of 

s t a t e s  values w e r e  calcula ted by us ing an APW method, t h e  same 

method a s  used f o r  a-cerium. 

Other l o w  temperature spec i f i c  heat  measurements on cer-  

ium have been on samples containing mixtures of the  a and B 

a l lo t ropes  (12,13,27). . The values here tofore .  f o r .  t he  e lec-  
. . 

t r o n i c  s p e c i f i c  heat  constant and the  Debye temperature f o r  

a-cerium were obtained by assuming a value f o r  the  @-phase 

and est imate of the  amounts of a and B present .  Values so 

I obtained f o r  a-cerium a r e  open t o  ser ious  c r i t i c i sm.  Indeed 

Y values f o r  a-cerium from 21.0 t o  57.7 (mjlrnole-OK~) have 

been summarized by ,G,schneidner (28) . 



Fina l ly  t h e  C/T vs  T2 p lo t  f o r  a-cerium, F i g u r e  9, shows 

pos i t i ve  curvature a t  t h e  lqwest temperatures. While t he  

o r i g i n  of t h i s '  curvature i s  not known a few pos ' s ib i l i t i e s  can 

.be'considered. F i r s t ,  magnetic ordering of t he  impuri t ies  

present must be considered. Analysis of t he  samples before 

and a f t e r  the  measurements, Table 1, indicated a r e l a t i v e l y  

l aw  magnetic impurity content and a high, 99.9 atomic percent,  

pu r i t y  cerium sample was used i n  these  experiments. This 

sample analysis ,  makes impurity ordering a doubtful cause of 

t h e  pos i t ive  curvature. 

A second p o s s i b i l i t y  i s  t h a t  a small amount of t he  B- 

phase was ac tua l ly  present i n  t he  sample. Since $-cerium 

magnetically orders  a t  UOK a-cerium could d i l u t e  the  s t reng th  
. . 

of themagne t ic  i n t e r ac t ion  and cause t h e  B-phase t o  order  a t  
# .  

a much lower temperature.. - A  sample which was a mixture of 8 

p l u s  Y cerium was run through exac t ly  t h e  same temperature- 

pr.essure cycle as described above and it w a s  found t o  order 

a t  -13'~. ~ s s u m i n g  t h e  Y transformed t o  a while the  B re-  

mained unchanged.this separa te  run makes the  B-impurity idea 

a doubtful o r ig in  of t he  observed curvature.  

The l a s t  ' p o s s i b i l i t y  considered h e r e i s  simply t h a t  the  

a-cerium i t s e l f  i s  undergoing a magnetic t r a n s i t i o n .  This i s  



a t  l e a s t  poss ible  s ince  some e a r l i e r  inves t iga tors  have 

a t t r i b u t e d  approximately 0.3 4f - elect rons  t o  t h e  a-phase (6).  

Further  s p e c i f i c  heat  measurements t o  lower temperatures c m -  

bined with magnetic s u s c e p t i b i l i t y  measurements should help  

explain t h i s  observation. 

.@-Cerium and @-Stabi l ized Ce-Y. Alloys 

F igures  10 through 16 show the  spec i f i c  heat r e s u l t s  f o r  

a 9 x 8 - 9 %  a-cerium sample and t h e  8.-stabilized Ce-Y a l loys .  

The f i r s t  f e a t u r e  t o  not ice  i s  a l l  s i x  a l loys  showed magnetic 
4 

order ing  c h a r a c t e r i s t i c  of B-cerium. Table .3 summarizes t h e  

I 
ordering temperatures and Figure 17 i . l l u s t r a t e s  t he  almost 

l i nea r  dependence of cerium concentration with ordering t e m -  

Table 3. Summary of the  ordering temperatures and phases 
present i n  t he  high 0-cerium sample and the  s i x  
B-stabilized Ce-Y a l loys  

Allay (a10 Ce) a Ordering temperature (OK) Phase present 
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Figure 12 .  S p e c i f i c  heat vs temperature for 71 .7  a/o Ce-28.3 a10 Y 
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Figure 16. S p e c i f i c  heat vs temperature for 9 6 . 1  a/o Ce--3.9 a/o Y 
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Figure 1 7 .  Ordering temperature vs atomic percent cerium 



This decrease i n  ordering temperature with increas ing yt tr ium 

content i s  consis tent  with the  magnetic o r ig in  of t he  

s p e c i f i c  heat peaks i n  t h a t  the  s t rength  of t he  magnetic 

i n t e r ac t ion  i s  reduced by d i lu t i on  and hence the  ordering . 
temperature lowered. 

In  con t ras t  t o  the  case of simple metals t rea ted  e a r l i e r  

the  i n t e rp re t a t i on  of the  low temperature s p e c i f i c  heat  of 

magnetic systems requires  a  more complicated ana lys i s .  The 
. . 

.detai led separa t ion of . the t o t a l  spec i f i c  heat  .depends on the  

pa r t i cu l a r  system under inyes t iga t ion  (7,8). Often the  t o t a l  

spec i f i c  heat  of a  magnetic system as s tudied here can be 

a t t r i b u t e d  t o  four  terms.. The f i r s t  two the  l a t t i c e  and the  

e lec t ron ic  contr ibut ions  were t r ea t ed  above. The t h i r d  con- 

t r i b u t i o n  i s  associated with t he  magnetic ordering of t h e  

mate r ia l .  The. four th  c o n t r i b u t i o n ' i s  due t o  the  thermal 

exc i t a t i on  of the  e lec t rons  from the  ground s t a t e  l e v e l  t o  

t he  exci ted  higher energy leve l s .  . These excited leve l s  a r i s e  

because t he  c r y s t a l  f i e l d  around an ion removes t he  degen- 

eracy of t he  ground s t a t e  (7,8,11,29-31). I n  equation form: 

C ( t o t a l )  = C ( l a t t i c e )  + C(e1ectronic) + C (magnetic ordering) 

+ C(crysta1 f i e l d )  (9) 

A straightforward analys is  of the  l a t t i c e  and e lec t ron ic  



1 

38 

contr ibut ions  r e su l t i ng  i n  values of y and 8 f o r  t he  91%B- 

9%. cerium . . sample and f o r  t he  8-stabi,l ized Ce-Y a l l o y s  was 

not poss ible .  Essen t ia l ly  t h i s  was because the  magnetic 

ordering contr ibut ion dominated the  t o t a l  spec i f i c  heat  i n  

t he  low temperature region where the  standard C/T vs T 
2 

h 

separat ion i s  performed. Therefore values f o r  t he  l a t t i c e  

and e l ec t ron ic  contr ibutions f o r  the  high $-cerium case were 

. . 

simply taken  a s  equal to. those o f  lanthanum where t he  r e s u l t s  

4 of Berman and co-workers (32) were used below t h e  supercon- 

ducting t r a n s i t i o n s  and t h e  r e s u i t s  of Lounasmaa (33) were 

' .  u s e d . f o r  lanthanum above t h e  t r a n s i t i o n  temperatures. No 

correct ion was made t o  the  l a t t i c e  and e lec t ron ic  contribu- 

t i o n s  t o  the  t o t a l  s p e c i f i c  heat  of the, high B-cerium sample 

due t o  the  presence .of the  .9% a.-cerium. This was because the  

s p e c i f i c  heats  of a-cerium (measured here)  and lanthanum 

(quoted above) a r e  of s imi l a r  magnitude and so  a second order 

correct ion,  estimated t o  be on the  order  of 1%, r e s u l t s  i n  

t h e  t o t a l  s p e c i f i c  heat  of t h e  high $-cerium sample. 

Values f o r  t h e  l a t t i c e  and e l ec t ron ic  contr ibutions f o r  

t he  Ce-Y a l loys  were based on s p e c i f i c  heat measurements made 
t 

on t he  D.H.C.P. La-Y system by Satoh and Ohtsuke (31). These 

two a l loy  systems have the  same c r y s t a l  s t ruc tu re s  and t h e  



same d i l u t e n t ,  yttrium. Addit ionally,  @-cerium and a-lantha-  

num have e lec t ron ic  s t ruc tu re s  which d i f f e r  by one 42 e lec-  

t ron .  Since the  measurements of Satoh and Ohtsuka were made 

t o  only 4 ' ~  it w a s  necessary t o  ext rapola te  t h e i r  r e s u l t s  u p  

The procedure used t o  ob ta in  values f o r  the  l a t t i c e  and 

e l ec t ron ic  con t r ibu t ions  t o  the  s p e c i f i c  heat  of t he  Ce-Y . 

0 
a l loys  was a s  follows. A t  4 K a r a t i o  was formed between t h e  

s p e c i f i c  heat of a  given L a - Y  a l l oy ,  C(La-Y, T = ~ O K ) ,  and. .  

t he  s p e c i f i c  heat of La, C(La, T = ~ O K ) .  That. i s ,  C(La-Y, 

4OK)/C (La, T = 4OK) was computed. A t  some temperature, T ,  

between 4 and 2 3 ' ~  t he  s p e c i f i c  heat  of t he  a l l oy  was obtafned 

by mult iplying the  s p e c i f i c  heat  of L a  a t  t h a t  T by the  above 

ratf o. I n  equation form: 

C(h-Y, T) = c'(L~-Y. T = ~ O K )  (La, T) (10)  . ; 
C (La, T=~'K) 

I n  t h i s  manner, spec i f i c  heat  vs  temperature cunres were con- 

s t ruc t ed  from 4 t o  23OK f o r  t h e  La-Y a l loys  measured by Satoh 

and Ohtsuka. Next, t h e  spec i f i c  heat  was' assumed t o  vary 

l i n e a r l y  with concentration between any two La-Y a l loys  so  

t h a t  t he  s p e c i f i c  heat  of an a l l o y ' o f  an intermediate concen- 

t r a t i o n  w a s  simply obtained by l i n e a r  i n t e rpo la t i on . .  F inal ly ,  



t he  l a t t i c e  and e l ec t ron ic  contr ibutions t o  the  . spec i f i c  heat 

of a Ce-Y a l l o y  measured here was taken a s  equal t o  the  , , 

s p e c i f i c  heat  of the  corresponding La-Y a l loy  a s  constructed 

above. Table 4 summarizes t h e  Y and 9 values obtained from 
I 

Satoh and Ohtsuka's s p e c i f i c  heat measurements along with 

those u s e d . i n  . . t he .p re sen t  work f o r  the  Ce-Y a l loys  a s  0btaine.d 

above. 

Table 4. Summary o f  t he  c r y s t a l  s t ruc tu re s ,  Y ,  and 0 '  values 
f o r  t he  La-Y and ,Ce-Y a l loys .  ,Entr ies  f o r  t he  La-Y 
a l loys  were taken from Satoh and Ohtsuka (31) while 
those f o r  t h e  Ce-Y a l loys  were obbained a s  described 
i n  t he  t e x t  

Crystal ,  Y - .  Q . .Sample 
(atomic percent) s t ruc ture .  (m j  mole-'^^) (OK)' 

Once t h e  l a t t i c e  and e l ec t ron ic  contr ibut ions  t o  the  

t o t a l .  spec i f i c  'heat  w e r e  obtained the  magnetic ordering and 

c r y s t a l  f i e l d  terms could be separated.  The 68.6 a/o  cerium 



' a l loy  ordered a t  t he  lowest temperature,  5 .05O~,  and so  would 

be the  most l i k e l y -  t o  have completed i t s  magnetic contribu- 

t i o n  by ~ 2 3 ~ ~ .  Therefore, somewhat a r b i t r a r i l y ,  t he  t o t a l  

spec i f i c  heat  a t  2 3 O ~  w a s  assumed t o  be t he  sum of the  l a t -  ; 

t i c e ,  e l ec t ron ic ,  and c r y s t a l  f i e l d  t e k s .  :Next a smoothly , . 

0 
decreasing curve was drawn f r w  23 K such t h a t  t h e  c r y s t a l  

f i e l d  term progressively diminished f inilly becoming less 

than 1% of t he  t o t a l  spec i f i c  heat a t  around ~ O K ,  see, Figure 

18. The c r y s t a l  f i e l d  term s o  constructed w a s  then assumed 

t o  b e  l i n e a r l y  dependent on the  atomic percent  of cerium and 

was used a s . t h e  bas i s  f o r  t h e  'separat ion of t he  remaining 

f i v e  a l loys  and t h e  $-cerium. . 1 

Valuable, information can be obtained from the  entropy 

associa ted with t he  magnetic ordering. The entropies  w e r e  

calcula ted from t h e  equation (7,8) : 

J C (magnetic. ordering) 
AS (magnetic ordering) = . . dT (11) . . .  , 

T 

1 
where AS(magnetic ordering). = entropy associa ted with the  

magnetic ordering 

C(magnetic ordering) '  = magnetic ordering contr ibution 

0 

t o  t h e  spec i f i c  heat  

T = absolute temperature 



Figure 18. Separation of total specific heat of 68.6 a/o 
cerium alloy into (1) a lattice and electronic 
term, (2) a crystal f ie ld term, and (3) a 
magnetic term 
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and a r e  summarized i n  Table 5. 

Table 5.  . Summary of  the  measured entropies and t h e  values of 
: . .P f o r  t he  high '8-cerium sample and;.the 'six 8- 

s t a b i l i z e d  ~ e - Y  a l loys  ' . 

Alloy (a /o  'Ce) Measured entropy, AS Values of P from 
( j  /mole-OK) AS = ' c R  In P. . 

. . 

. . 
. . . . 

. . 

The s ignif icance of the  entropy calculations stems from a . . 

r e s u l t o f  s t a t i s t i c a l  mechanics which says the  entropy a s s o -  

c i a t ed  with a system of P energy leve l s  i s  given by (7,8):  

AS = ' R  In P (12) 

where AS = entropy 

R = gas constant 

P = number of separa te  energy leve l s  

For t he  a l l o y  cases ,  Equation 12 i s  modified t o  

where 

c = cerium concentration i n  atomic percent 

Since AS, c ,  and R were known P was calcula ted,  see  Table 5.  



'A possible i n t e rp re t a t i on  f o r  the  observed P -- 2 .0  i s  

c r y s t a l  f i e l d  s p l i t t i n g .  The hexagonal c r y s t a l  f i e l d  sur-  

2 
rounding the  ~ e + ~  ions s p l i t s  the  f r e e  ion F5/2 ground s t a t e  

i n t o  th ree  doublets (30). Therefore, t he  ground s t a t e  f o r  

the  ~ e + ~  ions would be a Krarners doublet (8) .  The i n t e r n a l  

- .  
f i e l d  associated with the  magnetic ordering then s p l i t s  the  

Kramers doublet i n t o  two leve l s  and hence AS = c R In 2 .  

A t  t h i s  point an est imate was made of the  hexagonal 

c r y s t a l  f i e l d  s p l i t t i n g  between the  ground s t a t e  and the  two 

excited doublets based on the  scheme used i n  the  separat ion 

of the  68.6 atomic percent c e r i u n . a l l o y .  From s t a t i s t i c a l  

mechanics the  s p e c i f i c  heat  associated with these  energy 

leve l s  i s  (7,8): 

, where C = spec i f i c  heat 

N - Avogadro's number 

, sr = energy of l eve l  r above ground s t a t e  

g r  = degeneracy of 1 e v e l . r  

k = Boltzmann constant 

T ' = absolute temperature 

I 



.Since N ,  k,  m ,  and gr were known the  technique was t o  choose 
. . 

values for:  Cr  such t h a t  t he  s p e c i f i c  heat ca lcula ted from 

 atio ion 14 f i t t e d  t h e  experimentally observed c r y s t a l  f i e l d  

s p e c i f i c  heat  contr ibution.  The bes t  f i t  f o r  B-cerium was 

f o r  the  f i r s t  and second doublets a t  85 + 5 and 110. f 1 0 ' ~  

above. t he  ground. s t a t e ,  

This c r y s t a l  f i e l d  s p l i t t i n g  i s  i n  disagreement with 

Bleeney (11) who suggested the  two doublets were a t  30 and 

0 ,  
150 ,K above the  ground s ' tate.  'BLeeneyls r e s u l t s  .are open' t o  

question on two major points .  F i r s t  h i s  f i t  was based on 

spec'if i c  heat  measurements (12,13) which were- made on mul t i  

phase cerium samples. Second s ince  B-cerium has an atomic 

s tacking sequence of *ABACABAC Bleeney assumed t h a t  one 

ha l f  of t he  ~ e + ~  ions were i n  a cubic c r y s t a l  f i e l d  while the  

remaining ha l f  were i n  a hexagonal c r y s t a l  f i e l d .  Nuclear 

magnetic resonance experiments on D.H.C.P. lanthanum (34,35) 

do not support t h i s  p a r t i t i o n  of D.H.C.P. i n t o  F.C.C. and 

simple H i C .  P. A more r e l i a b l e  energy l eve l  scheme than 

e i t h e r  ~ 1 e e n e ~ ' s  o r  t he  present would r e s u l t  from s p e c i f i c  



heat  measurements extended t o  h igher  temperatures and done on 
. . 

. s i n g l e  phase. samples. 

. .. F i n a l l y  i t  w a s  poss ib le  t o  consider  t h e  temperature 
. . 

dependence of t h e  magnetic s p e c i f i c  hea t  of t h e  high @-cerium 

sample.  Since t h i s  a l l o t r o p e  i s  known . t o  o rde r  a n t i f e r r o -  

magnet ical ly  (3,s) sp in  wave theory p r e d i c t s  a cubic  tempera- 

t u r e  dependence f o r  t h e . s p e c i f i c  hea t  i n  a temperature region 
. . 

s u f f i c i e n t l y  below t h e  ~ e e i  temperature (7,8). I n  equat ion 

form: 

C ( a n t i f  e r r m a g n e t i c )  = AT 3 
(15) 

Therefore,  a: p l o t  of t h e  magnetic s p e c i f i c  hea t  aga ins t  t h e  
. . 

cube of t h e  temperature should be l i n e a r .  Figure' 19 shows 

exce l l en t  agreement, between theory and experiment f o r  t h i s  

sample. 



Figure 19. Magnetic spec i f i c  heat of $-cerium vs teuiperature.cubed 



SUMMARY 

A s p e c i a l  technique was used t o  prepare p u r e . s i n g l e  phase 

-&-cerium. Its s p e c i f i c  hea t  was then medsured between 2.5 and 

0 
20 K and analyzed t o  g ive  an e l e c t r o n i c  s p e c i f i c  hea t  cons tan t ,  

2  
.Y, of 9.79 - .  + 0.10 (mj/mole-deg K ) and a  Debye temperature,  8 ,  

of 1 1 7 ' 5  5 ' ~ .  The va lue  f o r  8  i s  c o n s i s t e n t  wi th  t h e  observed 

i n c r e a s e  i n  w-cerium Debye temperature with inc reas ing  pres-  

s u r e  (23) ,  . and t h e  va lue  f o r  Y i s  i n  reasonable agreement wi th  

t h a t  repor ted  f o r  a-cerium based on s p e c i f i c  hea t  measurements 

done a t  11 kbar 'p ressure  (22). A t  t h e  lowest temperatures t h e  

2 s tandard  C/T v s  T p l o t  f o r  a-cerium showed.posi t ive curva- 

t u r e .  A magnetic t r a n s i t i o n  i n  a-cerium was considered as a 

poss ib le  explanat ion  f o r  t h i s  observat ion.  

The s p e c i f i c  h e a t s  of 919.8-9k-cerium and s i x  B-stabi- 

l i z e d  Ce-Y a l l o y s  were a l s o  measured between 2.5 and 2 0 O ~ .  

Four p r i n c i p a l  r e s u l t s  were obtained.  F i r s t ,  a l l  s i x  a l l o y s  

showed magnetic order ing  c h a r a c t e r i s t i c  of t h e  8-cerium phase. 

The order ing  temperature w a s  observed t o  vary almost l i n e a r l y  

with cerium concent ra t ion  from 5 . 0 5 ' ~  f o r  t h e  68.6 atomic per- 

cent  cerium a l l o y  t o  1 2 . 8 ~ ~  f o r  0-cerium. This  t r end  w a s  

c o n s i s t e n t  wi th  t h e  magnetic o r i g i n  of t h e  s p e c i f i c  hea t  peaks. 

Second, t h e  magnetic c o n t r i b u t i o n  t o  t h e  t o t a l  s p e c i f i c  



h e a t  f o r  8-cerium was shown t o  be dependent on t h e  t h i r d  . 

power :of  t h e '  absolu te  temperature.  This  was i n  agreement 

with t h e  predic ted  cubic  temperature dependence f o r  an a n t i -  

ferromagnetic m a t e r i a l  based on s p i n  wave theory (7 ,8 ) .  

Th i rd ,  t h e  hexagonal c r y s t a l  f i e l d  surrounding t h e  ~ e + ~  

ions  was bel ieved t o  s p l i t  t h e  f r e e  ion  2 ~ 5 / 2  ground s t a t e  

i n t o  t h r e e  doublets  (30). The ground s t a t e  f o r  t h e  ~ e + ~  ions  

would then be a Kramers doublet  (8) .  The i n t e r n a l  f i e l d  

a s soc ia ted  with t h e  magnetic o rde r ing  w a s  then assumed t o  

s p l i t  t h e  ground s t a t e -  doublet  i n t o  two separa te  l e v e l s  with 

an ' assoc ia ted  entropy of R In  2 .  

Fourth and l a s t ,  t h e  two upper doublets  which r e s u l t e d  

.from t h e  hexagonal c r y s t a l  f i e l d  were est imated t o  be 85 2 5 

. . 

and 110 - + 1 0 ' ~  above t h e  ground s t a t e .  
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Y E A C i J Q E D  S P E C I F I C  .HFbT OF. bLPHA C E R  IUY 



M E h S U R E D  S P E C I F I C  HEdT OF 91 P E S C E N T  BETA 9 PERCENT ALPH4 C E P I U M  



'4EASURED S P E C I F I C  HEAT OF 6 3 . 6  A / 3  C E - 3 1 . 4  A/3 Y 



YEASURE0 S P E C I F I C  HEAT OF 7 1 . 7  A/O CE-28.3 A I D  Y 



.MEASURED S P E C I F I C  HEAT OF 7 5 . 6  A/D , C E - 2 4 . 4  A / O  Y . . 

T C T C T .  C 
( D E G  I(.) ( M J / M O L E - K l  . .  ( D E G  K )  - ( M J / M O L E - K )  ( D E G  K )  ( M J / H O L E - K I  , 



M E A S U R E D  S P E C I F I C  H E A T  O F  7 8 . 2  A / 3  C E ' t 2 1 . 8  A / O  Y 

C T C  T C  

( M J / M O L E - K )  ( D E G  Y j  ( M J / M O L E - K )  l D E G  K )  ( M J / M D L E - K )  



Y E I S U R E O  S P E C I F I C  HEAT OF 82.3 A/3 CE-17.7 A/O Y 



Y E A S U R E D  S P E C I F I C  H E A T  OF 96.1 A/Cl  C E ' - 3 . 9  A / C ' Y  


