
r li A.in(i9<i.i 
.,,-. ,^ 3 Dish '̂-" '̂̂  
l"LA-10625-MS, Rev. ^ ^ S-Z^^Cy^ 

a e 0/Z3-JC 

Los Alamos National Laboratory is operated by the University of California for the United States Department of Energy under contract W-7405-ENG-36 

Low-Thrust Rocket Trajectories 

Los Alamos National Laboratory 
Los Alamos, New Mexico 87545 



DISCLAIMER 
 

This report was prepared as an account of work sponsored by an 
agency of the United States Government.  Neither the United States 
Government nor any agency Thereof, nor any of their employees, 
makes any warranty, express or implied, or assumes any legal 
liability or responsibility for the accuracy, completeness, or 
usefulness of any information, apparatus, product, or process 
disclosed, or represents that its use would not infringe privately 
owned rights.  Reference herein to any specific commercial product, 
process, or service by trade name, trademark, manufacturer, or 
otherwise does not necessarily constitute or imply its endorsement, 
recommendation, or favoring by the United States Government or any 
agency thereof.  The views and opinions of authors expressed herein 
do not necessarily state or reflect those of the United States 
Government or any agency thereof. 



DISCLAIMER 
 
Portions of this document may be illegible in 
electronic image products.  Images are produced 
from the best available original document. 
 



An AfTirmative Action/Equal Opportunity Employer 

4̂  

f 

This work was partially funded by the National Aeronautics and Space Administra-
tion. 

Edited by Hollie Sowerwine 

Composition by Peggy Atencio, Jerry Weber, and Bessie Vigil, Group IS-10 

DISCLAIMER 

This report was prepared as an account of work sponsored by an agency of the United States Government 
Neither the United States Government nor any agency thereof nor any of their employees, makes any 
warranty express or implied or assumes any legal liability or responsibility for the accuracy, completeness, 
or usefulness of any information apparatus product or process disclosed or represents that its use would 
not infringe privately owned rights Reference herein to any specific commercial product, process or service 
by trade name, trademark manufacturer or otherwise, does not necessarily constitute or imply its 
endorsement, recommendation or fas oring by the United States Government or any agency thereof The 
views and opinions of authors expressed herein do not necessarily state or reflect those of the United States 
Government or any agency thereof 



LA^-K)625-MS, Rev. 

UC-33 

issued: March 1987 

LA—10625-MS-Rev. 

DE87 006307 

Low-Thrust Rocket Trajectories 

Paul W. Keaton 

DISCLAIMER 

This report was prepared as an account of work sponsored by an agency of the United States 
Government. Neither the United States Government nor any agency thereof, nor any of their 
employees, makes any warranty, express or implied, or assumes any legal liability or responsi-
bility for the accuracy, completeness, or usefulness of any information, apparatus, product, or 
process disclosed, or represents that its use would not infringe privately owned rights. Refer-
ence herein to any specific commercial product, process, or service by trade name, trademark, 
manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recom-
mendation, or favoring by the United States Government or any agency thereof. The views 
and opinions of authors expressed herein do not necessarily state or reflect those of the 
United States Government or any agency thereof. 

illdii.ll ip 
Los Alamos National Laboratory 
Los Alamos, New Mexico 87545 

http://illdii.ll


LOW-THRUST ROCKET TRAJECTORIES 

Paul W. Keaton 

ABSTRACT 

The development of low-thrust propulsion systems to complement chemical propulsion 
systems will greatly enhance the evolution of future space programs. Two advantages of low-
thrust rockets are stressed: first, in a strong gravitational field, such as occurs near the 
Earth, freighter missions with low-thrust engines require one-tenth as much propellant as do 
chemical engines. Second, in a weak gravitational field, such as occurs in the region between 
Venus and Mars, low-thrust rockets are faster than chemical rockets with comparable 
propellant mass. 

The purpose here is to address the physics of low-thrust trajectories and to interpret the 
results with two simple models. Analytic analyses are used where possible—otherwise, the 
results of numerical calculations are presented in graphs. The author has attempted to make 
this a self-contained report. 

I. INTRODUCTION 

An evolutionary manned space program will need 
vehicles that can lift and lower large masses against 
gravitational forces. These large masses may include 
lunar regolith gathered for bulk radiation shielding 
and lowered to geosynchronous orbit (GEO),''^ ox-
ygen unlocked from the Moon's surface and trans-
ported to low-Earth-orbit (LEO),̂ "* water extracted 
from the moons of Mars and placed in caches at 
Lagrange stability points,'"''' and space stations con-
structed in LEO and lifted into outpost positions.'" 
Vehicles for these freighter missions must use 
propellant efficiently. 

The key parameter that affects the efficiency of 
rocket engines is the velocity at which the propellant 
is expelled from the ship.'^ Today's most efficient 
operational rocket propulsion system is the main 
engine of the U.S. space shuttle, which performs near 
its theoretical limits with an exhaust velocity of about 
4.5 km/s in vacuum. But even at that exhaust veloc-
ity it could take years to accumulate enough 
propellant in LEO for accomplishing some of the 
freighter missions listed above. 

A nuclear propulsion system called NERVA, de-
veloped in the 1960s, produced an Earth-tested ex-
haust velocity of 8.5 km/s.'*"^^ This large exhaust 
velocity reduces the propellant mass requirement to 
one-half or less of that needed with a chemical 
propulsion system. Both the shuttle-type and 
NERVA-type engines are based on the "impulse 
thrust" concept, which consists of producing large 
accelerations followed by extended coast times. 

An alternative to impulse-thrust propulsion is low-
thrust propulsion. A low-thrust propulsion system 
produces small, continuous accelerations, and the 
engines operate during most or all of the flight.'^-^^"^^ 
Contrasting the two systems conjures up the image of 
a speed boat versus a sail boat—each appropriate for 
certain types of missions. 

If we do not limit ourselves to impulse-thrust 
systems, we can choose from a wide range of tech-
nologies that open new and exciting possibilities. For 
example, electrical ion acceleration can produce large 
propellant velocities,- '̂"" photon emission suggests 
the ultimate in exhaust velocity,-'"'̂ ' and photon 
absorption indicates that, as with a sail boat, the 
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propellant need not be taken along. ̂ *'̂ * Other tech-
nologies, such as electromagnetic rail guns or mass 
drivers,'"'^'''" indicate that mere dirt (or ground-up 
empty fuel tanks) can be thrown away from the ship 
at velocities of 10 km/s to provide a rocket accelera-
tion. This technology would allow the traveler to go 
to a distant planet, moon, or asteroid and scoop up 
soil there as propellant for the return trip. Because of 
the associated high propellant velocity, all of these 
low-thrust systems are potentially more efficient and 
flexible than chemical engines could ever be. Low-
thrust propulsion systems must be considered when-
ever a growing space program of the future is being 
contemplated. 

In choosing a power source necessary for low-
thrust propulsion systems we can use diverse tech-
nologies. Solar cells produce up to 10 kW of elec-
tricity, although considerable improvement must be 
made if they are to perform in the 1- to 10-MWe 
range, as most of the freighter missions considered 
here will require.^" Microwave energy can be beamed 
to the ship from a separate power source."'"^ The high 
power density of fission nuclear reactors makes them 
practical and near-ideal for freighter missions"'"''* 
and, should fusion nuclear reactors prove feasible, 
fusion may be a future source of electrical power for 
low-thrust rockets."'"" The only real restriction for a 
flight-worthy power source is that it not be too 
massive for the amount of electrical power supplied. 
The mass-to-power ratio is called the specific mass of 
an electrical source. For the missions addressed in 
this report, a specific mass in the range of 0.05 to 
0.002 kilograms per watt will be suitable. 

So our prerequisites for a low-thrust propulsion 
system are a generic electrical power source activat-
ing a generic mechanism for expelling a generic 
propellant at velocities in excess of 10 km/s. For 
concreteness we will assume from time to time that 
the power source is a nuclear reactor producing 1 to 
10 MWe and having a specific mass of 0.01 kg/W, and 
that the thruster is an ion engine producing velocities 
of 10 to 100 km/s.'°"" This configuration is usually 
referred to as nuclear-electric propulsion (NEP). The 
results are quite general, however, and can be applied 
to numerous combinations of systems. 

There is no precise definition of "low-thrust" ac-
celeration. It is nearly always used to mean accelera-
tions that are small when compared to the gravita-
tional acceleration at the Earth's surface, as we do in 
this discussion. But also implicit in the use of the 
term is not so much a limit on the magnitude of the 
acceleration, but an assumption that the duration of 
the acceleration is a significant fraction of the dura-
fion of the flight. Thus, the trajectories may not trace 

simple Kepler orbits, and the conclusions sometimes 
do not agree with our preconceived notions. The 
purpose of this paper is to address the physics of low-
thrust rocket trajectories and to interpret the results 
by analogy with simple models. As illustrative exam-
ples, two specific missions are analyzed: lifting large 
masses from LEO, and traveling from Earth to Mars. 
The models used with these examples provide insight 
into the process and bolster our physical intuition 
about low-thrust acceleration trajectories. 

II. LOW-THRUST MISSIONS 

We begin by looking at some of the advantages that 
low-thrust propulsion has over conventional (shuttle 
engine) propulsion for specific missions. The results 
presented here are derived in Section V. 

First, suppose we wish to lift 500 tons (metric) 
from a circular 500-km-altitude orbit to a circular 
geosynchronous orbit that is 42 250 km from the 
center of the Earth. Assume that a plane angle change 
of 28.5° is required. We compare a low-thrust system 
with a conventional rocket system for carrying out 
this mission. 

For the conventional system, two velocity changes 
totaling AV = 4.2 km/s are required to lift the load 
from LEO and insert it into GEO. If we assume we 
have the "ideal" shuttle-derived rocket discussed in 
the Appendix, achieving this AV would require 900 
tons of oxygen and hydrogen. It would take about 8 
months to deliver that much fuel to LEO if heavy-lift-
launch-vehicles (HLLV) exist to deliver payloads at a 
rate of 100 tons per month. The payload could then 
be delivered to GEO in a few hours. The low-thrust 
system described in the Appendix would require 85 
tons of propellant, which could be delivered to LEO 
in one HLLV. The trip from LEO to GEO would then 
take 4 months. 

Thus, taking into account the time required to 
deliver the fuel from the Earth's surface to LEO, this 
mission can be accomplished by low-thrust 
propulsion in one-half the time and with one-tenth 
the propellant required for a conventional rocket 
system. Assuming that a heavy-lift-launch vehicle 
can be built to deliver a 100-ton payload from the 
Earth to a 500-km-altitude LEO at the rate of $100 
million per launch, a savings of $700 million in 
delivery costs can be realized by using low-thrust 
propulsion on this one mission. The reason low-
thrust propulsion compares so favorably with con-
ventional propulsion here is that we have chosen to 
address a classic "freighter" mission, for which low-
thrust is well suited. 
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This same comparison is illustrated in Fig. 1, 
where the areas of the rocket components are propor-
tional to the masses required. The payload mass is 
shown as a triangular-shaped nose cone, the 
propellant mass constitutes the rectangular-shaped 
main body of the rocket, and the remainder of the 
rocket mass (engines, tankage structures, reactor 
power source, shielding, guidance and control sys-
tems, etc.) is displayed as a trapezoidally-shaped 
rocket nozzle. The second stages in Fig. 1 are the 
mass configurations needed to move 500 tons from 
LEO to GEO. The first stages depict the total mass 
required to lift all of the second stage, including the 
payload and propulsion system, from Earth to LEO. 
The purpose of including the payload here is to 
demonstrate that, overall, NEP requires less than 
one-half as much lifting cost as do conventional 
propulsion systems for a single mission originating at 
the Earth. If the payload already exists in LEO, NEP 
lifting costs are one-tenth those of conventional sys-
tems. In either case, the lifting expense saved by using 
low-thrust propulsion for this mission is about the 
cost of seven Saturn V-class launchings. 

To illustrate another low-thrust mission, assume 
that we wish to deliver a 200-ton payload from LEO 
into a highly elliptical orbit around Mars. (This pay-
load could be either inert cargo or a manned Mars 

mission.) A typical Hohmann (least-energy) orbital 
transfer for conventional systems would require a 
total AV of 4.3 km/s. About 380 tons of propellant is 
needed in LEO (taking 3 months to deliver), and the 
trip to Mars will last 8.5 months. From the time when 
the first fuel reaches LEO until the rocket arrives at 
Mars, the total mission time is 11.5 months. Unlike 
the conventional system, the low-thrust system offers 
many options. In one scenario it would take 86 tons 
for the low-thrust rocket to leave LEO, spiral out 
from the Earth, and travel to Mars in 11.5 months. 
This scenario calls for 3 months to escape the Earth 
and 8.5 months for the Mars journey. If the payload 
is a manned mission instead of an unmanned 
freighter, the crew can use conventional rockets to 
rendezvous with the low-thrust ship just before it 
escapes from the Earth. The lift cost saving for this 
Mars mission is about three Saturn V-class 
launchings per 200-ton mission. 

More lifting expenses can be saved by increasing 
the mission time and decreasing the amount of 
propellant needed for the trip. This option is not 
available with impulse-thrust technologies. These 
and many other trade-offs are investigated in the 
remainder of the report. We turn now to the basic 
theory of low-thrust propulsion rockets. 

CHEMICAL 
2** STAGE 

• LEO TO GEO TRANSFERS, 28.5» 

• PAYLOADS = 500 TONS 

• NEP TRIP TIME = 4 MONTHS 

NEP 
2r* STAGE 

illllllllk, 

Fig. 1. Comparing chemical vs nuclear electnc propulsion for low-Earth-orbit to geosynchronous orbit transfers. 
The areas are proportional to the mass as explained in the text. 
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III. OPTIMIZING 
MISSIONS 

LOW-THRUST ROCKET 

A rocket ship of mass m at time t, located at a 
position r in an inertial frame that contains a gravita-
tional potential mU(r;t), is accelerated according to 

mf = —mVU(r;t) -l- ma (1) 

where each dot indicates a derivative with respect to 
time, ma is the ship's thrust, and V represents the 
gradient operator. The potential function U is as-
sumed to derive from planets that may be moving 
relative to the inertial frame; hence the explicit de-
pendence on time. 

The problem of optimizing low-thrust accelera-
tion programs, a(t), involves finding how to get a 
payload mass at point r, with velocity f„ to point fi 
with velocity fj, in a given time, with a given power 
source, and with the least amount of propellant mass. 
This places a very complicated set of restrictions both 
on hardware choices (i.e., how the rocket is designed) 
and on trajectory choices (i.e., how the rocket is 
steered). Fortunately, Irving^' has developed an 
elegant method for separating the rocket configura-
tion optimization from the thrust program optimiza-
tion. To make the present report self-contained, a 
sketch of Irving's general theory is given in the fol-
lowing paragraphs. 

A. Separating the Parts 

We assume that a rocket with mass m(t) has a 
power source that can deliver an amount of power 
P(t) to the exhaust material. The mass of the power 
supply is designated by m„. There will always be an 
upper limit on the maximum power that can be 
supplied, Pa, so that 

where ihp is the rate at which propellant mass 
changes, and m is the rate at which the rocket mass 
changes. 

The rocket thrust, F, is generated by the reaction 
of the rocket mass to the momentum being imparted 
to the expelled propellant. This causes a rocket ac-
celeration, a(t), given by 

a(t) = 
F(t) 

m(t) 

mc(t) 

m(t) 
(4) 

where rh is negative, and therefore the acceleration 
direction is opposite to that of the exhaust velocity. 

Equations 3 and 4 can be combined to eliminate 
the exhaust velocity, which may vary with time in 
both magnitude and direction. An exact differential 
for the inverse rocket mass is formed by setting 

a^(t) 

2P(t) 

1 

m 
~2 
m 

d 

dt {-:)• and 

m(0) 
-I-

•'o 

a\q)dq 

2P(q) 
(5) 

where m(0) = m„ the initial mass of the rocket, and 
the second equation is the integral of the first, with q 
as a dummy variable. The rocket is presumed to 
contain a payload mass m,,, a power supply mass m„, 
a propellant mass mp, and a structure mass m .̂ The 
initial mass of the rocket can then be written m, = m,, 
-I- m^ -I- mp -I- m ,̂ and after a mission time T when mp 
is expelled, the final rocket mass is m(T) = mf = m, — 
mp = ms 4- m„ + m .̂ Since the integrand in Eqs. 5 is 
nowhere negative, m, — mf = mp is made as small as 
possible for all acceleration values by always making 
P(t) as large as possible, namely, Pj. From Eqs. 2 and 
5 we find 

P(t) < Pa , and 

m„ = aPa , (2) 

where a is the specific mass of the power supply in 
kg/W. During a short time interval, At, the kinetic 
energy delivered to an increment of propellant mass, 
Afflp, is P(t)At = AmpC^(t)/2, where c(t) is the instan-
taneous exhaust velocity relative to the ship and 
power supply. We may then write 

P(t) = - mpc2(t) = 
1 

- mc2(t) (3) 

1 

mf 

1 

mf 

1 J 
- + - ; J 
m, Pa 

-I-
m, 

a2(t)dt , 

— ; Y' = - a2(t)dt 
mw 2 1 

(6) 

The dimensionless parameter y is the focus of this 
report. It will be shown that for a given y and payload 
mass, there is an optimum configuration of power 
supply mass and propellant mass. It has already been 
implied that the smaller we make y, the smaller will 
be the amount of propellant mass required for a 
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rocket to accomplish its mission. It follows that the 
smaller we make a, the less propellant mass we will 
need. These two points relate, of course, to the design 
of the rocket itself The value of y may be further 
reduced by choosing the optimum trajectory for the 
rocket to follow. The optimum trajectory is found by 
minimizing the integral, J, given in Eqs. 6. This 
process requires knowledge of the gravitational forces 
that the rocket will encounter throughout its mission. 
Minimizing J results in a specific acceleration pro-
gram, a(t), that must be followed by the rocket en-
gines. 

Because of its importance, it is worth mentioning 
early that y can usually be written as 

Av 
y = f — , 

V. 

(7) 

where AV relates to the velocity changes required for 
the mission, and V̂  is the characteristic velocity 
equal to (2T/a)'/^. For example, suppose that a 
particular mission requires a constant acceleration, 
ao, to minimize J, and hence y. The change in velocity 
in time T would be AV = aoT. Substituting these 
values into Eqs. 6 for y, we find that 

1/2 — 
(aoT)̂  (Av)2 

2T/a or 

Av 
y = (8) 

Comparing Eqs. 7 and 8, we see that f = 1 for this 
case. To carry the example further, going from low-
Earth-orbit to geosynchronous orbit on an optimum 
trajectory requires AV « 5 km/s and nearly constant 
acceleration for low-thrust rockets. If the power sup-
ply has a specific mass of a = 10 kg/kW = 0.01 kg/W, 
and we wish to make the trip in 1 month = 2.6 X 10* 
seconds, then the characteristic velocity is V̂ , = (2 X 
2.6 X lOVO.Ol)'/̂  = 23 km/s. From Eqs. 8 we see that 
y = 5/23 = 0.22 for this particular mission. In the 
next section we will use this number for y to optimize 
the configuration design of the rocket. 

Before proceeding, we note this important feature 
of low-thrust propulsion implied by Eqs. 8: even as 
the ship is about to embark on its journey, y can still 
be reduced by increasing the trip time, T, and hence 
the characteristic velocity, V .̂ This flexibility makes 
low-thrust propulsion ideal for reusable vehicles that 
may be called upon to make many different kinds of 
missions. 

B. Optimizing the Rocket Configuration 

Since the final mass of the rocket is mf = m,, -I- m̂  -I-
m^, we can manipulate Eqs. 6 into the form 

m{ -l- ms mf — m„ 

m, m, 

m« 

m, 

1 

mw/m, + r - ] • (9) 

which shows that meaningful values of y always lie 
between 0 and 1, because y > 1 would imply a 
negative payload. Equation 9 also shows that (m,, -I-
mj/m, is a function of m^/m, and reaches a max-
imum value for each fixed value of y. If we set the 
first derivative of Eq. 9 to zero, it is straightforward 
to show that maximum values of (mj -I- mj/m, occur 
when 

m„ 
m, 

mj -\- ms 

? 

-yf ,and 
m, 

mo 

m, 
(10) 

For the earlier example (a LEO to GEO transfer 
mission with y = 0.22), we see from Eqs. 10 that the 
optimum rocket ship configuration calls for m„/m, = 
0.17, (mt -I- mj/m, = 0.61, and mp/m, = 0.22. 

The Saturn V rocket was capable of placing about 
100 metric tons into LEO. Continuing the example, if 
two Saturn V-class payloads, 200 tons, were the 
payload plus structure mass that we want to send 
from LEO to GEO, then, from Eqs. 10, the rocket 
would have an initial mass of 200/0.61 = 328 metric 
tons. The power supply mass would be 56 tons, and 
the propellant mass would be 72 tons. Since a = 0.01 
kg/W, the power into the exhaust must be 5.6 MW. 
Suppose, instead, that we have available only a 3-
MW power supply with a mass of 30 tons. If we still 
want to deliver the 200 tons to GEO with an op-
timum configuration, Eqs. 10 can be solved for 
mj(m„ -I- mj = 30/200 to show that y will be 0.13. 
Using Eqs. 8 with AV = 5 km/s, we deduce that the 
characteristic velocity will be V̂ , = 39 km/s, which 
requires an increase of flight time from 1 month to 
2.9 months. Although we must pay the price of nearly 
tripling the mission time, we have at least gained the 
advantage that only 34 tons of propellant is now 
required to lift the 200-ton payload from LEO to 
GEO. These simple considerations serve to illustrate 
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how the optimum configuration for a low-thrust 
mission may be improvised with the hardware on 
hand. 

It will be important to find the exhaust velocity of 
the propellant once y is found and the problem is 
optimized. Using Eqs. 2, 3, 4, and 6, and the defini-
tion of the characteristic velocity, V„ 

c(t) Vc f mw a f' I 

V, 

a(t)T 
(11) 

where the second equality in Eqs. 11 assumes that 
mjm, has been optimized according to Eq. 9. Equa-
tions 11 are general so long as P(t) > 0 and a(t) > 0. 
Rocket engines are usually characterized by the speci-
fic impulse, Isp, which is the rocket thrust divided by 
the Earth weight of propellant expelled per second. 
From Eq. 4, 

ma 

mgo 

c(t) 

go 
(12) 

Notice from Eqs. 13 and 14 that in general, as the 
specific impulse increases, the thrust decreases. This 
is the answer to an apparent problem: If the a(t) 
program ever calls for zero acceleration, the specific 
impulse becomes infinite, which, of course, is im-
possible. Fortunately, zero acceleration is coupled to 
zero thrust, and one could accomplish the same effect 
by turning off the engines, i.e., by setting P(t) = 0 
instead of P(t) = Pa. This apparent problem arises 
because we have made accommodations for the fact 
that power will always have some upper limit without 
taking in to c o n s i d e r a t i o n the fact t h a t 
specific impulse (or exhaust velocity) will also always 
have some upper limit. For present purposes, as a 
practical matter, we can replace high specific impulse 
portions of the missions with coast times and suffer 
litUe penalty in the value of y. 

It is clear that y plays an important role in all 
aspects of low-thrust rocket design. Note that in 
Eqs. 10 the optimum value of y equals the ratio of mp 
to m„ and in Eq. 7 y equals f AV/V^. Thus, y can be 
envisioned as an intermediate parameter relating the 
characteristics of a particular mission to the mass of 
propellant needed to accomplish that mission. We 
turn next to the problem of minimizing y by finding 
the optimum trajectory for a given mission. 

where the Earth's gravitational acceleration is go = 
9.8 m/s^ and Î p has units of seconds. It follows from 
Eqs. 11 and 12 that specific impulse for our low-
thrust propulsion system is given by 

Ut) = 

C. Optimizing the Acceleration Program 

The entire history of the acceleration program is 
contained in the integral, J: 

goa(t)T 
| , _ [ , . _ | | , . ( , ) d q ] | . (13) j = lf i,2 

Similarly, since the thrust, F(t), is given by m(t)a(t), 
we can show that 

F(t) 

m, 

[y-Y']a(t) 

{ y - [ y - l r a ^ ( q ) d q ] | 
, (14) 

for an optimally configured rocket design. In the 1-
month LEO to GEO example discussed above, the 
optimum specific impulse starts at Isp(O) = 1830 
seconds and increases linearly to Isp(T) = 2350 
seconds; the optimum thrust starts at F(0) = 628 
newtons (141 lb) and decreases monotonically to 
F(T) = 492newtons ( l l l l b ) . 

T 3 

J = - I Z a? (t) dt , 
•0 •=' 

(15) 

where the ai are cartesian components of a in the 
inertial frame of reference. Using standard calculus of 
variations techniques, an extremum of J may be 
found by setting its first variation, 8J, to zero: 

8J= S a ,5a ,dt= 0 , but 
Jn '=1 

d \ dU 
a, = --r H , so 

dt^ d\. 

d^5x, ^ 
8a, = —;-+ 1 

d^\J 

dt^ j=i 5xj dx, 
8xj , (16) 
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where Eq. 1 has been used to obtain the second of Eqs. 
16. The term in 8a, that contains the second deriva-
tive with respect to time may be integrated by parts, 
so that it can be shown that 

a,8a,dt= \ + X a, [8x,dt 
Jo Jo I dt^ j=, ' dx, ax, J 

The last two terms vanish when the initial position 
and velocity and the final position and velocity are 
specified, because the end points of the integral 
would then be fixed. If some of the end points are 
unspecified, additional restraints known as trans-
versality conditions are imposed on 8J. These 
restraints can be found by equating to zero the terms 
multiplying the variation of the unspecified 
parameters at the appropriate end points. For exam-
ple, in a one-dimensional problem given in Section 
IV, the initial position and the initial and final 
velocities are specified (making 8x = 0 at t = 0 and t = 
T in Eq. 17), but the final position is not specified (so 
that 8x = 0 at t = 0, but not necessarily at t = T). As 
can be seen from the last term on the right side of Eq. 
17, this lack of specificity imposes on the solution a 
transversality condition, namely that a(T) = 0. 

Whether or not transversality conditions are im-
posed, the Euler equations for â  must be satisfied for 
an extremum of J. These equations follow from Eq. 
17 and are 

d̂ a, i, d^V 
:n+ ^ aj = 0 . (18) 
dt^ j=i ' dx,dx, 

Equations 1 and 18 govern the optimum trajectory of 
a rocket ship under the influence of a potential, U. 
They may be written 

r+VV (r;t) = a (t) , and 

k + a • V[VU(r;t)] = 0 , (19) 

which in three dimensions represents six second-
order differential equations that must be satisfied 
simultaneously for a particular mission profile and 
acceleration program. Twelve boundary conditions 
are required to eliminate ambiguities. These can be 

supplied by specifying the three components each of 
r(0), f(0), r(T), and f(T). 

IV. MODEL PROBLEMS 

We turn now to two simple one-dimensional prob-
lems that have characteristics surprisingly similar to 
those of LEO to GEO missions and Earth to Mars 
missions. Both models assume that no gravitational 
fields exist, namely that U(r;t) = 0.̂ '̂̂ ' From Eqs. 19 
the differential equations in one dimension become 

a = 0 ; a(t) = b, t -h bj , 

f = a ; r(t) = - b, t̂  + - b2t̂  + bat + b4 , and 
6 2 

J = I [b,̂  TV3 + b,T b2 + b2̂ ] , (20) 

where b,, b2, bj, and b4 are constants to be determined 
by the boundary values of the model problems being 
addressed. 

A. LEO to GEO Model (Constant Acceleration) 

We are interested here in the acceleration program, 
a(t), that will allow a low-thrust rocket ship to achieve 
a predetermined velocity, Vj, in a time, T, with the 
least value of ŷ  = cJ. Because we are not concerned 
with how far the rocket must travel before it reaches 
V,, the final position, rj, is not specified. The bound-
ary values are r(0) = 0, f(0) = 0, and f(T) = v,; and 
since r(T) is not given, we have the transversality 
condition that a(T) = 0 (see Eq. 17). Equations 19 
show that a(t) = b,t + b2, but since a(T) = 0 we see 
that bi = 0. (The reader may wish to verify that bi = 0 
directly by restricting a(t) to all linear curves that will 
result in a velocity v, in a time T. This restriction 
produces a relationship between bi and bj. Then, 
substituting a(t) into J, one sees that J is a minimum 
for b, = 0.) It follows that Eqs. 20 become 

a(t) = b2 = constant , 

1 
r(t) = - bjt^ ; f ( t ) = V, = b2T , 

1 
J = - b2̂ T = ViV(2T) , and 
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ŷ  = aJ 
L2T/aJ VVc/ 

(21) 

The thrust program for this model problem is shown 
in Fig. 2. We have obtained the same result as that 
given in Eqs. 8 with AV = v,. Notice also that J « 
(AV)VT. Similarities between this simple model and 
the problem of a low-thrust rocket spiraling out from 
a massive planet are shown in Section V. 

B. Earth to Mars Model (Ramp Acceleration) 

where V2 = 38/(2T) is the integral of the acceleration 
over time from t = 0 to t = T/2, namely, the ship's 
velocity halfway through the trip. Notice in Fig. 3 
that the rocket has a large acceleration at first. As the 
velocity of the ship increases, the acceleration falls to 
zero at r(T/2) = C/2, where the velocity reaches the 
maximum value of V2. The rocket then turns around 
and decelerates, coming to rest at t = T and r(T) = {. 
The total change in velocity is AV = 2v2, so that 

ŷ  = 
24aC2 

J3 

4 (Av)̂  

3 'wj 
, and 

We are interested here in a ship that begins at rest 
in free space, then moves straight toward a 
predetermined point and comes to rest there. The 
boundary values are r(0) = 0, f(0) = 0, r(T) = C, and 
f(T) = 0, where £ is the distance the ship travels in a 
time T. Substituting these boundary values for r(t) 
and f(t) in Eqs. 20, we find that b4 = 0, bj = 0, bj = 
6$/T^ and b, = — 12C/T\ The acceleration follows a 
negative ramp function. 

a(t) 

or 

(22) 

Av 
y = f -

V. 
f = 

\/3 • 
(23) 

Bear in mind that J = yVa «; 9.^/T^. Similarities 
between this model and the problem of a low-thrust 
rocket traveling from one planet to another under the 
relatively weak gravitational field of the Sun are 
taken up in Section V-B. 

V. EQUATIONS OF MOTION 

We have established the formalism for very gen-
eral gravitational potentials, but we restrict ourselves 

z 
o 
< 
a: 
u 
• J 

u 

u 
< 

TIME 

Fig. 2. Optimum acceleration program for obtaining a 
predetermined velocity in a given time with the least 
propellant. 

o 

< 
OS 
U 
~1 
M 
U 
U 
< 

TIME 

Fig. 3. Optimum acceleration program for traveling from 
one point to another point in a given time with the least 
propellant. 

8 



now to a plane with a central inverse square force 
having the potential 

A. Spiraling Out from the Earth 

U(r) = (24) 

where l̂ = GM, G = 6.67 X 10"" N • mVkg^ is the 
universal gravitational constant in mks units, and 
M = 5.98 XlO^" kg is the mass of the Earth, or M = 
1.99 X 10 °̂ kg is the mass of the Sun. Substituting Eq. 
24 into Eq. 1, we have 

r + r = a (25) 

where VU = (|a/r^)r. Operating on Eq. 25 from the left 
first with the vector cross product, r X, and then with 
the vector inner product, r •, we find two other 
equations of motion, namely, 

dh 

'dt 
• = r x a h = r x f = r2 9k , and 

Consider a rocket in a low circular orbit about the 
Earth. If a low-thust acceleration is directed generally 
along the circular velocity, the ship will increase in 
velocity for a short inital period; then, because of its 
acceleration, the ship will steadily increase its radial 
distance, r, from the center of the Earth. As r in-
creases, the ship will maintain a circumferential ve-
locity almost equal to the circular velocity for its 
current value of r. That is, if at some later time the 
engines are turned off, the rocket will proceed to orbit 
at that particular radius in a near circle. Even though 
the ship is in the presence of the very strong gravita-
tional acceleration of the Earth (g = 9.8 m/s^), the 
effect of the ship's centripetal acceleration balances 
the Earth's pull, so an acceleration, a(t), that may be 
10" g will have a profound influence on the rocket's 
trajectory. In this way, a low-thust rocket can change 
from one circular orbit to another in a smooth, 
deliberate spiral.^*"'^" 

The condition necessary for a circular orbit at 
some radius, r, is 

dE 

dT = r 
1 li 

2 r 
(26) 

respectively, where the ship velocity is f = v; the 
angular momentum, h, is directed along the unit 
vector, k (along rXv); and the total energy, E, has a 
kinetic energy term and a gravitational potential 
energy term. 

In polar coordinates, if = (i" — r0^)r + (2f 9 -I- r0)0 = (f 
— hVr^)r + (h/r)0, where f is a unit vector pointing 
along r, and 0 is a unit vector pointing along k X f. 
The components of the equations of motion in Eqs. 
25 and 26 can now be written 

h^ 

? * ' = ; 5 - 3 + a. , and 

2 _ ^ 

v e ' = -
r 

(28) 

where Ve is the circumferential velocity. We note that 
the rocket velocity decreases as the rocket spirals 
outward, even though the ship has a forward thrust. 
As a practical upper limit, when the ship reaches r = 
150 Earth radii it will be beyond the Earth's sphere of 
influence, and the Sun will dominate the ship's trajec-
tory. For most reasonable acceleration programs, the 
rocket will break out of its spiral and escape from the 
Earth's gravitational field before such a large radius is 
achieved. 

To devise an analytical description of this spiraling 
process, we begin with Eqs. 27 but make the assump-
tion that Ve so nearly satisfies the circular orbit 
velocity relations, Eq. 28, that h^r^ = |A/I^, and, since 
h becomes (nr)"^, the equations can be written 

rae rve (27) r = ar , 

where a, and ae are the radial and circumferential 
components of the thrust acceleration, a, pointing 
along f and 0 , respectively. With these equations of 
motion, we can now address applications for low-
thust rocket propulsion. 

H'/2f 

2P^ 
= ae = -ve , and 

r = 
6r2 ae^ 2T^'^ 

+ • 
,1/2 ae (29) 
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where the final equation indicates that a, and ae are 
no longer independent of each other because we want 
to maintain circular velocity at every distance from 
the massive center. To estimate the order of magni-
tude of a, we note that a mission is characterized by 
some AV = SeT, where ae is the average circumferen-
tial acceleration, and T is the trip time. We expect 
that a ~ Se/T = SL^^/AV, where AV is fixed by the 
mission. We can then estimate that ae ~ C'(aê ), where 
the C(x) symbol indicates the same order of magni-
tude as X. It follows that ae ~ C'(ae'); and using Eqs. 
29, a, ~ 0{a/), a, ~ ^(ae^); and a, ~ CJ{a,'). 

We can now calculate the ship's thrust accelera-
tion, as, and spatial acceleration, s, along a spiral 
path, s. Since ae and a, are at right angles to each 
other, as are Ve and f, we have 

li'l = s = [ve' + f T^ , and 

|a| = [aê  + a , T ' = as • (30) 

But from Eqs. 29, Ve = — ae and f = a„ so that s = —â . 
The minus sign here indicates that the ship velocity 
decreases for positive values of â . We thus arrive at 
the equations of motion for the rocket's optimum 
path along s, namely, 

s = —as , and 

= 0 , for a e « g o • (31) 

But these equations are like the one-dimensional Eqs. 
20. The initial position and velocity are specified, 
and when the final velocity is specified but not the 
final position, the same theoretical analysis that led 
to the model problem in Eqs. 21 shows that J is 
optimized when as is a constant. This important 
conclusion, that the optimum acceleration is a con-
stant, allows us to make a simple analysis. But before 
proceeding, we look at three other details to simplify 
the analysis further. 

First, it can be shown that the optimum thrust 
should be pointed between the direction of the ship 
velocity, s, and the direction of (r x s) X r during most 
of the trip. We label the angle between these two 
directions 8 (see Fig. 4), which is given by 

Fig. 4. Tangential thrust for a spiral orbit. 

If the ship is to escape from the Earth's gravitational 
field, the thrust will be pointed more along s during 
the last few revolutions. Because the flight path angle 
is small during the first part of the journey (8 « 2 
Ss/g), little error is introduced by assuming that s and 
as are pointing in the same direction throughout the 
trip. This is referred to as tangential thrust because 
the ship's acceleration is directed at a tangent to its 
trajectory in the inertial frame. 

Second, we will assume that the circumferential 
velocity is equal to the circular velocity throughout 
the trip. Mathematically, this assumption leads to a 
restriction on 8 for the last revolution of circular 
orbital transfers. But even for achieving escape veloc-
ity, where we will deduce that 8 = 45°, the outcome is 
very near to the optimum results of calculations by 
numerical methods. Finally, note that at any point 
along the trajectory, s, ŝ  = Vê  -I- F, which can be 
written as a function of r using Eqs. 29, so that 

s = —ast -I- vo 

asT = Vo-Sf=Av (33) 

where Sf is the velocity of the ship at the final radius, 
rf, and the trip is started from a circular orbit of radius 
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ro, with Ve (ro) = Vo = (n/r) ' ' l Using the geometrically 
derived relation that r(d0/dr) = 1/tan 8, we find the 
polar angle of the ship to be 

-A 8 - 8 0 + 
1 1 

tan 80 tan 8 
(34) 

where 80 = 8(ro), and 0(ro) = 0. To compare these 
analytical results with numerical calculations, we 
look at the polar coordinates for escaping the Earth's 
gravitational field at r = r̂ sc> ̂  = êsc. in a time t = T ŝ,. 
with y = ŷ sc- The ship's energy starts with a negative 
value and increases until it reaches zero at escape, 
when Sesc = 2\i/T^^, but since we require that Vê  = |i/r 
everywhere, f^^ must also be n/r^sc and 8esc = arctan 
(f/ve) = 45°. (Fully optimized trajectories typically 
give 8esc « 39°.) It follows from Eqs. 31-34 that by 
starting at r = r̂  with as<:go, 

asTesc = Av ; Av = Vo - V(resc) , 

(zy= 
go 

2'/^ as ' 

Av 
— , and 

go 

4as 
N = 

"esc 

271" 
(35) 

TABLE 1. 

as/go<^' 

0.005 A 
B 

0.001 A 
B 

0.0001 A 
B 

Low-Thrust Escape From Leo'" 

Nesc 

8.1 
8.0 

40 
40 

399 
398 

Tesc/ro 

12.5 
11.9 

28 
27 

87 
84 

T (3) •esc 

1.6 
1.2 

8.8 
7.3 

93 
94 

Yesc 

1.2W 
LOW 

0.55 
0.50 

0.18 
0.17 

"* Assumed values: 
a = 0.01 kg/W, go = 8.9 m/s^ ro = 6691 km, and 
Vo = 7.72 km/s. 

'̂ * Data Set A comes from Irving;^' Data Set B shows 
present analytical results. 

<'* Escape time in days. 
(4) y > J i5 nonphysical; a < 0.01 is required. 

a plane change of 28.5°, AV becomes 5.85 km/s. The 
calculations can now be done in the same way as 
those of the model problem for constant thrust. 

The results of Eqs. 33 and 35 are shown in Figs. 5 
and 6 for lifting payloads near Earth and Mars, 
respectively. The assumed value of a is 0.01, so for 
other values of a we multiply the indicated gammas 
by 1 Oa"^. Except for ŷ sc, all trajectories plotted have 8 
< 15°. The specific impulse, Isp(T), for constant ac-
celeration depends only on a and T. Therefore, the 
given values of Isp(T) are the same for all missions 
shown in Figs. 5 and 6, since the missions have the 
same value of a. 

where N ŝc is the number of revolutions that the ship 
makes before escape. Equations 35 are compared in 
Table I with numerically obtained values from Ref 
23. In Table I, ro is the Earth's mean radius (6371 km) 
plus 320 km altitude, go is 8.9 m/s^ at ro, and VQ is 7.72 
km/s at ro. This table shows that the analytic analysis 
is quite adequate for making estimates of y when aJgQ 

< 0.005. 

The formulas in this analysis are reversible—the 
calculations for the outward journey also hold for 
spiraling inward on the return trip. For simple orbital 
transfer, say from a 500-km-altitude LEO to a 35 860-' 
km-altitude GEO, the circular orbital velocities are 
7.617 km/s and 3.072 km/s, respectively. So the AV 
transfer velocity is 4.545 km/s if no orbital plane 
change is made. If there is to be a plane angular 
change of cp, AV accordingly can be changed to ' ' AV = 
[v,^ + Vĵ  — 2 V1V2 cos (7tcp/2)]"^, where v, and Vj are 
the beginning and final circular orbital velocities. For 

B. Traveling from Earth to Mars 

In Section V-A, the problem could be treated 
analytically because the Earth's gravitational ac-
celeration is go ~ 9 m/s^ at 320 km LEO, and typical 
low-thrust accelerations are a/go ^ 0.001. Therefore, 
terms of the same order of magnitude as (a/go)' could 
be neglected. However, the corresponding value of 
the Sun's gravitational acceleration at one 
astronomical unit (mean distance of the Earth from 
the Sun) is g, = 5.9 X 10"' m/s^ so that a/go « 1. (For 
a/go ~ 0.01, a trip time of 3 years would be required 
for travel from Earth to Mars, since AV = 5.65 km/s 
for that mission.) Therefore, numerical integration of 
the equations of motion (Eqs.27) must be made in 
such a way that the integral J is minimized.^'"'* One 
could use the set of six Eqs. 19 for optimizing a^ and 
ae, but a more direct way was devised by Saltzer and 
Fetheroff." They have used a gradient method of 
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steepest descent to minimize J, thereby finding op-
timum thrust programs, a(t), for power-limited low-
thrust propulsion systems. Their method was 
adapted to the present problem of interplanetary 
transfer, and the results are given in this section. 

Figure 7 plots values of y for Earth to Mars 
missions as a function of Mars' angle from its 
penhelion, v, at the time of rendezvous. (Again, a is 
taken to be 0.01.) Mars and Earth are assumed to be 
in the same plane, and the eccentricity of Earth's 
orbit IS set to zero. The errors introduced with these 
assumptions are negligible for our purposes." The 
radial and circumferential velocities of Mars for 
given values of r and v were determined as end-point 
parameters by the computer program. Figure 7 shows 
that, as reported by Saltzer and Fetheroflf, the mini-
mum values of y do not occur at Mars' penhelion. In 
fact, they are a function of the tnp time. The dashed 
lines in Fig. 7 show the values of y that are obtained 
when Mars is assumed to have a circular orbit. This 
assumption is now made so that the remaining analy-

sis will be specific and easy for the reader to 
reproduce. 

Figure 8 shows values of y for Earth-Mars missions 
as a function of trip time. The two distinct slopes of y 
in the log-log plot indicate a dependence on different 
powers of T for y < 1 year and y >1 year. This 
suggests a combination of the constant acceleration 
and the ramp acceleration models In the radial 
direction alone, notice that the rocket starts with zero 
radial velocity at the Earth's orbit, accelerates to 
some radial velocity between Earth and Mars, and 
then comes to rest (radially) at Mars' orbit. The ship 
has traveled a radial distance equal to the difference 
of Earth's and Mars' circular radii, namely C = 77.4 
X 10* km. The value of J, according to the ramp 
acceleration model in Eqs. 23, is Ĵ  = 6fiVT'. Along 
the circumferential direction, we assume that the ship 
starts at Earth's orbit with an orbital velocity of 29 78 
km/s and travels at constant circular acceleration 
until it reaches Mars with an orbital velocity of 
24.18 km/s, undergoing a change in orbital velocity 

0.01 

f • - • - • 1 

• • | 4 MONTHS 1 ^ 

ELLIPSE VITH ACTUAL PARAMETERS 

•— CIRCLE WITH AVERAGE PARAMETERS 

0 60 120 180 240 300 360 

MARS TRUE ANOMALY AT RENDEZVOUS (degrees) 

Fig. 7. Values of y vs v are given for an Earth-to-Mars mission The time anomaly, v, is the angle of Mars as measured 
from its penhelion in a heliocentnc coordinate system The actual orbital parameters of Mars were used to determine 
the solid curves, and a circular orbit was assumed for the orbit of Mars to determine the dashed lines The values of y 
were calculated for tnp times of 4, 6, and 12 months 
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of AV = 5.6 km/s. The corresponding value of J, 
according to the constant acceleration model of Eqs. 
21, is Je = (AV)V(2T). Since a, and ae are orthogonal, 
we find 

= ^ / ( a . 
•'0 

60.^ (Av)2 y2 
2 + ae^)dt= — + A-— = -

T' 2T a 
(36) 

These values of y are plotted in Fig. 8 as dashed lines. 
Note that although the model is crude, it contains no 
free parameters and gives the general trends and 
magnitudes of y. 

Figure 9 compares the actual vs model dependence 
of a, and ag for an Earth-Mars mission time of 4 
months. The negative ramp feature of â  is 
reproduced by the model, whereas the roughly para-
bolic nature of ae is not reproduced at all, since the 
model yields ae = constant. For completeness. Fig. 10 
shows the thrust and specific impulse required to 
carry out the 4-month Earth-Mars mission. The cor-
responding model values are also plotted as dashed 
curves. 

When calculating the integral J for a compound 
trip, such as escaping from Earth, traveling to Mars, 

and getting captured in an orbit around Mars, one 
should add the separate values of oJ as one would the 
various segments of any integral. Because ŷ  = cJ, the 
total y for a compound mission is the square root of 
the sum of the squares of the separate gammas for 
each leg of the trip. However, if additional velocity is 
added, as might come from gravitational assists, the 
different boundary values must be matched for the 
vanous components of a compound mission. For 
example, a velocity increase of between 1 and 2 km/s 
can be realized in a lunar gravitational assist," '" and 
that should provide a significant propellant mass 
saving for an Earth to Mars mission. This potential 
saving IS the object of present investigations at Los 
Alamos. 

VI. CONCLUSIONS 

Two important advantages of low-thrust 
propulsion must be kept in mind: First, in a strong 
gravitational field, such as occurs near the Earth, 
freighter missions with nuclear electric propulsion 
(NEP) require one-tenth as much propellant as do 
conventional chemical engines. And, although the 
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actual flight time is much longer for NEP, the total 
mission duration may be comparable because of the 
time needed to accumulate the additional propellant 
in LEO for chemical rockets. Second, in a weak 
gravitational field, such as occurs at one 
astronomical unit from the Sun, missions with NEP 
are actually faster than chemical missions with com-
parable propellant mass. For example, starting from 
LEO, a chemical rocket can leave the vicinity of the 
Earth in a day and travel to Mars in 8.5 months. If the 
ratio of propellant mass to payload mass is kept the 
same, an NEP rocket can leave the vicinity of the 
Earth in 2 months and travel to Mars in 5.7 months. 
This shortening of the transit time by nearly 3 
months will be important for manned missions to 
Mars. 

A successful evolutionary space program must 
have efficient transportation vehicles in the support-
ing infrastructure. For flexibility and the promotion 
of growth, hybrid rockets combining propulsion sys-
tem concepts may be the best vehicles. Low-thrust 
propulsion systems are excellent alternatives to im-
pulse-thrust propulsion systems for unmanned 
freighter missions in space. Specific examples of low-
thrust propulsion, such as NEP, often promise su-
perior performance when compared with the best 

chemical engine that exists. But impulse-thrust rock-
ets are best for whisking people from LEO through 
the Earth's radiation belts and beyond. People might 
use small chemical rockets to rendezvous with larger 
NEP rockets near the fringes of the Earth's potential 
well. A comprehensive space outlook will include 
both types of rockets. 
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APPENDIX 

We convey relevant technical information here to 
support the numbers used for specific examples given 
in the text. First, we develop numbers for an "ideal" 
HLLV. 

For a perspective, we note that the Saturn V rocket 
weighed 3000 metric tons on the launch pad and was 
capable of delivering more than 100 tons to LEO. 
From there, it could deliver 50 tons to an orbit 
around the Moon. The first stage of the Saturn V used 
kerosene and oxygen for fuel, but the second stage 
used hydrogen and oxygen in a J2 engine—the 
predecessor of the main shuttle engine. In a vacuum, 
the exhaust velocity of the main shuttle engine is 4.5 
km/s, giving Î p = 460 s. The structure and engines of 
the Saturn V second stage weighed about 10% as 
much as the fuel it carried. This is called the tankage 
fraction, k, and is the number we use to compare a 
shuttle-derived orbital transfer vehicle (OTV) with 
low-thrust propulsion. Futhermore, the mass ratio, 
the initial rocket mass to the final rocket mass in 
LEO, was about 16 to 1 for the Saturn V using two 
stages. These numbers are approximate, but we can 
use them to describe an "ideal" shuttle-derived 
HLLV . We will assume that a Saturn V-class HLLV 
exists that can deliver 100 tons into a 500-km-
altitude LEO with a mass ratio of 11 to 1 and a 
tankage fraction of 10%. Thus, about 900 tons of fuel 
is required at the Earth's surface to deliver a 100-ton 
payload to LEO. We will assume that an HLLV can 
be launched every month. These are optimistic 
numbers, even for some future HLLV based on 
shuttle technology. However, the numbers serve the 
purpose of giving conventional propulsion systems 
every benefit of the doubt so that low-thrust 
propulsion is not unduly favored in our comparisons. 

It has been stressed that there are many ways to 
configure a low-thrust propulsion rocket. But to 
make comparisons, a particular configuration, that of 
an NEP rocket, was chosen. Today, no space-ready 
nuclear reactor of the megawatt-electric class is 
known to exist. The SP-100 space reactor is being 
planned to produce 300 kW^ with a total mass of 
about 10 tons, giving a specific mass of a = 0.03 
kg/W. An economy of scale for larger reactors pro-
jects values of a between 0.008 and 0.002 for the 1- to 
10-MWg range, as shown in a recent review by 
Jones."" Adequate shielding, heat rejection 
mechanisms, electric conversion systems, and power 
losses can double the effective specific mass of a 
nuclear reactor. We will assume that multimegawatt 
reactors exist with a value of a = 0.01 kg/W and that 

this number absorbs all associated masses and ineffi-
ciencies in the system. The long-term outlook for ion 
engines is optimistic.'"''^'^^ Thrusters have been built 
with specific impulses of 1000 to 5000 s, and these are 
adequate for the missions considered in this report. 
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