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Low-temperature specific heat per site (C) of one-dimensional Hubbard model is in­
vestigated by the method of non-linear integral equations. For the half-filled case we show 
limH'-+O limT-o C/T=nlo (n/2U) /(61, (n/2U)), where T is temperature, His magnetic field, U 
is the coupling cpnstant, and Io and l 1 are modified Bessel functions. Although this equation 
yeilds limT,H ... oClT=n/6 in the limit U--?0+, the true value oflimT,H ... 0 C/T at U=O is n/3. 
This means that limT,H->o C/T is a discontinuous function of U at U=O. This discontinuity 
disappears when the band is not half filled. 

§ I. Introduction 

Low-temperature behavior of Hubbard model is intere~ting physically, and 

difficult to treat rigorously. The one-dimensional case of this model has been 

investigated by many physicists. Its thermody,namic potential density is di:fined by 

Nn. 

(J)(U, T, A, H)= -T lim{ln(Tr exp( -T-1 (& -A 'L;(nit+ ni~))) /Na}, 
lfa-+00 i=l , 

(l·la) 

where !J( is the Hamiltonian: 

(1·1b) 

Here we have following symmetry relations through appropriate unitary trans­

formations: 

(J)(U, T,A,H) =(J)(U, T,A, -H) =4U-2A+(J)(U, T,4U-A,H) 

=tJ.oH-A+(J)(- U, T, p.0H -2U, p.0- 1 (A-2U)). (1·2) 

The :first identity is. obtained by changing up-spin and down-spin, the second by 

changing the creation and annihilation operators and the third by changing the 

creation and· annihilation operators in the up-spin band. If we know the value 

of ()) in the region U>O, H>O and A <2U, we easily obtain the value of ()) 

outside of this region through the relation~ (1· 2). Then we restrict ourselves 

to calculate ()) in this region. Other thermodynamic quantities such as energy 
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104 M. Takahashi 

and entropy per site (e, s), specific heat per site (CH,A) and densities of up-spin 
and down-spin electron.s (nr. n•) are obtained by the differentiations o~ ()): 

nr+n·= ow 
• fJA ' 

S=- ow 
aT ' 

1 ow nr-n•=--, 
P.o fJH 

c - T 020) H,A-- fJTB ' (1·3) 

In a previous paper1> the. author derived a set of non-linear integral equations 
for the calculation of thermodynamic potential density w. We used Bethe ansatz, 
which was :first applied to this model by Lieb and Wu,2> and some assumptions 
on the distributions of quasi-momenta k and parameters A on the complex plane. 
Recently Shiba and Pincus8> calculated the energy levels of this model in the 
case of :finite atomic numbers (such as six or :five) and thermodynamic quantities. 
Their method is not useful to investigate the low-temperature properties of the 
model in the thermodynamic limit. For example, magnet~c susceptibility of the 
:finite system becomes: zero or infinity in the limit of zero temperature. But this 
is not valid in the thermodynamic limit because magnetic susceptibility has :finite 
values at T = 0 in the half-filled state.'J,DJ 

In the following sections we. investigate the low-temperature behavior of this 
system, using the set of integral equations given in Ref: 1), and come to the 
conclusion that in the half-filled case low-temperature specific heat is proportional 
to temperature and coefficient is given analytically: 

lim lim CIT=7rl0(7ri2U)I (6Il(7ri2U)). 
H-+0 T-+0 

It should be noted tha:t this is inversely proportional to. the magnon velocity8> 
at T=O: 

v = 211 (7rl2 U) I 10 (7rl2 U), 
and proportional to the magnetic susceptibility6> at T = 0: 

X= P.No(7ri2U) I (1rl1 (7ri2U)). 

§ 2. Integral equations 

The eigenvalue problem of one-dimensional Hubbard model described 'by 
the Hamiltonian (1·1b) can be treated by the method of Bethe's·- hypothesis. 
According to Lieb.and Wu, we must.solve a set .of equations for N quasi-momenta 
k and M parameters A where N is the number of fermions and M is the number 
of down-spin fermions, 
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Low-Temperature Specific-Heat of One-Dimensional Hubbard Model 105 

In the previous paper1l the author assumed that the k's and A's form bound states 

on the complex plane, and derived a·· set of non-linear integral equations for the 

distribution of the bound states at. given temperature T, magnetic field H and 
chemical potential A: 

ln ( (k) = tc~(k) /T + J_"',s(A- sin k)ln( (1 + rj/ (A))/ (1 + 7J1 (A)) )dA, (2 ·1a) 

ln 7J1(A) = s* ln(1 + rJ2 (A))- rn dk cos k s(A- sin k)ln(1 +(-1(k)), (2 ·1b) 

ln rJ/ (A) =s* ln(1 + rJ/ (A))- rndk cos k s(A- sin k)ln(1 + ((k)), (2·1c) 

In rj,. (A) = s* ln (1 + rJn-l (.d)) (1 + 7fn+l (A)), n = 2, 3, · · ·, 

ln rj,.' (A) =s* ln(1 + rJ~- 1 (A)) (1 + in+l (A)), n = 2, 3, · · ·, 

lim ln rj,. = 2!-!0H 
,. .... ., n T ' 

lim ln rj,.' = 4U -2A 
,......, n T 

where s(A) =sech(n-x/2U) /4U, f*g=J~.,f(A- A')g (A')dA', 

tc0(k) = -2 cos k -4s:,s(A- sink) (Rev'1- (A- Uil)dA. 

(2 ·1d) 

(2·1e) 

(2·1£) 

(2 ·1g) 

(2 ·1h) 

Function ( (k) is the ratio of hole density and particle density of unbound quasi­

momenta. Function rj,. (A) is that of n-th order bound state of A. Function 

rj,.' (A) is that of bound state of the nA's and 2nk's. Thermodynamic potential 

per site is given by 

w(T,A,H)= -T f}n(1+(-1 (k))~~ -Tf:;1 s:}n(1+rJ,.-1(A)) 

xRe 1 · dA (2·2a) 
v'1- (A-nUi/ n-

=E0-A-T { rnp0 (k)ln(1 +((k))dk+ J_"'.,rJ0 (A)ln(1 +rJ1 (A) )dA}, 

(2·2b) 

where E0, p0(k), f50(A) are the ground state energy per site, distribution function 

of the k's and that of the A's at T=O, A=2U, f-10H=0, respectively: 

f5 0 (A) = s(A- sink)-, Sn dk 

-n 2tr 
(2·2c) 

1 J"' Po (k) =-+cos k dAa1 (A- sink) f5o (A), 
2n- _, 

nU (2·2e) 
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106 M. Takahashi 

Eo= -2 r~ cos k Po(k)dk. (2·2f) 

One should note that Eqs. (2·1) and (2·2) are valid only at U>o,·A<2U and 
ttoH>O. The other cases can be treated through Eqs. (1· 2). 

From Eqs. (2·1c), (2·1e) and (2·1g) we have 

ln(1+r;,.')>2n(2U-A)/T, n=1,2, 3, ···., 

At 2 U- A'}? T, we can replace In r;,.' by In (1+ r;,.') in Eqs. (2 ·1c), (2 ·1e) and ' 
(2 ·1g) and obtain 

ln(1 +r;,.') =2n(2U -A) /T + r~ a,.(A- sin k)ln(1 + ((k)) cos k dk 

+O(exp(- (2U-A)/T)), n=1, 2, ····. (2·3a) 

Substituting case n = 1 of this equation into (2 ·1a), we have 

!C(k) =!Co(k) +2U -A+ T r~ R(sin k- sin k')in(1 + exp (~~>(k') /T) )cos k'dk' 

- T J_oooos(A- sin k)ln(1 + exp(e1 (A)/T) )dA +0 (T exp ( -(2U -A)/T)), 

(2 · 4a) 
where R=s*a1, 'IC=Tln(, e1=Tlnr;I. 

At 2U-A=O(T), function !C(k) is always negative. Then the last -term 
of (2 ·1c) is of the order of T 112 exp (!C<0l (n) /T) at low temperatures. Then we 
have 

1 +r;/ = (sh { (j+ 1) (2U -A) jT} /sh{ (2U -A) /T} i + 0 (Tlf2 exp (!C<0l (n) jT)), 

(2·3b) 
where /C<0l is IC at zero temperature. (hereafter we put (0) for the functions at 
zero temperature). Substituting this into (2 ·1a), we have 

!C(k) =!Co(k) + T ln(2 ch{ (2U -A) jT})- T J_oooos(A- sink) 

X ln ( 1 + exp e1~A)) dA + 0 (T812 e~p (!C<0l (n) jT)) . (2·4b) 

At ttoH'P T, we have 

In (1 + r;,.) == a:!'-Iln (1 + r;1) + 2 (n -1) tt0HjT, n=2, 3, ···. (2 ·3c) 

Substituting this into (2 ·1b), we have 

Cl (A) =TR* ln(1 + exp (el (A) !T)) + fJ.oH -T r~ dk cos k s(A- sink) 

X ln(1 + exp ( -!C(k) /T)) + O(T exp(2tt0H/T)). (2·4c) 
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Low-Temperature Specific-Heat of One-Dimensional Hubbard Model 107 

Equations (2 · 4a) and (2 · 4c) are transformed as follows: 

JC(k) = -2 cos k-A- p.0H .,..- T J_~oo a 1 (sin k- A)ln(1 + exp( -e1 (A) /T) )dA, 

(2· 5a) 

S1 (A) = T J_oooo a2(A- A') In (1 + exp (- S1 (A') /T)) dA' 

....:.T s:n al (A- sin k)ln(1 + exp(- IC(k) /T)) cos k dk+2p.oH. (2·5b) 

From Eq. (2 · 2a) we have 

(j)(T, A, H)= -T ln(1+exp( -JC(k)/T))-. Sn dk 

- . -n 2n 
(2 -5c) 

Here we have neglected the terms which ar~ of the order of e-2"'HJT or e-<'U-M)fT. 

Equations (2 ~ 4) or (2 · 5) are useful to obtain thermodynamic potential at 

2U -A'}>T and 2p.0H'}>T. 
As shown in Fig. 1, (A, H) plane is devitled into several regions by the 

low-temperature properties. The number of fermions per site n has the follow­

ing properties at zero temperature: 

U=2.0 

(c) 

c 

c 

A 

Fig. 1. Characteristic regions of low-temperature specific heat for- various values of U. 
On lines d, e, f, g and h, low-temperature specific heat is proportional to T 112• In 
regions B, D and E, it is p-roportional to T. In regions A and C, it is proportional 
to r-•t• exp( -a/T). 

a) U=0.5 
b) U=l.O 
c) U=2.0 
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108 M. Takahashi 

n =1 at regions C and E, 

O<n<1 at regions B and D, 

n=O at region A. 

On lines a, b and c, magnetization is zero. 

§ 3. Case PoH'J;> T 

a) A<-2- t-toH (Region A) 
In this region, density of fermions IS zero at zero temperature. From 

Eq. (2 · 5a), we have 

"(k) = -2 cos k- A- t-toH- T exp (- 2p0H/T). 

Substituting this into (2 · 5c), we obtain 

w(T, A, H)= -n-1T 812 .r ln(1 + exp( 2 +A; t-toH)e-z')dx. 

b) s1<0>(0)>0, A>-2-p0H (Region B) 
Here the number of fermions per site, n, satisfies 1>n>O. At zero' tem­

perature all fermions have up-spin. From Eq. (2 · 5c) we have 

w(T,A, H) -w(O, A, H)= -T ln(1+exp( -Jil-(k)J/T))-S ~ dk 
-~ 2n 

- SQ iJ!f-(k) dk • 
-Q 2n 

where Q and -Q(Q>O) are zeroes of !f-<0>(k). From Eqs. (2·5a) and (2·5b) 
we obtain 

iJJC=- T J_oooo a1 (sink- A)ln (1 + exp (-- 81 (A) /T) )dA, 

e1 (A) = -2 rQ a 1 (A- sink) cos2 k dk + 2p0H + 0 (T2) + 0 (T812 exp(- e 1 <0> /T)). 

Then we have 

T2 1 n2 w(T A H)=w(O A H)----·-
' ' ' ' 2n 2 sin Q 3 

where 

SQ dk g(A) = a1(A-sin k)-. 
-Q 2n 
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Low-Temperature Specific-Heat of One-Dimensional Hubbard Model 109 

c) fl.oH>2( ../1 + U 2 - U), A>2- fl.oH (Region C) 

At zero temperature, density of fermion is one, and all fermions have up­
spin. Substituting Eq. (2 · 5a) into Eq. (2 · 5c), we have 

w(T,A,H) = -A-fl.0H-T ln(l+exp(tc(k)/T))-S" dk 
_, 2n 

-TJoo2(Re ../ 1 . 2 )ln(1+exp(-sl(A)/T))dA. (3·1) 
-oo 1- (A- Uz) 

From Eqs. ·(2·5a) and (2·5b), we obtain 

tc(k) = -2 cos k-A-f1.0H-O(T812J..), 

c1 (A)=- 4 Re ( ../1- (A- Uil- U) + 2f1.0H + 0 (T312J..) + 0 (T312fJ.), 

J..=exp(- (4( ../1+ U 2 - U) -2fl.0H)/T), fl.= exp ( (2 -A - fl. 0H) /T) . 

Substituting these into Eq. (3 ·1), we have 

w(T, A, H)= -A- fl.0H-n-1T 8/ 2 1oo ln(1 + fJ.e-x')dx 

-4T312( ../1 + U 2 - U) (1 + U 2)-1/4 1oo ln(1 + J..e-x')dx. (3 ·2) 

On the boundary of this region we have 

-A-f1.0H-n-1T812((~) (1- _}2 ) v27r at fl.0H=2(../1+U2 - U), 

(j)= -A- fl. H- 4T812( ../1 + U 2 - U) (1 + U 2)-114 ( (~) (1-~)vi 
0 

- 2 ./2. 2 

at A=2-f1.0H. (3·3) 

d) c1 <Ol (0) <O, tc<0l (n) >O (Region D) 

From Eq. (2·5c), we have 

w·(T, A, H) -w(O, A, H)=- n + . -. -iJtc(k). T 2 SQ dk 
6tc' (Q) -Q 2n 

Function iJtc(k) is determined by 

(3·4) 

SB n2r2 
iJtc(k) = a1(sink-A)iJs1(A)dA- {a1(sink-B) +a1(sink+B)}, 

-B 6s/(B) . 

(3 · 5a) 

(Js (A) + s:11 a2 (A- A') (Js (A') dA' = J_QQ dk cos k a1 (sink- A) iJtc (k) 

n2T 2 cos Q . . - {a1(sm Q-A) +al(smQ+A)} 
6tc' (Q) 
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110 M. Takahashi 

n2T2 
+ ) {a2(B-A) +a2CB+A)}, (3·5b) 6s/(B 

where Q and B are zeroes of 11,<0l(k) and e1<0l(A), resp~ctively. From these 
equations we obtain 

w(T A H) -w(O A H)= _n2T 2[(J1<0l(B) + p<ol(Q) ]+0(T3) 
' ' ' ' 3 Cl (O)' (B) /I,(O)' (Q) ' 

(3 · 6a) 

where p<0l (k) and (J1 <OJ (A) are the distribution fun<;:tions of k and A at zero. tern~ 
perature and determined by 

The equations for (Jl(O) and Cl(O)' are written as 

(Jl(Ol(A)- r .R(A-A')(Jl(O)(A')dA'= SQ s(A-sink)p<0l(k)dk, 
JIAI>B ' . -Q 

Cl (O)' (A) - r R (A- A') Cl (O)' (A') dA' = SQ s (A- sin k) /I,(O)' (k) dk . 
J!Ai>B -Q 

The right-hand sides of these equations are 

exp(- niAI) (2U)-1 JQ dk exp(- n sin k)p<ol(k) 
2U -Q 2U 

and 

sign (A) exp (- niAI) (2U)-1 JQ dk exp (- n sin k)~~,<w (k) 
2U -Q 2.U 

at IAI ~1, U. Then we have 

and 

(J1<0l(B) = f~Q dk exp(n sin k/2U)p<0l(k) +O(B-2) 
s1<0J' (B) J~Qdk exp (n sin k/2U) ~~,<ol' (k) 

(3·6b) 

(3·6c) 

(3·6d) 

(3·6e) 

w (T A H) _ (O A H) = _ n2T 2 { p<0l (Q) + J~Q dk exp (n sin kj2U) p<0l (k) 
' ' ()) ' ' 3 _~~,<OJ' (Q) f~Q dk exp (n sin k/2U) ~~,<OJ' (k) 

+ 0 ( {ln (p0H) } - 2)} , (3 · 7) 

when p0H is very small. From this. equation we obtain 

I. I" C /T_2n 2 {p<0l(Q) + J~Qdke.xp(nsinkj2U)p<0l(k)} 1m 1m AH -- • 
H ... o T.:.o ' 3 JC<0l'(Q) f~Qdkexp(nsink/2U)~~,<ol'(k)· 

(3·8) 
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Low-Temperature Specific-Heat of One-Dimensional Hubbard Model 111 

e) 2(V1+U2 -U)>ttoH'J>T, !C<0>(n)<O (Region E) 

From Eq. (2·2b) we have 

I 2 r~· ( ("(n)) ·) w(T,A,H) --:w(O,A,H) = -2T 812p0 (n)~ -!C(7r) Jo ln 1+exp --r-, ·e-x dx 

-T soo 0"0 (A)ln(1+exp(-le1(A)I))dA-T f 0"0 (A)tJe1(A)dA+O(T4), 

-oo T JIAI>B 

where tJe=e-e<0>. From Eq. (2·4b) 

we have 

tJe (A) - f R (A- A') tJe1 (A') dA' 
Jwi>B , 

= -n2T 2 (R(A-B) 

+R(A +B)) I (6e1' (B)) 

+O((B-B'i), 

(3·9) 

lim lim CIT 
H•O T•O 

2.0 

l.O rc/3 

rr/6 

0 2 3 u where B and B' are zeroes of e1 

and e1<0>, respectively. Summing the 

second and the third terms of r.h.s. 

of (3·9), we have 

Fig. 2. Coefficient of T-linear low-temperature 
specific heat in the half-filled case (A=2U), 
and P.oH=O. 

- n2Ta 0"1<o> (B)+ 0 (Ts) 
3 e<W (B) ' 

(3·10) 

where ()1<0> and e1<0l' are determined by 

0" 1 <O> CA)- f R (A- A')O" 1 <O> (A') dA' = 0" o (A), 
. Jwi>B 

(3·11a) 

e1<0>' (A)- f R(A- A') e1<0>' (A')dA' = 2 sn s(A- sink) sink dk. (3 ·llb) 
JIA'I>B -n 

At, IAI ')>max. (1, 1/U), r.h.s.' of (3 ·lla) and (3 ·llb) are (2U)-110 (n/2U)["IAI;au 

, and sign(A) ·2nU-111(n/2U)e-" 1 A 1f 2u, respectively. Then we have 

0"1<0> (B) = Io(n/2U) + O (B2) 
e1<o>' (B) 4n11 (n/2U) 

and 

w(T, A, H) -w(O, A, H)= -2rs12Po(n)j -IC<~' (n) 

x fooln(1+exp(!C<o>(n)/T)e-x•) _ nT 2
• lo(n/2U) 

Jo 12 11 (n /2 U) 

+ 0 ( (ln ttoH)-2) + O{T8) • (3 ·12) 

D
ow

nloaded from
 https://academ

ic.oup.com
/ptp/article/52/1/103/1854935 by guest on 20 August 2022



112 M. Takahashi 

The coefficient of T-linear specific heat at A= 2 U is 

1. 1. c· jT- 11: I0 (n/2U) liD liD · AH --• • 
H~o T~o ' 6 l 1(n/2U) 

This value is shown in Fig. 2 as a function of U. 

§ 4. Case p 0H=O(T) 

a) JC<0> (77:) <o (near line a) 

From Eqs. (2 ·1) we have 

2 s~ ( /C(O) (77:) \ ln r;1 (A) =s* ln(1+r;2(A))-- dk cos2 k s(A-sin k) +0 T 112 exp --), T -~ T I 

ln "f/n (A) = s* ln (1 + "f/n-1 (A)) (1 + "f/n+l (A)) , 

lim !? "f/n = 2tJ.oH . 
n~oo n T 

Thus Eq. (2 · 2b) can be written as -follows: 

n=2;3,···, 

_ T 2
• Io(n/2U) c(2tJ.oH) +O(T') 

2 Jl(n/2U) T . ' 

where C(y) is determined by 

C(y) = J_ooooe-""/2 ln(1+r;1 (x))dx, 

ln r;1 (x) = - e-"'"'12 + - sech ln (1 + "f/2 (x')) dx', Soo 1 n(x-x') 
-00 4 2 

(4·1) 

Soo 1 n(x-x') ln "f/n (x) = - sech ln (1 + "f/n-1 (x')) (1 + "f/n+1 (x')) dx', 
-oo 4 2 

1. ln "f/n 
lffi--=y. 

n~oo n 

b) JC<0>(n)>O (near line b) 

From Eq. (2·2b) we have 

n=2,3, ···, 

(4·2) 

w(T,A,H)-w(O,A,H)= JQ dk~JC(k)-!£. : 2
. +O(rs). (4·3) 

-Q 277: 12 /C(O) (Q) 

The equation for ~/C=/C- JC<0> is 

~/C (k) - JQ R (sink- sink') ~JC (k') cos k' dk' 
-Q 
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Low-Temperature Specific-Heat of One-Dimensional Hubbard Model 113 

= -T s_:s(A-sink)ln(1+7]1(A))dA 

+ n2T 2 (R(sin k-sin Q) +R(sin k+sin Q)) +0(T4). (4·4) 
61C(?) (Q) 

After some calculations we obtain 

w(T A H) -w(O A 0)=- n2T 2p<ol(Q) -2nT2C( 211oH) 
' ' ' ' 3/C(O)' (Q) T 

X ( s:Q exp(sit k)p<O) (k)dkl s:Q exp(si~ k)~~:<O)' (k)dk) + Q (T 8), (4·5) 

where p<0l, /Ceo) and C(y) are defined in Eqs. (3·6) and (4·2). Functions similar 
to C(y) defined in (4·2) appeared in the investigation of the low-temperature 
specific heat of Heisenberg-Ising ring at IJI <l}l From the result of numerical 
calculation in Ref. 7) we conjecture 

C (0) = n/6 and C" (0) = 1/2n . (4·6) 

If these equations are true, we obtain 

lim lim CjT=lim lim C/T, 
T-+0 H-+0 H-+0 T_,.o 

lim lim x =lim lim X. 
T-+0 H-+0 H-+0 T-+0 

§ 5. Discussions and summary 

From the theory of non-interacting fermions, thermodynamic potential per 
site at U =0 is 

. 1 { sn w(T,A, H)=- ln(1+exp( -2 cos k-p0H-AjT))dk 2n -n 

+ rn ln(1+exp(__:2 cosk+p0H-A/T))dk}. (5·1) 

From this equation we obtain 

lim lim C/T=n/3 
H-+0 T-+0 

at A=2U=0 and p0H=0. This value diHers from limu-.o limH-.o limT-.o CjT=n/6. 
One can interpret this discontinuity of the coefficient of T-linear specific heat 
at U = 0 as follows. In the half-filled case at U>O one-particle excitation 
spectrum has a energy gap -/C<0l(n) =2U-2+4f~dwJ1 (w)/w(1+e2u"). Then 
this excitation does not contribute to the coefficient of T-Vnear specific heat. 
But at U = 0, gap is zero and this excitation does contribute to the coefficient. 
In the case n<1 one finds no such discontinuity, because both magnon excitation 
and one-particle excitation contribute to the coefficient of T-linear specific heat. 
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