103

Progress of Theoretical Physics, Vol. 52, No. 1, July 1974

~ Low-Temperature Specific-Heat
of One-Dimensional Hubbard Model

Minoru TAKAHASHI

Department of Physics, College of General Education
Osaka University, Osaka

(Received February 18, 1974)

Low-temperature specific heat per site (C) of one-dimensional Hubbard model is in-
vestigated by the method of non-linear integral equations. For the half-filled case we show
limg_ limr_,g C/T=nl (z/2U) /(61 (x/2U)), where T is temperature, H is magnetic field, U
is the coupling constant, and I, and I are modified Bessel functions. Although this equation
yeilds limr, g0 C/T=n/6 in the limit U0+, the true value of limz, ., C/T at U=0 is z/3.
This means that limz, 7y C/T is a discontinuous function of U at U=0. This discontinuity
disappears when the band is not half filled.

§1. Introduction

Low-temperature behavior of Hubbard model is interesting physically, and
difficult to treat rigorously. The one-dimensional case of this model has been
investigated by many physicists. Its thermodynamic potential density is difined by

o(U,T,A,H)=—T lim{In(Tr exp(—T';((J‘l[—Ag(nﬂ—i-nu)))/Na},

Noo® .
(1-1a)
where 4 is the Hamiltonian:
Ng ‘ N, ‘ N,
H=— iZi Z‘. (CIaCi+1a + C;+1¢Ci.a) + 4U iZ; Ry — uH 21 (niT — nu) ,
A= V3 = i=
CNg116=C1s,  Mis=ClsCis . (1-1b)

Here we have following symmetry relations through appropriate unitary trans-
formations:

o(U,T, A, H)=0(U, T, A, —H) =4U-24+0(U, T,4U— A, H)
=uH—-A+0(-U,T, t,H-2U, 1,” (A—20)). 1-2)

The first identity is obtained by changing up-spin and down-spin, the second by
changing the creation and annihilation operators and the third by changing the
creation and annihilation operators in the up-spin band. If we know the value
of » in the region U=>0, H>0 and A<<2U, we easily obtain the value of »
outside of this region through the relations (1-2). Then we restrict ourselves
to calculate ®» in this region. Other thermodynamic quantities such as energy
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104 M. Takahashi

and entropy per site (e,s), specific heat per site (Cy,4) and densities of up-spin
and down-spin electrons (n,#,) are obtained by the differentiations of w:

0w 1 0w 0 <a) 0w
i _—_ [ :_TZ_ —_— hA’
mtm=ga, mm woH® € oT T>+6’A
0w ‘ 0%w 0%w
—— Cua= -T2 =09 1.3
oT ’ o oT* * T o -3

In a previous paper? the author derived a set of non-linear integral equations
for the calculation of thermodynamic potential density w. We used Bethe ansatz,
which was first applied to this model by Lieb and Wu,® and some assumptions
on the distributions of quasi-momenta % and parameters A4 on the complex plane.
Recently Shiba and Pincus® calculated the energy levels of this model in the
case of finite atomic numbers (such as: six or five) and thermodynamic quantities.
Their method is not useful to investigate the low-temperature properties of the
model in the thermodynamic limit. For example, magnetic susceptibility of the
finite system becomes. zero or infinity in the limit of zero temperature. But this
is not valid in the thermodynamic limit because magnetic susceptibility has finite
values at 7'=0 in the half-filled state.®”® .

In the following sections we investigate the low-temperature behavior of this
system, using the set of integral equations given in Ref. 1), and come to the
conclusion that in the half-filled case low-temperature specific heat is proportional
to temperature and coefficient is given analytically: '

lim lim C/Téﬂ'Io @/2U0) /(6L (x/2U)).

H—-0 T-0 B . . .
It should be noted that this is inversely proportional to the magnon velocity®
at T=0:
v=20(n/2U)/1,(x/2U),

and proportional to the magnetic susceptibility® at 7T°=0;

1= ' (n/2U) / (wh(z/20)).

§2. Integral equations

The eigenvalue problem of one-dimensional Hubbard model described by
the Hamiltonian (1-1b) can be treated by the method of Bethe’s hypothesis.
According to Lieb.and Wu, we must solve a set of equations for N quasi-momenta

k and M parameters A where N is the number of fermions and M is the number
of down-spin fermions, '

a=1

. o ki—A ~2iU) .
tkiNa — __ A AL Al
¢ H<kj—Aa+2iU o7
l Aa—kj+iU>__” (A,,—Aﬁ#rZiU
11_=[1<Aa—kj—iU ;El Aa—Aﬁ—in>’
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Low-Temperature Specific-Heat of One-Dimensional Hubbard Model 105

In the previous paper” the author assumed that the £’s and A’s form bound states
on the complex plane, and derived a set of non-linear integral equations for the
distribution of the bound states at given temperature 7', magnetic field H and
chemical potential A:

In C(k)=lc;.(k)/T+ j_ws(A—sin'k)ln((l—i—771’(/1))/(1+771(A)))d/1, (2-1a)
In 771(/1) =s* In(A+5:(4)) — j‘_” dk cosks(A—sin k) In(1+¢7'(k)), (2-1b)

In 5,/ (4) =s* ln(1+772'(A)); Lﬂ dkcosks(A—sink)In(1+&k)), (@2-1c)

lnﬂn(A)ZS* 111(1"{"””_1([’))(1+77,,,+1(A)), n:27 3, Y (2'1d)
Ing/ () =s* In@A+p2(D)) A+7:(D),  7=2,3,-, (2-1e)
1im1}l&=2/~‘£, . C(2-1)
n—sw 7 T

lim Iny, _4U—-24 , R 2-1g)

where s(4)=sech(nz/2U) /AU, f*9=[2.f(A—A")9(4)dA’,
ko (B) = —2 cos k—4’£° $(A—sin &) (RevI— (A= Ti")dA . (2-1h)

Function & () is the ratio of hole density .and particle density of unbound quasi-
momenta. Function %,(4) is that of nth order bound state of A. Function
7a’ (4) is that of bound state of the nA’s and 2z%’s. Thermodynamic potential
per site is given by ‘

o, 4, B =T [ @+ @E T3 [ n@+5.7 )
—r 2 =1 J-o
1 a4 :
| Re I=GA=nTF = @2
~E-a-T{[" p®ua+c@ar+ [T oanarnw)dd,
(2-2b)

where E,, po(k), 0,(A) are the ground state energy per site, distribution function
of the %’s and that of the A’s at T=0, A=2U, yH=0, rgspectively:

Go(A) = jjﬂs(A—sin k)% , 2-20)

0B =-L +cosk r dAay(A—sin ) 6o (), (@-2d)
2 —o ‘

q,,(A)E___ﬂ___ @2-2¢)

T(L2+@UP°
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106 M. Takahashi

Eoz_zr cos & po(B)dE . \ (2-2f)

One should note that Egs. (2:1) and (2-2) are valid only at U>0," A<2U and
U =>0. The other cases can be treated through Egs. (1-2).
From Egs. (2-1c), (2-1e) and (2-1g) we have

In(1+9.")=22U—-A) /T, n=1,23,... .
At 2U—-A>T, we can replace In N’ by"ln(1‘—|-77,,’) in-Egs. (2:-1c¢), (2-1e) and °
(2-1g) and obtain
In(1+4,") =2n(2U—A)/T;I— I” @ (A—sin k)In(1+& (k) cos k dE

+O(exp(— 2U-A)/T)), n=1,2 .., (2-3a)

Substituting case z=1 of this equation into (2:1a), we have
k(R) =k (k) +2U—-A+T JW R(sin k—sin &) In (A +exp(&(E)/T))cos ' dE’

-T J:w s(A4—sin k) In(1+ exp (&, (4)/T))dA +0(T exp(—(ZU——A)/T)),

(2-4a)
where R=s*a,, k=T In¢, &=TIn 1. .
At 2U-A=0(T), function k(%) is always negative. Then the last term

of (2-1c) is of the order of T2 exp(£®(x)/T) at low temperatures. Then we
have

1+9/ = (sh{(j+1)@QU—-A)/T} /sh{@U—~A) /T} )+ O (T*” exp (x© (m/T)),
‘ ' (2-3b)

where £® is £ at zero temperature. (hereafter we put (0) for the functions at
zero temperature). Substituting this into (2-1a), we have

E(E) =0 (E) +T In(2 ch{(2U—~ A) /T}) —Tfs(A—sin E)

x1In(1-+exp %)CM +O(T?exp(s® () /T)).  (2-4b)

At uH>T, we have
In@+y) =ai In(l+79) +2(e—DuH/T, 27=2,3,-. (2-3c)

Substituting this into (2-1b), we have
&1(A) =TR* In(1+ exp (&:(A) /T)) + o — T f " dk cos b s(A—sin E)

XIn(1+exp(—£(%)/T)) +O(T exp QuH/T)). (2-4c)
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Low;Temperatu'r'e Specific-Heat of One-Dimensional Hubbard Model 107

Equations (2-4a) ‘and (2-4c) are transformed as follows:

k(k) =—2 cos k—A—,aoH-.—Tj_m a(sink—A)In(1+exp(—e(4)/T))dA,
(2-5a)

a()=T Iiaz(/l —A)In(A+exp(—e(4)/T))dA
_r j_ a1 (A—sin B)In(1+ exp(—(8) /T))cos kdk+2mH.  (2-5b)

From Eq. (2-2a) we have

w(T,A,H)=~,Tr ln(l'—i—exp(—/c(k)/T))%. (2-5¢)
P } - 74
Here we have neglected the terms which are of the order of e*®7T or ¢=UU—24)/T

Equations (2:4) or (2-5) are useful to obtain thermodynamic potential at
2U—A>T and 2u,H>T.

As shown in Fig. 1, (4, H) plane is devided into several regions by the
low-temperature properties. The number of fermions per site -z has the follow-
ing properties at zero temperature:

C (b)

f J20T+02-U)
ANE

a2y A

20/ +U*U)

|~

A -2.0 00 b U A

Fig. 1. Chardcteristic regions of low-temperature specific heat for various values of U.
On lines d, e, f, g and h, low-temperature specific heat is proportional to 7%% In
regions B, D and E, it is proportional to 7. In regions A and C, it is proportional

" to T-%® exp(—a/T).
a) U=05
-b) U=10
c) U=20
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108 M. Takahashi

n=1 at regions C and E,
0<z<1 at regions B and D,
n=0 at region A.

On lines a, b and ¢, magnetization is zero.

§3. Case uH>T

a) A<—-2—uH (Region A)

In this region, density of fermions is zero at zero temperature. From
Eq. (2-5a), we have

k(k)=—2cos k—A—uH—T exp(—2uH/T).

Substituting this into (2-5¢), we obtain

o(T,A,H)=—g"'"T*" jw 1n<1 +exp <—2+—A;_AI_£>e"’>dx .
0

b) &®(0)=0, A>—-2—pyH (Region B)

Here the number of fermions per site, 7, satisfies 1>#>0. At zero tem-
perature all fermions have up-spin. From Eq. (2-5¢) we have

o(T, 4, H) ~0(0,4, )= =T [ In(1+exp(~[c(h) }/T))%ﬁ-

. . ,
_ j ok (k) dk. ,
-Q 2

where Q and —Q(Q>>0) are zeroes of £ (k). From Egs. (2-5a) and (2-5b)
we obtain

Sk=—T f a:(sin k— ) In (1 +exp (— e (4) /T))dA,

(e
a(d)=-2 I a1 (A—sin k) cos® k dk+2u,H+ O (T? + O (T*2 exp(—,2/T)).
-e

Then we have

T 1 °
o(T, A, H)=w(0,A, H)—— T
( ) ( ) 2r 2sinQ 3

—T%"2g (O)N/&TZ(O)* J;wln A+exp(—&®"(0)/T) -e*)dx,

where

Q
g0 = j (4 —sin B) 9k
) 2
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Low-Temperaiure Specific-Heat of One-Dimensional Hubbard Model 109

) wH=>2(W1+U*-U), A>2—uH (Region C)

At zero temperature, density of fermion is one, and all fermions have up-
spin. Substituting Eq. (2-5a) into Eq. (2-5¢), we have

o(T, A Hy = —A—p,H—T I_ 1n(1+exp(;c(k)/T))£2‘%

_T In(Q+exp(—ea(4)/T))dA. @3-

“2(Re =y
From Eqs. (2-5a) and (2-5b), we obtain

k(E) = —2 cos k— A — pH—O (T*),

6:(4) = —4 Re(V1—(4— Uiy — U) +2u,H+ O (T**2) + O (T*y),

i=exp(— @WI1+U-U) —2u,H)/T), p=exp(@—A—uH)/T).
Substituting these into Eq. (3-1), we have

o(T, 4, H) = = A= ppH—7"T" [ “In(L+ pe~)dz
0

—ATAIT U -0 A+ U [Tk 2 de. (302)
0
On the boundary of this region we have

— A— g H -T2 (%) (1 _ i)“/%f at pH=2(YIT T~ ),

V2
0= 320 /T L 72— DA 3 _ VT
——A—,uoH~4T/(w{1+U U) 1+ U <2><1 ¢2>
at A=2—uH. (3-3)

d) &®(0)<0, £9(r)>0 (Region D)
From Eq. (2-5¢), we have

T? ° g
(T, A, H) -0, A, Hy=—-_TF LR ok (k). 3.4
o ( ) —o( ) ) e & (k) .( )
Function dx (k) is determined by
ok (k) = j_ a:(sin k— A)@al(A)dA~— ,(B) {a,(sin k—B) +a (sin k+ B)},
(3-5a)

de(d) + jB, as(A— A7) 0e (4" dA’ = je dk cos E ax(sin &—4) 35 (&)

% {a:(sin Q—A) +a,(sinQ + A)}
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110 M. Takahashi

,(B) {as(B—A) +a:(B+ 4)}, (3-5b)

where O and B are zeroes of £®(k) and &®(A), respectively. From these
equations we obtain

- __ZTTaO®B) , 0™ 1. oo .
o(T, 4, H) ~0(0,4, /)= ~F| 2500 02O Loy, (a6

where p® (%) and 0, (4) are the distribution functions of % and A at zero tem:
perature and determined by :

B
0:® (&) =2i +cos B j @ (A—sin )6, (4)dA (3-6b)
T -B

B Q
HOU) + f Ba’z(A—A’)o‘l‘°)(A’)dA’=f @ (A—sinB)p®(B)dk.  (3-60)

The equations for ¢, and & are written as

Q
5O (1) — £A|>I.3R(A—A’)o‘1‘°?(/1’)d/1’=j s(A—sin O (®)dE,  (3-6d)

Q
& () — jl s R ) = f s(A—sin B EY (B)dk.  (3-6¢)

The right-hand sides of these equations are
| _ 74| = IQ — EM) ©
eXp( 2U>(2U) _Qdkexp< Yo 0@ (&)
and
sign (4) exp < 7| 4| ) @u) j dk exp < T ;1; k)lc“’)' &)

at [4]>1, U. Then we have

0:(B) _ J% dk exp(z sin k/2U) o® (k) i
&’ (B) [%qdFkexp(nsink/2U) k™ (k)

and

O(B™®

— —_ n’T? [ p® (Q) I dk exp (z sin k/2U) p® (k)
o(T,A,H) —w(0,4A, H) 3 {E(O)'(Q) +f‘1¢‘dk exp (1 5in /203 £ ()

+OUIn(mE} D}, 3-7)
when #,H is very small. From this equation we obtain

lim lim Cy /T = 2%_ { 0°(0) | I%q dk exp (x sin k/2U) 0 (k)}_
Ho0 750 £ (Q)  [% dkexp(x sin k/2U) ™ (k))

(3-8
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Low-Temperature Specific-Heat of One-Dimensional Hubbard Model 111

e) 2(WIFUP—U)>uH>T, £ (1) <0 (Region E)
From Eq. (2:2b) we have

T, A H) ~0(0, A, H) = 2T 0@y — 2 [ in(1+ exp (") -z

(" ol DI ,
Tj_wo‘o(/!)ln<1+e p< 5 >>dA T£A1>80‘0(A)651(A)dA+O(T),
V (3-9)
where Je=e¢—¢c®. From Eq. (2-4b)
we have lim lim C/T
2.0r
bt~ | RU-a)06a)an
— —*T*(R(4—B)
+R(4+B))/(6e(B))
+O0((B-FB)),

where B and B’ are zeroes of g | | )

. . . , 0 1 2 3 U
and &©, respectively. Summing the ) . .
he thir i rh Fig. 2. Coefficient of T-linear low-temperature
second and the third terms of r.h.s. specific heat in the half-filled case (A=2U),
of (3-9), we have and pH=0.
272 = (0)
- 02®) o1, (3-10)
3 ®(B)
where 0, and " are determined by
0,9 (A) — ;£A'|>BR<A—A,)61(O) U)dA =0.(A), (3-11a)

& (4) — j R(A—A)e® (4)dA =2 j s(A—sink)sinkdk. (3-11b)

|471>B
At |4 >max.(1,1/U), r.hs. of (3-11a) and (3-11b) are (2U)I,(x/2U)e "4/
. and sign(4) -2zUL(z/2U)e"417Y  respectively. Then we have

0,.9(B) _ L(x/2U) oW
&’ (B) 4nL(z/2UY

and

s 2
o(T,A H)—-v(0,A, H)=-2T /200(75)&/':75(0)'—(”)

_ 2T L(z/2U)
12 L(z/2U)

+0 ((In wH)™) +O(T7). (3-12)

x £w1n<1+ exp (£© (1) /T ) e™™)
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112 M. Takahashi

The coefficient of T-linear specific heat at A¥2U is

lim lim Cy /T = % . L@/20)
H—>0 T-0 6 11(7[/2(])

This value is shown in Fig. 2 as a function of U.

§4. Case pH=0(T)

a) £®(n)=<0 (near line a)
From Egs. (2:-1) we have

In 9, (4) =s* 1n(1+772(A))—7—%— jw dk cos® k s(A—sin k) +O<T‘/2 exp E(‘;ﬂ),

/

In 771:(/1) =s* 111(1-]—’[77,_1(/1)) (1+Wn+1(/1))7 72:2, 3’ Ty

lim In 9, _ 2uH .

Thus Eq. (2-2b) can be written as follows:

T o
w(T,A H)y=E,—A— 2T3/2po(n)~/wj In 1+exp “’”’)dx

_T* L(z/2U) C(Z,uoH
2 L(x/2U) \ T

where C(y) is determined by

)+o(T, -1

C(y) = jioe"””/” In(A+p(x))dx,

In7:(2) = — e~ 4 j L sech &2@_ In(1+7:(z")) dz,

(@)= [ - sech @ 10 (14 as (27)) (L4 7ss (27)) d’,

n—2, 3a ’
lim 1272 _ (4-2)
)
b) £k®(@)>0 (near line b)
From Eq. (2-2b) we have )
o(T, A, H) — (0, A H)—I ﬁa *) — (O)T(Q) LOTY.  (4-3)

The equation for Jr=k—r® is

Sr(E) — ﬁR(sin E—sin &) 0k () cos B’ dk’
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Low-Temperature Specific-Heat of One-Dimensional Hubbard Model 113

_ —TJtos(A—sink)ln(1+771(A))dA

T2
6 (Q)

After some calculations we obtain

+ (R(sink—sin Q) + R(sin 2+sin Q)) +O(T*). (4-4)

- = _ET0Q) _ o e (2iH
o(T, 4, H) ~0(0,4,0)= ~F 2507 —2nc (2t

x ( fq exp (%3) 0 (%) dk / f@ exp (S%é) £ (%) dk) +O0(T?), (4-5)

where 0®, £® and C(y) are defined in Egs. (3-6) and (4-2). Functions similar
to C(y) defined in (4-2) appeared in the investigation of the low-temperature
specific heat of Heisenberg-Ising ring at |4|<<1." From the result of numerical
calculation in Ref. 7) we conjecture

C(0)=7/6 and C”(0)=1/2r. (4-6)
If these equations are true, we obtain

lim lim C/T =1lim lim C/T,

T—0 H-0 H—0 T-0

lim lim ¢ =1im lim % .
T-0 H-0 H—-0 T-0

§ 5. Discussions and summary

From the theory of non-interacting fermions, thermodynamic potential per
site at U=0 is

o(T, A, H):zi { j In(1+exp(—2 cos k— mH—A/T))dk
7[ -7

= I_ ln(1+exp(—'2cosk-l—/loH—A/T))dk}. (5-1)

From this equation we obtain

lim lim C/T =7/3

H-0 T-0
at A=2U=0 and #,H=0. This value differs from limy_, limg.,, limy,, C/T =7/6.
One can interpret  this discontinuity of the coefficient of 7-linear specific heat
at U=0 as follows. In the half-filled case at U>0 one-particle excitation
spectrum has a energy gap —£©® (%) =2U—-2+4[¢do J,(0) /o(14¢€7*). Then
this excitation does not contribute to the coefficient of T'linear specific heat.
But at U=0, gap is zero and this excitation does contribute to the coefficient.
In the case #<(1 one finds no such discontinuity, because both magnon excitation
- and one-particle excitation contribute to the coefficient of 7T-linear specific heat.

Zz0z 1snbny oz uo 1senb Aq GE61S8L/E0L/L/2G/e1ome/did/woo dno olwepeoe//:sdyy woly papeojumoq



114

D
2)
3
49
5)
6)
7

M., Takahashi

References

M. Takahashi, Prog. Theor. Phys. 47 (1972), 69.

E. Lieb and F. Y. Wu, Phys. Rev. Letters 20 (1968), 1445.

H. Shiba and P. A. Pincus, Phys. Rev. B5 (1972), 1966.

M. Takahashi, Prog. Theor. Phys. 42 (1969), 1098; 43 (1970), 860, 1619.
H. Shiba, Phys. Rev. B6 (1972), 930.

A. A. Ovchinikov, Zhur. Eksp. i Theoret. Fiz. 57 -(1969), 2137.

M. Takahashi, Prog. Theor. Phys. 50 (1973), 1519, and to be published.

2202 1snbny 0z uo 1s8nb Aq GE6YS8L/E0L/L/ZS/elone/did/woo dnoolwspede/:sdpy woll papeojumo(



