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Abstract: Here, we propose an optical bistable device structure with a few layers of graphene
oxide integrated in the metal-dielectric-metal based asymmetric nanocavity. Through the light
confinement in the nanocavity, the third order nonlinear absorption of graphene oxide can be
significantly enhanced, which experimentally delivers low-threshold optical bistability at the visible
wavelength of 532 nm with only 267 KW/cm2 intensity. In addition, the switching threshold can be
further reduced via increasing the graphene oxide thickness, hence paving a new way for achieving
tunable optical bistable devices at visible light frequencies.

Keywords: graphene oxide; nanocavity; optical bistability

1. Introduction

Graphene oxide, a graphene-like oxidation two-dimensional (2D) material, has been
investigated extensively because of its extraordinary optical nonlinear properties, which
have been shown to be superior to normal dielectrics [1]. Usually, this large nonlinearity
can lead to the required interaction length of light with the material reduced in many
applications such as conductive transparent coatings [2,3], photocatalysts [4], microwave
absorbers [5] and all-optical encryption [6]. However, GO material presents a significant
linear loss, even though with a large nonlinear property. Therefore, to ensure sufficient
signal reflection from the devices with enhanced optical nonlinearity, it is important to
apply extra optical configurations to enlarge the interaction between GO and incident light
in many applications, i.e., the optical bistable device [7].

Optical bistability (OB) means that an optical system has two possible output light
intensity states under a given input light intensity, which realizes the recoverable switching
transition between these two light intensity states [8,9]. Optical bistability has many poten-
tial applications in all-optical transistor [10] and all-optical memory [11]. However, most of
the optical bistable device based on the solid-state materials usually have very high thresh-
old (~GW/cm2) due to the low third-order susceptibility [12]. It is still a challenge to further
reduce the threshold as much as possible for the further applications. Recently, graphene
and its derivative, graphene oxide has attracted tremendous attention in the realization of
optical bistable devices due to the outstanding nonlinear optical properties [13]. To further
reduce the threshold of the device, delicate resonant configurations filled with nonlinear ma-
terials have been widely investigated mostly in the terahertz band [14], including photonic
crystals [15], surface plasmons [16] and Fabry–Perot cavity [17]. For example, D. Zhao et al.
theoretically studied the optical bistability in photonic multilayers doped by graphene
sheets, stacking two Bragg reflectors with a defect graphene layer between the two Bragg
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reflectors. The reduced threshold of around 10 GW/cm2 can be obtained through utilizing
the local field of defect mode to enhance the nonlinearity [18]. K.J. Ahn et al. theoretically
investigated optical bistability of graphene inserted at the interface between two thin dielec-
tric layers. Through optimizing the material properties and the thickness of the dielectric
layers, optical bistable threshold of several MW/cm2 can be achieved [19]. Even though
the graphene-based materials show large nonlinear susceptibility, the thresholds of these
optical bistable devices are still quite high, usually in the MW/cm2 scale with the operation
band limited in the terahertz frequency. Therefore, it is of great significance to design a
device structure with the low threshold optical bistability especially in the KW/cm2 scale
and the operation band at visible light frequencies [20,21].

In this paper, we proposed an optical bistable device with a few layers of graphene ox-
ide integrated in the asymmetric nanocavity, which delivers low-threshold optical bistability
at visible frequencies with only few hundreds of KW/cm2 laser power. The asymmetric
nanocavity is based on metal-dielectric-metal (MDM) Fabry-Perot cavity with a plasmonic
lossy ultrathin (~20 nm) metal film as the top layer. The multilayer graphene oxide (GO) is
integrated in the dielectric layer by stacking 1 mg/mL solution of graphene oxide [22,23]
and 2% solution of pdda for many times to achieve flat GO layers with the thickness control
in few nanometers. Through coupling the light into the nanocavity from the ultrathin metal
top layer, the nonlinear absorption of graphene oxide can be dramatically enhanced due
to the cavity confinement effects on light waves, thereby reducing the optical bistability
threshold of the device. The low-threshold optical bistability of 267 KW/cm2 at the wave-
length of 532 nm can be achieved experimentally with six layers of graphene oxide (around
12 nm thick). We believe that both the large nonlinear response of graphene oxide and the
strong field confinement in the asymmetric MDM nanocavity play the important roles in
obtaining the low threshold optical bistability.

2. Simulation Models

The three-dimensional schematic diagram of the GO integrated nanocavity struc-
ture considered in this work is shown in Figure 1a. The bottom metal layer is optically
thick (120 nm) enough to maximize the light reflection of the device, while the top metal
layer thickness is optimized (20 nm) for the balance between the light coupling from top
surface and the strong light confinement in the nanocavity. A plane wave is incident on the
nanocavity top surface. The cavity resonance wavelength can be tuned by changing the
Al2O3 dielectric layer thickness through finite-difference time-domain (FDTD) simulation,
covering the whole visible light wavelength range. To apply this asymmetric nanocavity
for the nonlinear absorption enhancement of the GO, a 2 nm thick GO layer (corresponding
to one layer of GO) is inserted in the middle of the nanocavity. The thickness of the upper
and lower Al2O3 layer is optimized to be 40 nm and 45 nm, respectively, to achieve the
cavity resonance around 532 nm in the green light wavelength region for the experimental
device characterization with lasers in the following section. Figure 1b shows the plot of the
simulated GO absorption in the designed nanocavity. It can be found that light absorption
as high as 30% can be achieved with one layer of GO layer (2 nm thick), indicating that
the threshold for the optical bistability of the device can be significantly reduced. With the
layers of GO increasing to 6 layers (12 nm), over 75% light absorption can be achieved at the
wavelength of around 550 nm. The electric field distribution of the GO integrated nanocav-
ity is illustrated in Figure 1c to further demonstrate the light confinement mechanism. It
can be seen that a standing wave can be obtained in the cavity due to the constructive inter-
ference of the in-coupling light and reflected light, leading to the absorption enhancement
of GO due to the light confinement in the dielectric layer.
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Figure 1. (a) The 3D schematic diagram of the GO integrated nanocavity. (b) The simulated ab-
sorption spectra of the device with different layers of GO by Lumerical FDTD. (c) The electric field 
distribution of the GO integrated cavity at the maximum absorption wavelength of 532 nm. 

To simulate our cavity optical bistability behavior, the third-order nonlinear coeffi-
cients of the graphene oxide film need to be deduced first via fitting the measured curves 
by Z-scan system. Plus, then we build the optical bistability device model with the non-
linear parameters obtained by Z-scan for the COMSOL simulation. The wavelength is set 
to be 532 nm and the thicknesses of the GO layers are one layer, three layers and six lay-
ers for simulation. The optical bistability phenomenon of the three models can be 
achieved with the COMSOL simulation and the results of optical bistability hysteresis 
loops are shown in Figure 2. The optical bistable threshold of the nanocavity with one 
layer of graphene oxide is 514 KW/cm2 as shown in Figure 2a. The threshold can be re-
duced to 397 KW/cm2 for three layers of graphene oxide integrated nanocavity and for 
six-layer of graphene oxide, the optical bistable threshold of the device is as low as 243 
KW/cm2 as shown in Figure 2b,c. It can be found that the switching threshold can be 
further reduced via increasing the graphene oxide thickness, which is due to absorption 
enhancement of the device with more layers of GO as illustrated in Figure 1b. We believe 
that the simulated optical bistability behavior of the device mainly originates from the 
enhanced nonlinear absorption of the GO films by light confinement effect in the asym-
metric nanocavity. 
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COMSOL simulation. (b) Optical bistable hysteresis loop of the device integrated with three-layer 
of GO by COMSOL simulation. (c) Optical bistable hysteresis loop of the device integrated with 
six-layer of GO by COMSOL simulation. 

3. Experimental Results and Discussions 
To experimentally validate our device optical bistability performance, the GO inte-

grated nanocavity device is fabricated as shown in Figure 3a. First, 120 nm thick gold film 
and 45 nm thick Al2O3 film were sequentially deposited on the polished wafer substrate 
by magnetron sputtering as a pre-fabricated substrate for the preparation of multilayer 
graphene oxide. Then we prepared 1 mg/mL solution of graphene oxide and put it into 
an ultrasonic cleaner to ultrasonically disperse it into suspension. The 20% solution of 
pdda was diluted to 2% solution and then the pre-fabricated substrate was soaked in 2% 
solution of pdda for one minute. After the pdda solution was evenly adsorbed on the 
substrate, the excess pdda solution was blow-dried with a nitrogen gun. Then the sub-

Figure 1. (a) The 3D schematic diagram of the GO integrated nanocavity. (b) The simulated absorption
spectra of the device with different layers of GO by Lumerical FDTD. (c) The electric field distribution
of the GO integrated cavity at the maximum absorption wavelength of 532 nm.

To simulate our cavity optical bistability behavior, the third-order nonlinear coefficients
of the graphene oxide film need to be deduced first via fitting the measured curves by
Z-scan system. Plus, then we build the optical bistability device model with the nonlinear
parameters obtained by Z-scan for the COMSOL simulation. The wavelength is set to
be 532 nm and the thicknesses of the GO layers are one layer, three layers and six layers for
simulation. The optical bistability phenomenon of the three models can be achieved with
the COMSOL simulation and the results of optical bistability hysteresis loops are shown
in Figure 2. The optical bistable threshold of the nanocavity with one layer of graphene
oxide is 514 KW/cm2 as shown in Figure 2a. The threshold can be reduced to 397 KW/cm2

for three layers of graphene oxide integrated nanocavity and for six-layer of graphene
oxide, the optical bistable threshold of the device is as low as 243 KW/cm2 as shown
in Figure 2b,c. It can be found that the switching threshold can be further reduced via
increasing the graphene oxide thickness, which is due to absorption enhancement of the
device with more layers of GO as illustrated in Figure 1b. We believe that the simulated
optical bistability behavior of the device mainly originates from the enhanced nonlinear
absorption of the GO films by light confinement effect in the asymmetric nanocavity.
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Figure 2. (a) Optical bistable hysteresis loop of the device integrated with one layer of GO by
COMSOL simulation. (b) Optical bistable hysteresis loop of the device integrated with three-layer
of GO by COMSOL simulation. (c) Optical bistable hysteresis loop of the device integrated with
six-layer of GO by COMSOL simulation.

3. Experimental Results and Discussion

To experimentally validate our device optical bistability performance, the GO inte-
grated nanocavity device is fabricated as shown in Figure 3a. First, 120 nm thick gold film
and 45 nm thick Al2O3 film were sequentially deposited on the polished wafer substrate
by magnetron sputtering as a pre-fabricated substrate for the preparation of multilayer
graphene oxide. Then we prepared 1 mg/mL solution of graphene oxide and put it into
an ultrasonic cleaner to ultrasonically disperse it into suspension. The 20% solution of
pdda was diluted to 2% solution and then the pre-fabricated substrate was soaked in
2% solution of pdda for one minute. After the pdda solution was evenly adsorbed on
the substrate, the excess pdda solution was blow-dried with a nitrogen gun. Then the
substrate with pdda was soaked in 1 mg/mL solution of graphene oxide for one minute,
and after the anions and cations are attracted to each other, the graphene oxide can be
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evenly adsorbed on the pdda. The multilayer graphene oxide film can be obtained on the
pre-fabricated substrate by repeating the above deposition steps as shown in Figure 3a.
One, three and six-layer graphene oxide films were prepared in this experiment. Through
atomic force microscopy (AFM) characterization as shown in Figure 3d, it can be found
that the nine-layer GO film displays an overall thickness of around 18 nm, indicating that
the thickness of one layer of GO film is around 2 nm. Finally, the 40 nm Al2O3 film and
the 20 nm gold film were sputtered sequentially on the surface of the multilayer graphene
oxide to form a complete nanocavity. The measured and simulated reflection spectra for
the GO integrated nanocavity with different layers of GO are illustrated in Figure 3b,c.
In Figure 3b,c, it can be found in the reflectance spectrum that a valley corresponds to
the cavity resonance at the wavelength around 532 nm. The reflection valley shifts from
around 532 nm to around 570 nm with the increase of GO layers from monolayer to six
layers, indicating that the increase of the GO thickness results in a red-shift of the cavity
resonance. According to our AFM characterization results as shown in Figure 3d, one
layer of GO corresponds to 2 nm thickness film and the total thickness of the cavity can be
increased from 97 nm to 107 nm with the layer of GO film increased to six. The red-shift of
the reflection valley is mainly because of the varied resonance condition associated with the
multiple round-trip phase shifts of electromagnetic wave inside the resonant cavity, which
originates from the increase of the cavity thickness. Through the comparison of Figure 3b,c,
the overall shape and resonance position of the experimental spectral features agree quite
well with the simulated results.
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Figure 3. (a) The scheme of the GO integrated nanocavity fabrication process. (b) The measured
reflection spectra for different layers of GO integrated nanocavity. (c) The simulated reflection spectra
for different layers of GO integrated nanocavity. (d) The atomic force microscopy characterization of
nine-layer graphene oxide.

To experimentally demonstrate the device optical bistability behavior, the optical
characterization system was built up using the laser with the wavelength of 532 nm.
Figure 4 illustrates the optical path diagram of the experiment set up. A half-wave plate
and Glan-laser calcite polarizer at the front of the optical path are used to adjust the
optical power of the experiment. A beam of light from a nanosecond pulsed laser with
a wavelength of 532 nm passes through a beam splitting system, which splits light at a
ratio of 50:50. One beam illuminates the sample as the probe beam and then reflected
to a photodetector, while the other beam is directly incident on the photodetector as
the reference beam. The two pulsed lasers convert optical signals into electrical signals
by photodetectors, and the waveforms can be received and displayed through a high
bandwidth digital oscilloscope. The waveforms displayed on the high-speed numerical
oscilloscope are shown in Figure 5a,c,e. Data processing is performed by importing the
rising and falling edge values of the reference optical pulse signal and the probe optical
pulse signal on the oscilloscope into the origin software. Since photoelectric conversion is a
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linear process, the electrical signals can be converted back to optical signals with a power
meter. The hysteresis loop of the optical bistable is shown in Figure 5b,d,f. The black points
represent the rising edge of the optical bistable, and the red points represent the falling
edge of the optical bistable.
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Figure 5. (a,c,e) The two waveforms displayed on the high-speed numerical oscilloscope. (b,d,f) The
hysteresis loops of the optical bistability realized by converting the electrical signal into the opti-
cal signal, low-threshold visible light optical bistability with light intensity of 267 KW/cm2 can
be obtained.
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The basic issue of optical bistable device is to achieve the switching threshold as low
as possible. In Figure 5b, the measured switching-up threshold for device with one layer of
graphene oxide is around 100 KW/cm2, while the switching-down threshold of the device
is around 540 KW/cm2. These switching threshold values are much less than those with
nonlinear graphene integrated between Bragg reflectors (around 10 GW/cm2) [18] or two
thin dielectric layers (several MW/cm2) [19]. This lower threshold value originates from
the enhanced nonlinear absorption of graphene film integrated in our designed asymmetric
nanocavity, which provides strong local field confinement, as shown in Figure 1c. In
addition, the threshold values can be further reduced via increasing the graphene oxide
thickness. The switching-up and switching-down threshold values are around 50 KW/cm2

and 414 KW/cm2, respectively, for three layers of graphene oxide integrated nanocavity as
shown in Figure 5d, while for six-layer of graphene oxide, the switching-down threshold
of the device is as low as 267 KW/cm2 and the switching-up threshold is only reduced to
around 40 KW/cm2 as shown in Figure 5e. This is mainly due to that more light can be
absorbed in the graphene oxide film in the nanocavity as the graphene oxide film thickness
increases as illustrated in Figure 1b. The device with six layers of graphene oxide film can
deliver a higher nonlinear absorption than that with only one layer of graphene oxide film,
leading to the required optical bistable threshold decreased, which match quite well with
the simulation results as illustrated in Figure 2. It can also be found that the graphene
oxide thickness has more influence on the switching-down threshold than the switching-up
threshold via the comparison of Figure 5b,d,e.

4. Conclusions

In conclusion, we have developed an optical bistability device by integrating graphene
oxide layers into the metal-dielectric-metal asymmetric nanocavity. The nonlinear ab-
sorption of the graphene oxide in the nanocavity can be enhanced, leading to the optical
bistability behavior at the wavelength of 532 nm demonstrated both by the simulation
and experiment. It can also be found that with the increase of the number of graphene
oxide layers, the required threshold for optical bistability decreased. For the first time, we
obtained low-threshold visible light optical bistability using graphene oxide as a nonlinear
material with a light intensity of 267 KW/cm2. The findings of this paper have important
implications for realizing optical storage, optical switches, and optical amplifiers under
low-threshold visible light conditions.
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