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Low-Variance Multitaper MFCC Features:

a Case Study in Robust Speaker Verification
Tomi Kinnunen, Rahim Saeidi, Member, IEEE, Filip Sedlák, Kong Aik Lee, Johan Sandberg,

Maria Hansson-Sandsten, Member, IEEE, and Haizhou Li, Senior Member, IEEE

Abstract—In speech and audio applications, short-term signal
spectrum is often represented using mel-frequency cepstral co-
efficients (MFCCs) computed from a windowed discrete Fourier
transform (DFT). Windowing reduces spectral leakage but vari-
ance of the spectrum estimate remains high. An elegant extension
to windowed DFT is the so-called multitaper method which
uses multiple time-domain windows (tapers) with frequency-
domain averaging. Multitapers have received little attention
in speech processing even though they produce low-variance
features. In this paper, we propose the multitaper method for
MFCC extraction with a practical focus. We provide, firstly,
detailed statistical analysis of MFCC bias and variance using
autoregressive process simulations on the TIMIT corpus. For
speaker verification experiments on the NIST 2002 and 2008
SRE corpora, we consider three Gaussian mixture model based
classifiers with universal background model (GMM-UBM), sup-
port vector machine (GMM-SVM) and joint factor analysis
(GMM-JFA). Multitapers improve MinDCF over the baseline
windowed DFT by relative 20.4 % (GMM-SVM) and 13.7 %
(GMM-JFA) on the interview-interview condition in NIST 2008.
The GMM-JFA system further reduces MinDCF by 18.7 %
on the telephone data. With these improvements and generally
noncritical parameter selection, multitaper MFCCs are a viable
candidate for replacing the conventional MFCCs.

Index Terms—Mel-frequency cepstral coefficient (MFCC),
multitaper, speaker verification, small-variance estimation

I. INTRODUCTION

FEATURE EXTRACTION is the key function of a speech

processing front-end. Spectral features computed from

the windowed discrete Fourier transform (DFT) [1] or linear

prediction (LP) models [2] are used in most of the front-

ends. The DFT and LP models perform reasonably well under

clean conditions but recognition accuracy degrades severely

under changes in environment and channel since the short-

term spectrum is subjected to many harmful variations. In
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this paper, we focus on one of the most successful tech-

niques, the mel-frequency cepstral coefficients (MFCCs), that

were introduced three decades ago [3] and are extensively

used in speaker and language recognition, automatic speech

recognition, emotion classification, audio indexing and, with

certain modifications, even in speech synthesis and conversion

applications. There is no doubt that the way we derive MFCC

features has great impact on the performance of many speech

processing applications.

There have been many attempts to enhance the robustness

of MFCC features. Several techniques have demonstrated

effective ways to normalize the MFCC features by using

the statistics of the MFCC temporal trajectory. For exam-

ple, cepstral mean and variance normalization (CMVN) [4],

RASTA filtering [5], temporal structure normalization [6],

feature warping [7], and MVA processing [8] are commonly

used for enhancing MFCC robustness against additive noises

and channel distortions. The specific configuration and order

of chaining them depends, however, on the target application.

Such techniques obtain the statistics either from the run-time

signals themselves or from some training data. Therefore, they

require either delayed processing or off-line modeling. In this

paper, we would like to study a new way to derive MFCC

features, with which we reduce the MFCC estimation variance

without relying on any statistics beyond a speech frame.

From a statistical point of view, the common MFCC imple-

mentation based on windowed DFT is suboptimal due to high

variance of the spectrum estimate [10]. To elaborate on this,

imagine that, for every short-term speech frame there exists

an underlying random process which generates that particular

frame; an example would be an autoregressive (AR) process

driven with random inputs but with fixed coefficients. For

speech signals, we imagine that there exists a speaker- and

phoneme-dependent vocal tract configuration from which the

actual speech sounds are generated from. A spectrum estimator

with high variance then implies that, for the same underlying

random process (e.g., two non-overlapping parts of the very

same vowel sound), the estimated spectra and MFCCs may

vary considerably.

In speaker verification [11], uncertainty in features is mod-

eled by the variances in the Gaussian mixture models (GMMs)

[12] and, recently, by subspace models of speaker and session

variabilities in a supervector space [13]–[19]. However, if the

MFCCs themselves are estimated with smaller variance, one

should expect the subsequent speaker and session variability

models to exhibit less random variation as well. Using low-

variance spectrum estimators has already been demonstrated to
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Fig. 1. Multitaper method uses multiple windows (tapers) leading to different subspectra, whose weighted average forms the spectrum estimate and leads to
robust MFCCs. For visualization, spectra are shown in dB scale but computations are based on linear values. The tapers are from the SWCE method [9].

enhance performances of voice activity detection (VAD) [20],

[21], speech enhancement [22] and speech recognition [23],

to give a few examples.

The particular small-variance method adopted in this paper

is based on multitapers, as illustrated in Fig. 1. The multitaper

method [24]–[27], as a simple and elegant extension of the

conventional windowed DFT, uses multiple window functions

(aka tapers) with weighted frequency-domain averaging to

form the spectrum estimate [24], [25], [27]. The tapers are de-

signed to give approximately uncorrelated spectrum estimates

so that averaging them reduces the variance. More specifically,

the side-lobe leakage effect in the conventional windowed DFT

is partially suppressed by multitapering [28], [29]. The well-

known Welch’s method [30] is a special case of the multitaper

technique with identically shaped but time-shifted tapers.

Thus, in Welch’s method, the subspectra are uncorrelated

because they are computed from different segments. The mul-

titapers applied in this paper, in contrast, are fully overlapping

in time but their shapes are designed so that they have only

small overlap in frequency domain [10], [24]. Conceptually,

multitapering also shares some similarity with smoothing the

DFT estimate using frequency-domain convolution (e.g. [10]),

but generally these are not mathematically equivalent.

The multitaper method of spectrum estimation was intro-

duced around the same time as the MFCCs [24] but has

found little use in speech processing so far [22], [31], [32].

This might be due to previously unstudied statistical properties

of multitaper MFCCs and availability of different multitaper

variants to choose from [9], [24]–[26]. Additionally, due to

mostly theoretically focused treatments of the topic [10], [24],

[25], practitioners may have had difficulties in implementing

and choosing the control parameters in a typical recognition

application.

Since the statistical properties of the multitaper MFCCs

– briefly summarized in Section III – are recently analyzed

[27] and further, we got encouraging preliminary speaker

verification results in [33], we were curious to explore the

technique further. In Section IV we carry out detailed evalu-

ation of multitaper bias and variance using simulated random

processes on the TIMIT corpus. Importantly, in Sections V and

VI we extend and complement the preliminary GMM-UBM

results of [33] using two high-performance classifiers, GMM

supervector with support vector machine (GMM-SVM) [13],

[34] and GMM with joint factor analysis technique (GMM-

JFA) including integrated speaker and intersession variability

modeling [15], [35], [36]. To sum up, the main purpose of

this paper is to review, collect and extend our recent work on

the use of multitapers in speech processing with application to

speaker verification. We provide sample implementation and

recommendations for setting the control parameters.

II. COMPUTING THE MULTITAPER MFCCS

Let x = [x(0) . . . x(N − 1)]T denote one frame of speech

of N samples. The most popular spectrum estimate in speech

processing, windowed discrete Fourier transform (DFT), is

given by

Ŝ(f) =

∣

∣

∣

∣

∣

N−1
∑

t=0

w(t)x(t)e−i2πtf/N

∣

∣

∣

∣

∣

2

, (1)

where i =
√
−1 is the imaginary unit and f =

0, 1, . . . , N − 1 denotes the discrete frequency index. Here

w = [w(0) . . . w(N − 1)]T is a time-domain window func-

tion which usually is symmetric and decreases towards the

frame boundaries. In this study, we choose the most popular

window in speech processing, the Hamming window, with

w(t) = 0.54− 0.46 cos(2πt/N).
From a statistical perspective, the use of a Hamming-type

of window reduces the bias of the spectrum estimate, i.e.

how much the estimated value Ŝ(f) differs from the true

value S(f), on average. But the estimated spectrum still has

high variance. To reduce the variance, multitaper spectrum

estimator [10], [24], [26] can be used:

Ŝ(f) =
K
∑

j=1

λ(j)

∣

∣

∣

∣

∣

N−1
∑

t=0

wj(t)x(t)e
−i2πtf/N

∣

∣

∣

∣

∣

2

. (2)

Here, K multitapers wj = [wj(0) . . . wj(N − 1)]T, where

j = 1, . . . , K , are used with corresponding weights λ(j).
The multitaper estimate is therefore obtained as a weighted
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Fig. 2. Typical multitaper spectra for the methods used in this paper. The
lower thin lines (gray) show the Hamming-windowed DFT spectrum as a
reference. The spectra have been shifted by 20 dB for visualization.

average of K subspectra (Fig. 1). The windowed DFT (1) is

obtained as a special case when K = 1 and λ = 1.

A. Choice of the Tapers

A number of different tapers have been proposed for

spectrum estimation, such as Thomson [24], sine [25] and

multipeak tapers [26]. For cepstrum analysis, the sine tapers

are applied with optimal weighting in [9]. Each type of taper

is designed for some given type of (assumed) random process;

as an example, Thomson tapers are designed for flat spectra

(white noise) and multipeak tapers for peaked spectra (such

as voiced speech). In practice, many multitapers work well

even though designed for another process. For instance, the

Thomson tapers [24], designed for white noise, tend to perform

well for any smooth spectrum.

In general, the tapers are designed so that the estimation

errors in the subspectra will be approximately uncorrelated,

which is the key to variance reduction. It is out of the scope

of this paper to describe the details of finding optimal tapers.

For theoretical treatment, we point the reader to [10], [24]

while [9], [25], [26], [37] provide more concise discussions.

At the Appendix of this paper, we point to practical MATLAB

implementations. In short, the solution is obtained from an

eigenvalue problem where the eigenvectors and -values corre-

spond to the tapers and their weights, respectively. The tapers

considered in this paper are all computed off-line without

any data-adaptive training process and applied to all speech

utterances.

Fig. 2 shows, for a single voiced speech frame, examples of

the three multitaper methods considered in this study, Thom-

son [24], multipeak [26] and sine-weighted cepstrum estimator

(SWCE) [9]. Each panel shows the multitaper spectrum (upper

thick line) along with Hamming-windowed DFT estimate

(lower thin line). All the three multitaper methods produce

smoother spectrum compared to the Hamming method, be-

cause of variance reduction. Thomson produces a staircase-like

spectrum, multipeak a spectrum with sharper peaks and SWCE

a compromise between these two methods. In this example,

for a small number of tapers, say K ≤ 4, all the three methods

preserve both the harmonics (due to the voice source) and the

spectral envelope (due to the vocal tract). For a high number

of tapers, say K ≥ 8, the harmonics gets smeared out. The

optimum number of tapers is expected to depend on the target

application. In speaker recognition, both the voice source and

vocal tract filter are found to be useful, thus we expect to get

the best results using a relatively small number of tapers.

B. Computational Complexity and Periodogram Smoothing

The windowed periodogram in (1) can be computed using

fast Fourier transform (FFT) of complexity O(N logN). Since

the multitaper estimator (2) requires K FFTs, the complexity

of the direct implementation is O(KN logN), which might

become a critical design consideration under low-resource

platforms. Luckily, when the tapers are sinusoids as in [25]

and the SWCE method [9], complexity can be reduced. Indeed,

the the jth sine taper can be written using Euler’s formula as,

wj(t) = sin(2πfjt) =
1

2i

{

ei2πfj t − e−i2πfj t

}

. (3)

Thus, DFT of the windowed data segment x(t)wj(t) is,

F
{

x(t)wj(t)
}

=
1

2i

{

X(f − fj)−X(f + fj)

}

, (4)

where F{·} denotes the DFT operator and X(f) = F{x(n)}.

Substituting this to the multitaper spectrum estimator (2) and

simplifying leads to,

Ŝ(f) =
1

4

K
∑

j=1

λ(j)

{

|X(f − fj)|2 + |X(f + fj)|2

− 2X(f − fj)X
∗(f + fj)

}

. (5)

This consists of computing X(f) by one FFT, followed by

the three frequency-domain smoothing terms of complex-

ity O(KN), thus totaling O(N logN + KN) steps. Since

typically K ≪ N , this is usually faster than the direct

implementation (2).

A popular method for producing smooth spectrum estimates,

periodogram smoothing, is to convolve the unwindowed (raw)

periodogram with a suitable frequency-domain smoothing

kernel, which has also complexity O(N logN +KN). Note

that the first sum term in (5) is, in fact, the convolution of

|X(f)|2 with kernel {λ1, λ2, . . . , λK}. However, because of

the two additional terms, the methods are not equivalent. In

our speaker verification experiments, we will also provide

experiments with periodogram smoothing.

III. BIAS AND VARIANCE OF MULTITAPER ESTIMATORS

To understand the bias and variance trade-off better, we

consider the variance and spectral resolution of the single- and

multi-taper methods. For the windowed DFT (1), the variance

is usually approximated as [10],

V [Ŝ(f)] ≈ S2(f). (6)
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The spectral resolution, that is, the frequency spacing under

which two frequency components cannot be separated, is

approximately Bw = 1/N for the rectangle window but

Bw = 2/N for the Hamming window. Note also that (6) does

not depend on the frame length N and thus, including more

samples in a frame will not reduce the variance.

For the multitaper spectrum estimator (2), the spectral

resolution is approximately Bw = (K + 2)/N which is

the spectral resolution parameter used in the design of the

Thomson [24] and multipeak [26] tapers. The variance can be

approximated as,

V [Ŝ(f)] ≈ 1

K
S2(f). (7)

This result is analogous to the well-known result that variance

of the mean of sample of size K is inversely proportional to K
[4, p. 82]. The formula (7) is approximately valid also for the

Welch’s method [30] with 50 % overlap between the windows

[10].
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Fig. 3. Multitapers help in reducing variance of the higher-order MFCCs,
but without modifying the mean value much.

Note that up to this point we have only considered variance

and bias in spectral and not MFCC domain. Intuitively it is

easy to understand, that if the spectrum is estimated with

low bias and low variance, the resulting MFCC vector will

also have low bias and variance. Using vector notation, the

MFCC vector c is related to the (true) spectrum vector s =
[S(0) . . . S(N−1)]T by c = 1

MΦ
H log(Ms), where M is the

number of filters in the filter-bank M ∈ R
M×N , the logarithm

operates element-wise and Φ is the M -by-M Fourier matrix

with the (a, b)th element: Φ ,
{

e−i2π(a−1)(b−1)/M
}

ab
. Bias

of cepstral coefficients has been studied in [38], whereas

approximate bias in MFCCs B[ĉ] can be written as [27]:

B [ĉ] ≈ 1

M
Φ

H

(

log

(

ME [ŝ]

Ms

)

− diag
(

MV [ŝ]MT
)

2 (ME [ŝ])2

)

(8)

Here, the division operates element-wise, ŝ =
[Ŝ(0) . . . Ŝ(N − 1)]T denotes the estimated spectrum

using multitapers (2), E[ŝ] denotes the expected value of ŝ,

V[ŝ] denotes the covariance matrix of the spectrum estimate

and (·)H stands for conjugate transpose. Both the expected

value E [ŝ] and the covariance matrix V [ŝ] (see [10], [27] for

details) depend on the covariance matrix R of the random

process and hence, on the true spectrum s.

The covariance matrix of the estimated MFCC vector using

multitapers can be approximated as [27],

V [ĉ] ≈ 1

M2
Φ

H MV [ŝ]MT

ME [ŝ]E [ŝ]
T
MT

Φ. (9)

The bias and variance of the MFCC estimator depend on

the true spectrum of the process. As this is usually unknown,

it is impossible to use these formulas directly. However, a

general rule is that by increasing the number of tapers, we can

reduce the variance of the spectrum estimate, hence making

the spectrum estimate more robust across random variations.

As an example, Fig. 3 shows the sample mean and standard

deviations of conventional and multitaper MFCCs for one

speech utterance in the NIST 2002 corpus. The mean vectors in

this example differ mostly by an additive constant, whereas the

variances of the higher order MFCCs (beyond the 5th MFCC)

are significantly reduced due to multitapering.

IV. NUMERICAL EVALUATION OF BIAS AND VARIANCE OF

MULTITAPER MFCC ESTIMATORS

A. Monte Carlo Computation of Bias and Variance Using

Known Autoregressive Models

We would like to know how much the estimated MFCCs

differ from the true MFCCs. As is common in the evaluation of

nonparametric spectrum estimators, we consider a parametric

model with known parameters as a ground truth. Due to their

success in spectral modeling of speech signals [2], we consider

autoregressive AR(p) random process,

x(t) = −
p
∑

m=1

amx(t−m) + ε(t), (10)

where {am}pm=1 are the known AR coefficients and ε(t) ∼
N (0, 1) are i.i.d. samples of the driving white noise sequence.

The corresponding AR(p) spectrum (sampled at discrete data

points f = 0, 1, . . . , N − 1) is given by,

SAR(p)(f) =
1

|1 +∑p
m=1 am exp(−i2πfm/N)|2 . (11)

Thus, given the known parameters {am}pm=1, we can simulate

a specific realization x of the random process using (10).

Applying windowed DFT, multitaper or any other spectrum

estimator on x produces an estimate Ŝ(f) of the spectrum

(11). Depending on the random input ε(t) in (10), the estimate

will be different each time. We are concerned in how the

estimated MFCC vector ĉ (computed from Ŝ(f)) differs from

the ground-truth MFCC vector cAR(p) (computed from (11))

on average. To this end, we consider the three well-known

descriptors of any estimator – bias, variance and mean square

error (MSE):

B[ĉ] = E[ĉ]− c
AR(p) (12)

V[ĉ] = E[ĉ2]− (E[ĉ])2 (13)

MSE[ĉ] = E[(ĉ− c
AR(p))2] (14)

where we introduced shorthand notation z
2 = diag

(

zz
T
)

for vector z. MSE further links the bias and variance as

MSE[ĉ] = B[ĉ]2 + V[ĉ]. To compute the bias and variance

for a single random process (one set of aks), we approximate
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Fig. 5. Similar to Fig. 4 but for squared bias, variance and MSE integrated over all the 18 MFCCs as a function of taper count. The results are shown for
K = 2, 4, . . . , 14 tapers; for visual clarity, multitapers are slightly offset in horizontal direction.

the expectations of random vector z in (12)–(14) using sample

mean as E[z] ≈ 1
NMC

∑NMC

r=1 zr. Here, NMC is the number of

random Monte Carlo draws and zr corresponds to the vector

of the rth random draw. We fix NMC = 30000 for which we

found the values of (12)–(14) converged so that the Monte

Carlo error can be considered neglible.

B. Summarizing Bias, Variance and MSE

Note that above bias, variance and MSE are defined for

a single random process (one set of aks). Depending on the

choice of the coefficients or the order of the AR model (p), one

gets different conclusions. As an overall measure, therefore,

we are interested on the average bias, variance and MSE over

a large number of different random processes (different set of

aks and different AR model order p). This resembles a typical

speaker recognition setting where inferences about speaker

identity are drawn over a large number of speech frames.

The average MSE vector is given by,

µMSE =
1

NP

NP
∑

n=1

MSE[ĉn], (15)

where MSE[ĉn] indicates MSE (14) of the nth random process

out from a collection of NP random processes. We are also

interested in whether the difference in the means are statisti-

cally significant. To this end, we also compute the confidence

interval of the mean for each of the individual coefficients.

By denoting the individual dimensions of MSE[ĉn] and µMSE

by MSEn(q) and µMSE(q), respectively, we compute the

confidence intervals as µMSE(q) ± 1.96
√

σ2
MSE

(q)/NP where

the MSE variance is given by,

σ2
MSE(q) =

1

NP − 1

NP
∑

n=1

(MSEn(q)− µMSE(q))
2 (16)

for each MFCC feature indexed by q = 1, 2, . . . , 18. The

confidence interval signifies that, with 95 % certainty, the true

mean value falls within the confidence bounds. Regarding bias

and variance, their means with associated confidence intervals

can be similarly computed.

C. Obtaining the Reference AR Models and MFCCs

To simulate speech-like AR random processes, we obtain

the AR coefficients ak from real speech utterances rather than

hand-crafting them. To this end, we pick the common SA1

utterance (“She had your dark suit in greasy wash water all

year”) from a total number of 77 speakers (59 ♂, 18 ♀)

from the training section of the Western dialect (DR7) on the

TIMIT corpus. We use the corpus annotations to locate phone

boundaries (excluding short phonemes less than 11.25 msec

in duration), and compute the AR coefficients of each phone.

This set, consisting of NP = 2849 phones, is representative

of all American English phonemes and phoneme groups. For

consistency with the following speaker recognition experi-

ments, we resample the utterances down to 8 kHz. To avoid

favoring AR models of a particular fixed order, we adapt the

AR model order (p) differently for each phoneme. To this end,

we use the well-known Schwarz’s Bayesian criterion (SBC)

[39] implemented in the toolbox of [40]. We set the search

limits for the optimum model order as [pmin = 1, pmax = 40].
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The MFCCs are extracted using procedure similar to the

speaker verification experiments (see subsection V-C). To

exclude the effects of application-dependent feature normal-

izations, we measure the distortions in the lowest 18 base

MFCCs, excluding the DC coefficient c0. In the recognition

experiments (Section VI), however, we utilize a complete

front-end with additional RASTA filter, delta features and

cepstral mean/variance normalization (CMVN) as a normal

practice in speaker verification.

D. Results

We first compare the average biases, variances and MSEs

of the windowed DFT (Hamming) and SWCE multitaper

(K = 4) MFCC estimators in Fig. 4; the results for Thomson

and multipeak tapers were similar to SWCE and were excluded

for visual clarity. Regarding bias of the first cepstral coef-

ficient c1, both methods have a large negative bias which is,

interestingly, larger in magnitude for Hamming. Regarding the

other coefficients, both methods yield positive bias. Hamming

introduces generally less bias but SWCE clearly reduces

variance of all MFCCs by a wide margin. Regarding MSE

of the lowest MFCCs (c1 through c3), SWCE yields smaller

MSEs but the differences are not significant due to overlapping

confidence intervals. However, the intermediate and higher-

order MFCCs produce significantly smaller MSEs.

Next we compare bias, variance and MSE integrated over

all the 18 MFCC coefficients in Fig. 5 as a function of taper

count for all the four estimators. Computations are similar as

in Fig. 4 but we replace the vector quantities in (12)–(14)

by their corresponding L1-norms ‖ · ‖1, i.e. the sum of the

(absolute value of) individual elements. In the case of bias, we

display L1-norm of the squared bias. This is natural because

MSE[ĉ] = B[ĉ]2 +V[ĉ], which helps in better interpreting the

relative contributions of bias and variance terms to MSE.

According to Fig. 5, there is a large positive bias for all

the four spectrum estimators. This bias is generally larger for

the multitaper estimators in comparison to windowed DFT, as

expected. But the variance of all three multitaper estimators

is significanly smaller than that of Hamming-windowed DFT.

For the biases, Hamming < multipeak < SWCE < Thomson,

but the order is reversed for the variances. The compromise

measure, MSE, shows nicely convex behaviour; for small

number of tapers K , the large variance dominates over squared

bias, leading to high MSE. For large K , similarly, the squared

bias dominates and increases MSE. The smallest MSE values

are obtained at K = 4 for Thomson and SWCE and at

K = 6 for multipeak. Behavior of the MSE values suggests

that a suitable number of tapers for Thomson might be smaller

compared to multipeak and SWCE.

To sum up, the results in Figs. 4 and 5 clearly indicate

that multitapers reduce the variance of the MFCC estimates

which is useful from generalization point of view. From these

application-independent statistical MFCC estimator analyses,

suitable K might be on the range 2 ≤ K ≤ 8 for typical

speech applications utilizing MFCCs, although it will certainly

depend on the task at hand; we will now proceed to our target

application, speaker verification.

TABLE I
DETAILS OF THE EVALUATION CORPORA AND THE THREE CLASSIFIERS

(UBM=UNIV. BACKGROUND MODEL, JFA=JOINT FACTOR ANALYSIS;
NAP=NUISANCE ATTRIBUTE PROJECTION; SWB=SWITCHBOARD).

NIST 2002 NIST 2008

Speakers 139 ♂, 191 ♀ 1092 ♂, 1649 ♀

Gen. trials 2982 15,345a

Imp. trials 39,259 56,792b

Type of data telephone telephone, interview, mic.

Training dur. 2 min 3–5 min

Test dur. 15–45 sec 3–5 min

GMM-UBM
[12]

GMM-SVM
[13]

GMM-JFA
[15], [35], [36]

Spec.
subtraction

Yes No No

Gaussians
per gender

1024 512 512

Intersession
compens.

– NAP [34] JFA [15], [35],
[36]

Background
data

SRE 01 SRE 04, 05,
06, MIXER5

SRE 04

Eigenchannel
data

– SRE 04, 06,
MIXER5

SRE 04, 05,
06, MIXER5

Eigenvoice
data

– – SRE 05, 06,
SWB

Diag. model – – SRE 04

Score
normalization

T-norm [41]
SRE 01

ZT-norm [42]
SRE 05, 06

TZ-norm [42]
SRE 05, 06

a 11540 det1, 1105 det4, 1472 det5, 1228 det7
b 22641 det1, 10636 det4, 6982 det5, 16533 det7

V. SPEAKER VERIFICATION SETUP

A. Corpora and Classifiers

For the speaker verification experiments, we utilize two

different corpora and three classifiers (Table I). We use the

NIST 2002 speaker recognition evaluation (SRE) corpus for

extensive exploration of control parameters and effect of

additive noise. For this, we employ a lightweight Gaussian

mixture model with universal background model (GMM-

UBM) method [12] with test normalization (T-norm) [41]. The

same system was used in our recent studies [33], [43]–[45].

Here we use it for choosing the type of multitaper variant for

the more expensive NIST 2008 experiments. All the data in

NIST 2002 contains telephone conversations collected over the

cellular network.

We then verify our findings on an independent, more recent

and much larger NIST 2008 SRE corpus which includes

telephone, interview and auxiliary microphone data. For the

experiments on NIST 2008 data, we employ two classifiers

which were developed in participation of the past two NIST

SRE campaigns [46]. The first system (GMM-SVM) uses

Gaussian mean supervectors with support vector machine

(SVM) [13] and nuisance attribute projection (NAP) technique

[14], [34] for channel compensation. Zero normalization fol-

lowed by T-norm (ZT-norm) [42] is used for score normaliza-

tion. The second system (GMM-JFA) is a widely recognized

high performance system, which uses joint factor analysis

(JFA) technique [15], [16], [35] for integrated intersession and

speaker variability modeling in the GMM supervector space.
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For score normalization, we use T-norm followed by Z-norm

(TZ-norm).

For the recognition experiments under additive noise degra-

dation, we contaminate the test utterances with factory noise

while the background, cohort and target models are kept

untouched. In [47] we found spectral subtraction [48] to be

useful under additive noise degradation and it is thus included

in the NIST 2002 experiments. We also did preliminary

evaluation on the NIST 2008 data but the improvement was

not systematic, and, given the added computational overhead,

we decided not to include it to the NIST 2008 experiments.

B. Performance Evaluation

In comparison of the different MFCC estimators, we evalu-

ate speaker verification accuracy using equal error rate (EER)

and minimum detection cost function (MinDCF). EER is the

error rate at the threshold θEER for which the miss and false

alarm rates are equal: EER = Pmiss(θEER) = Pfa(θEER).
MinDCF is used in the NIST speaker recognition evaluations

and is defined as minθ{CmissPmiss(θ)Ptar+CfaPfa(θ)(1−Ptar)},

where Cmiss = 10 is the cost of a miss (false rejection),

Cfa = 1 is the cost of a false alarm (false acceptance) and

Ptar = 0.01 is the prior probability of a target (true) speaker.

In addition, we show selected detection error tradeoff (DET)

plots [49] for the entire trade-off of false alarm and miss rates.

C. Feature Extraction

For the baseline Hamming method, we compute the MFCCs

using the typical procedure [4]: Hamming window (frame

duration 30 ms and hop 15 ms), DFT spectrum estimate using

windowed periodogram (Eq. 1), 27-channel mel-frequency

filterbank, logarithmic compression and discrete cosine trans-

form (DCT). We retain the lowest 18 MFCCs, excluding the

energy coefficient c0. For Thomson [24], multipeak [26] and

sine-weighted cepstrum estimator (SWCE) [9] methods, the

steps are the same, except that the spectrum is estimated using

Eq. (2). In preliminary experiments, we found the frequently

used pre-emphasis filter H(z) = 1 − 0.97z−1 to degrade

accuracy and it is therefore turned off in all the experiments.

After the 18 base MFCCs are extracted, we apply RASTA

filter [5] and append the ∆ and ∆2 coefficients, implying 54-

dimensional features. We then discard the nonspeech frames

using an energy-based voice activity detector (VAD) and carry

out utterance-level cepstral mean and variance normalization

(CMVN). RASTA and CMVN are used for mitigating linear

channel distortions.

We were also curious to see the effect of excluding the

MFCC filterbank and to compute the 18 coefficients directly

from the unwarped spectrum. We hypothesized that the double

smoothing of multitaper spectrum followed by mel-filter en-

ergy integration might be suboptimal for speaker verification

where we wish to retain the spectral details in addition to the

envelope. We address this hypothesis on the NIST 2002 corpus

in subsection VI-A.
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Fig. 6. Effects of the number of tapers and MFCC filterbank to different
methods.

VI. SPEAKER VERIFICATION RESULTS

A. GMM-UBM system on the NIST 2002 SRE corpus

We first study how the choice of the spectrum estimation

method affects speaker verification accuracy. For each of the

multitaper methods – Thomson, multipeak and SWCE – we

vary the number of tapers and contrast the result to the

baseline Hamming method. EER and MinDCF, for both with

and without MFCC filterbank, are shown in Fig. 6 where the

horizontal (black) line represents the baseline. We observe the

following:

• Multitaper methods outperform Hamming in both EER

and MinDCF for a wide range of taper count (approx.

2 ≤ K ≤ 10). Optimum value of K depends on the

method and the objective (EER or MinDCF).

• By including the MFCC filterbank the optimum points

shift to left (less tapers) in most cases. This is expected

because the MFCC filterbank introduces additional av-

eraging over multitapering. Using MFCC filterbank im-

proves EER and MinDCF and makes the curves generally

less ragged, indicating stable parameter setting.

• The performance of the three multitaper methods at their

optima are close to each other. Thomson shows sharper

local mimima than multipeak and SWCE methods and

gives higher error rates for large number of tapers.

The trends in Fig. 6 are, interestingly, in a reasonable agree-

ment with Fig. 5. Both MSE, EER and MinDCF demonstrate

approximately convex shapes and all the three methods give

similar performance with optimized K . Secondly, for large

K , MSE(Thomson) > MSE(SWCE) ' MSE(Multipeak); the

same approximate ordering holds also for EER and MinDCF.

We next study the accuracy under additive factory noise

corruption. Based on Fig. 6, for each method, we set the

number of tapers to give both small EER and MinDCF. For

the nonwarped case (no MFCC filterbank) we set the values to

K = 8 (Thomson), K = 10 (multipeak) and K = 7 (SWCE).

For the warped frequency case (MFCC filterbank included),

in turn, we set the values to K = 3 (Thomson), K = 5
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TABLE II
RESULTS UNDER FACTORY NOISE CORRUPTION ON THE NIST 2002 CORPUS CORRESPONDING TO THE RIGHT HAND SIDE PLOTS (MFCC FILTERBANK

INCLUDED) OF FIG. 7. IN EACH ROW, THE ERROR COUNTS SIGNIFICANTLY DIFFERING FROM THE BASELINE HAMMING, USING MCNEMAR’S TEST AT 95
% CONFIDENCE LEVEL, ARE INDICATED FOR BOTH GENUINE (•) AND IMPOSTOR (†) TRIALS.

SNR Equal error rate (EER, %) MinDCF (×100)
(dB) Hamming Thomson Multip. SWCE Hamming Thomson Multip. SWCE

Orig. 9.32 8.15 • † 8.45 • † 8.36 • † 3.86 3.53 • † 3.47 • † 3.45 •

20 9.73 8.79 • † 8.62 • † 8.69 • † 3.91 3.73 • † 3.62 • 3.56 • †
10 10.41 9.85 † 9.66 † 9.62 † 4.30 4.20 • † 4.11 † 4.03 •

0 11.53 11.50 11.44 11.32 5.04 5.02 • † 4.93 • † 4.76 †
-10 17.17 16.52 † 15.86 • † 15.96 • † 7.38 7.04 • † 6.72 • † 6.49 •
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Fig. 7. Effect of factory noise under different signal-to-noise ratios.
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Fig. 8. Periodogram smoothing on the NIST 2002 corpus. As a reference,
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Smoothing is performed by convolving the unwindowed periodogram with a
Gaussian kernel with parameter α controlling the kernel width.

(multipeak) and K = 6 (SWCE). The results, as a function of

SNR, are given in Fig. 7. The following can be observed:

• Accuracy of all methods drops as SNR decreases, as

expected. Multitapers outperform Hamming in nearly

all cases (the exception occurs at 0 dB but the EER

difference is not statistically significant, see Table II)

• In the noisy cases (SNR ≤ 20 dB), Thomson performs

best on average when mel-warping is not applied; for the

mel-warped case, SWCE performs the best.

• MFCC filterbank improves both EER and MinDCF.

Table II further displays the exact error values for the mel-

warped case. We also carry out McNemar’s significance testing

with 95 % confidence level at both operating points [4], [50].

In 27 out of 30 cases, the difference between the multitaper

and the baseline is significant in at least one of the error types.
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B. Comparison with Periodogram Smoothing

Due to its popularity in other application domains, we are

interested in the performance of periodogram smoothing, i.e.

convolution of |X(f)|2 with a frequency-domain smoothing

kernel. As discussed in [10], choice of the kernel (in particular,

its bandwidth) is not easy but typically requires trial-and-

error for a given application. To this end, we convolve the

unwindowed periodogram estimate with a Gaussian window1

1Choice of window is less important than its bandwidth [10]. We use
Matlab’s gausswin(N, α) command, with N = 512.
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w(n) = exp{− 1
2 (α

n
N/2 )

2}, where N and α are the size and

width of the window, respectively. The width of the window

is inversely related to the value of α; a larger value of α
produces a narrower window. The result is displayed in Fig. 8

for the same configuration as Fig. 6 for the mel-warped case.

As a reference, we show the optimized results for Hamming,

Thomson, multipeak and SWCE methods from Fig. 6.

By optimizing α, periodogram smoothing outperforms the

baseline Hamming method, but it does not outperform any of

the multitaper methods. For α ≈ 400 (for which the effective

number of non-zero samples in the kernel is about 4), EER

is close to those of the SWCE and multipeak methods. But

for the primary metric of speaker recognition evaluations,

MinDCF, multitapers perform better.

C. Experiments on the NIST 2008 SRE Corpus

Due to expensive nature of NIST 2008 experiments, we fix

as many parameters as we think reasonable. We choose to use

SWCE method with MFCC filterbank based on observations

from Fig. 7. We first verify our observations regarding suitable

number of tapers, using the GMM-SVM system. The EER

and MinDCF values in Figs. 9 and 10 indicate that, even

though setting depends on the data condition, the optima are

always achieved with 3 ≤ K ≤ 8. This range agrees well

with the NIST 2002 GMM-UBM result in Fig. 6, which has

a completely different classifier, implementation details and

choice of data sets. SWCE outperforms Hamming for a wide

range of K and therefore, the exact setting does not appear

very critical.

In one of the sub-conditions (det4), the baseline Hamming

outperforms multitaper. One reason might be non-optimal

selection of datasets for channel compensation in this sub-

condition; the error rates for both Hamming and SWCE are

higher than those in the other three conditions.

TABLE III
RESULTS ON THE DIFFERENT SUB-CONDITIONS OF THE NIST SRE 2008

CORE TASK (SHORT2-SHORT3) USING K = 6 TAPERS. DET1 = INTERVIEW

TRAINING AND TESTING; DET4 = INTERVIEW TRAINING, TELEPHONE

TESTING; DET5 = TELEPHONE TRAINING, NON-INTERVIEW MICROPHONE

TESTING; DET7 = TELEPHONE TRAINING AND TEST INVOLVING ENGLISH

LANGUAGE ONLY.

EER (%) 100 ×MinDCF
Hamm. SWCE Impr. (%) Hamm. SWCE Impr. (%)

GMM-SVM recognizer

det1 4.58 3.70 19.1 2.38 1.89 20.4

det4 9.85 10.68 −8.4 3.35 3.39 −1.2

det5 6.73 5.71 15.2 2.42 2.17 10.3

det7 5.09 3.97 21.9 1.98 1.80 9.1

GMM-JFA recognizer

det1 5.36 4.73 11.8 2.95 2.55 13.7

det4 7.51 6.24 16.9 3.14 2.82 10.2

det5 6.79 5.91 13.0 2.45 2.23 9.1

det7 3.58 3.48 2.9 1.58 1.28 18.7

In the following, we fix K = 6 for all the four subconditions

and for both genders. Gender-pooled results (without any score

calibration) for each subcondition are given in Table III for

both recognizers. Additionally, Fig. 11 displays the DET plot
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Fig. 11. DET plots for the interview-interview data (det1) on NIST 2008.
The SWCE method uses K = 6 tapers.

for the interview-interview condition (det1). From Table III,

we observe the following.

• Except for det4 in GMM-SVM system, SWCE systemat-

ically outperforms Hamming in both EER and MinDCF.

• For GMM-SVM, det7 task was observed the highest EER

improvement of 21.9 %, while det1 task the highest

MinDCF improvement of 20.4 %. The largest overall

improvements are in det1 where both metrics decrease

by about 20 %.

• For GMM-JFA, det4 task was observed the highest EER

improvement of 16.9 %, while det7 task the highest

MinDCF improvement of 18.7 %.

The DET plots in Fig. 11 further confirm that both recogniz-

ers benefit from multitapering over a wide range of operating

points. Our JFA result is roughly on the same range as other

similar systems, such as the full JFA system in [19, Table IX].

The i-vector system in [19] outperforms our JFA result on det7

(for instance, EERs of 2.9 % and 1.1 % were reported for male

and female trials). Since i-vector and GMM-JFA share almost

the same components – factor analysis on GMM supervectors

with eigenvoice adaptation – we expect the results, to a certain

extent, to generalize to i-vector classifier as well. In fact,

preliminary indication of this was recently given in [51] on

the SRE 2010 corpus using an independent implementation.

VII. CONCLUSIONS

We have advocated the use of multitaper MFCC features

in speech processing. By replacing the windowed DFT with

multitaper spectrum estimate, we found systematic improve-

ments in three independently constructed recognition systems

(GMM-UBM, GMM-SVM and GMM-JFA). The improve-

ments were consistent on two very different corpora (NIST

2002 and NIST 2008) including telephony, microphone and in-

terview segments with severe cross-channel variabilities. These

observations, together with analysis of bias and variance on

TIMIT, gives us confidence to recommend using multitapers

in speaker verification and possibly other speech processing

tasks.

The choice of the multitaper type (Thomson, multipeak,

SWCE) was found less important than the choice of the

number of tapers, K . But even the exact choice of K does
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not appear to be critical. The best results were obtained, in all

cases, for 3 ≤ K ≤ 8. We recommend to start with K = 6.

Mel-warping turned out useful also with multitapers. To help

the interested reader in exploring the technique further, we

provide a sample implementation in the Appendix.

It would be also interesting to see whether variance reduc-

tion would lead to higher gains in short duration recognition

tasks (10-second) and in speech and language recognition

problems. Finally, we expect further improvements using al-

ternative feature normalization strategies that suit better for

low-variance MFCCs.

APPENDIX

Below is an example of multitaper spectrum estimation in Mat-

lab where SWCE function produces the tapers and their weights

in the SWCE method [9]. The function multitaperspectra,

which can be also used with other types of tapers, is used for

spectrum estimation. For a more complete package, including

Thomson [24] and multipeak [26] implementations, refer to

the WWW pages of the first author, http://cs.joensuu.fi/pages/

tkinnu/webpage/. To generate Thomson’s tapers, you may also

use the function dpss in Matlab’s signal processing toolbox.

f u n c t i o n [ h , s ] = SWCE(N, K)

% Sine - weigh ted ceps t rum e s t i m a t o r (SWCE) t a p e r s
% N = frame s i z e ( sam ples ) , K = # t a p e r s
% The t a p e r s a r e columns of h , t h e i r w e i g h t s i n s .

M = f i x (N/K) ;
f o r i =1 :K

h ( : , i ) = s q r t ( 2 / ( N+1) ) * s i n ( ( p i * i * [ 1 : N ] ' ) / ( N+1) ) ;
end
s = ( ( cos (2* p i * [ 0 : f i x (N/M) - 1 ] ' *M/N/ 2 ) ) +1) . . .

. / sum ( cos (2* p i * [ 0 : f i x (N/M) - 1 ] ' *M/N/ 2 ) +1) ;

f u n c t i o n spec = m u l t i t a p e r s p e c t r a ( f rames , t a p e r s ,
weigh ts , NFFT )

% Compute m u l t i t a p e r power s p e c t r a .
% f ram es : ( num frames x N) m a t r i x of f ram es .
% t a p e r s : (N x K) m a t r i x of K t a p e r s .
% w e i g h t s : (K x 1) v e c t o r o f t a p e r w e i g h t s .
% NFFT : Number of FFT b i n s .
% spec : M u l t i t a p e r power s p e c t r a as columns .
%
% Note : t h e f ram es s h o u l d NOT be windowed u s i n g
% Hamming / Hann e t c t y p e of windows . Give t h e raw
% ” boxcar ” - windowed f ram es as i n p u t i n s t e a d .

spec = z e r o s ( NFFT , s i z e ( f rames ' , 2 ) ) ;
f o r ( t a p e r n b r = 1 : s i z e ( t a p e r s , 2 ) )

spec = spec + w e i g h t s ( t a p e r n b r ) * abs ( f f t ( ( f rames ' )
. * . . .
r epm at ( t a p e r s ( : , t a p e r n b r ) , 1 , s i z e ( f rames ' , 2 ) )

, NFFT ) ) . ˆ 2 ;
end
spec = spec ( 1 : NFFT / 2 + 1 , : ) ;
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