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Abstract

A numerical model for simulating the process of low-velocity impact damage in composite laminates using the finite element method is

presented in this paper, i.e. Part I of this two part series on the study of impact. In this model, the 9-node Lagrangian element of the Mindlin

plate with consideration of large deformation analysis is employed. To analyze the transient response of the laminated plates, a modified

Newmark time integration algorithm previously proposed by the authors is adopted here. We also proved that the impact process between a

rigid ball and laminated plates is a stiff system, therefore a kind of AðaÞ stable method has been advocated here to solve the motion equation

of the rigid ball. Furthermore, various types of damages including delamination, matrix cracking and fiber breakage, etc. and their mutual

influences are modeled and investigated in detail. To overcome the difficulty of numerical oscillation or instability in the analysis of the

dynamic contact problem between delaminated layers using the traditional penalty methods, we have employed dynamic spring constraints to

simulate the contact effect, which are added to the numerical model by a kind of continuous penalty function. Moreover, an effective

technique to calculate the strain energy release rate based on the Mindlin plate model is proposed, which can attain high precision. Finally,

some techniques of adaptive analyses have been realized for improving the computational efficiency. Based on this model, a program has

been developed for numerically simulating the damage process of cross-ply fiber-reinforced carbon/epoxy composite laminates under low-

velocity impact load. In Part II, this numerical model will be verified by comparing with the experimental results. Also the impact damage

will be investigated in detail using this numerical approach. q 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

It is well known that organic matrix fiber-reinforced

composite laminates are very susceptible to low-velocity

transverse impact. It has been shown by many researchers

that low-velocity transverse impact could cause various

damages, such as matrix cracks, delamination and fiber

breakage. Such damages are very difficult to be detected by

naked eyes and can cause significant reductions in the

strength and stiffness of the materials. Hence, it is crucial to

understand the mechanisms and mechanics of the impact

damage in the laminates.

Till now, extensive investigations have been conducted

on this subject. Most of the earlier work concentrated on the

experimental investigations. Within recent years, some

efficient numerical models have also been set up for

studying this problem. For instance, some researchers

employed the 2D FEM to study a beam-like model [1–3].

These approaches for analyzing the beam-like model are

computationally very efficient due to its simplicity and can

be used to study some fundamental problems in this field.

However, this numerical model for plane-strain problems

may fail to provide more detailed and comprehensive

information, such as the in-plane delamination shape in the

laminated plates. To perform more detailed stress analyses

in the laminates, many authors have studied this problem

based on the 3D FEM model [4–6]. However, there are

some apparent difficulties in the 3D FEM, such as the

exorbitant computational cost and the automatic mesh

generation with the extension of delamination. To overcome

the difficulties faced in the 3D FEM model, some
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researchers employed the 2D plate model to study this

problem [7–9]. It can be found that most researches till now

have been mainly concentrating on the following several

aspects: (1) mechanisms of damage formation, especially

the onset of various damages [2,3]; (2) dynamic fracture

toughness for delamination extension [1,10]; (3) threshold

of impact energy or velocity [3,9]; (4) relationship between

damage sizes and the various impact parameters [4,7,10].

Very limited work has been reported about the full and

direct numerical simulation of the whole damage process.

Actually, most of the present numerical approaches have

only roughly evaluated the delamination sizes using some

simple empirical formulae [4,6,7] or simplified models with

the help of the experimental information [8].

With the previous background in mind, the objective of

the present paper is to develop an integrated and elaborate

numerical model, which can describe the various damages

and their mutual effects. For this purpose, based on our

previous work [11–13] we have built up an FEM model

based on the Mindlin [14] plate element for directly and

completely simulating the low-velocity impact-induced

damages in laminated plates. Various aspects in this

model, such as the damage criteria, update of plate stiffness,

dynamic contact problem between delaminated layers,

adaptive analyses, etc. have been studied in detail. Some

new and effective techniques have also been put forward for

increasing the computational efficiency.

2. Description of damage patterns

For the sake of simplicity, only the cross-ply, i.e.

08/908/08 composite plates have been considered here, and

Fig. 1 presents several typical damage patterns in the plates

induced by low-velocity impact. From this figure, there are

at least two main categories of damages that can be

identified clearly, i.e. the matrix cracks and the delamination

of a peanut shape. There are two kinds of matrix cracks due

to tension and shear in this figure, which can be observed

very clearly. The first one is a long bending matrix crack

along the horizontal or 08 direction whose length is usually

the same as or even longer than that of the peanut

delamination as shown in Fig. 1. The second one is some

short shear matrix cracks near the impact location, which

are aligned in the vertical or 908 direction. Another main

kind of damages, i.e. the delamination of a peanut shape,

can also be identified in Fig. 1. This delamination is located

on the bottom interface, i.e. 908/08 interface, with the peanut

shape elongating in the direction of the fibers in the lower

ply. Also, there are other two kinds of damages, i.e. the fiber

breakage due to tension and the matrix crushing due to

compression. Generally, these two kinds of damages

patterns are not the principal ones induced by the low-

velocity impact. From some previous researches [4,10], the

common damage process induced by low-velocity impact

loads can be described as follows: the impact load first

causes shear matrix cracks in the second 908 layer, which

can generate delamination immediately along the bottom or

upper interface of the cracked layer. As the impact event

proceeds, additional bending matrix cracks can occur

subsequently in the third 08 layer and can produce additional

delamination along the bottom interface. Usually, the

delamination triggered by the shear matrix cracks on the

upper interface, i.e. 08/908 interface, only propagates

unstably toward the impact location. Hence, its size is

usually very small with negligible consumption of impact

energy. On the other hand, the major delamination on the

bottom interface as shown in Fig. 1, which is caused by the

shear cracks and bending cracks and dominated by

the bending cracks, extends very stably. This major

delamination of the peanut shape is of particular interest

here and will be only considered in the present study.

3. FEM model and numerical techniques

3.1. Impact dynamics

Due to the low computational cost and strong ability, the

Mindlin plate element [14], which takes transverse shear

deformation and large deformation into account and has 5

DOFs ðûi; v̂i; ŵi; uxi; uyiÞ
T on each node, has been chosen.

The system equation for describing the motion of the plates

is

M €̂u þ Kû ¼ p̂ 2 F̂ ð1Þ

where p̂ is the equivalent external load corresponding to the

displacement û; which includes the impact force from

the rigid ball, and F̂ is the equivalent load corresponding to

the non-linear items of strain [14] due to large deformation.

A rigid ball of mass ms and velocity v impacts

transversely at the center of the plates as shown in Fig. 2.

The dynamic equation of the rigid ball is

ms €ws ¼ F 2 msg ð2ÞFig. 1. Damage in cross-ply laminates under low-velocity impact.
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where ms is the mass of the rigid ball and F is the impact

reaction force.

The impact reaction force connecting the ball and the

plates can be calculated using a modified Hertz indentation

law proposed by Tan and Sun [15]

F ¼

ka1:5 loading

Fm

a2 a0

am 2 a0

� �q

unloading

8><
>: ;

a0 ¼
bðam 2 acrÞ ðam . acrÞ

0 ðam # acrÞ

( ð3Þ

where k, q, b and acr are experimental constants, am is the

maximum of the indentation depth during loading process,

Fm is the maximum of the impact force before unloading

stage, a0 is the permanent indentation depth and a is the

indentation depth. In order to stabilize the FEM analysis, we

apply a uniformly distributed load on the central small

element of the laminates, instead of a single concentrated

force F [12,13].

Because of the different characteristics of Eqs. (1) and

(2), they are solved independently, and are connected using

the iteration process for solving Eq. (3). We have adopted a

modified Newmark algorithm proposed by authors [11] to

solve Eq. (1) for obtaining the stable transient response of

plates. We have also found that if the central difference

scheme or the Newmark scheme is used for Eq. (2), the time

increment must be controlled to be small enough, e.g.

Dt , 0:001; ms, in order to avoid numerical instability or

ensure calculation precision. Here, we examined Eq. (2) to

uncover the problem, and then proposed an efficient time

integration scheme.

Without losing generality, in the loading process, by

substituting Eq. (3) into Eq. (2), we can obtain the transient

dynamic equation of the rigid ball as:

ms €ws ¼ kðŵ 2 wsÞ
1:5

2 msg

,

_ws ¼ vs

_vs ¼
1

ms

kðŵ 2 wsÞ
1:5 2 g

8><
>: ð4Þ

Here, we assume that the displacement of laminates on the

impact point ŵ ¼ Const: Expanding the above equation into

Taylor’s series leads to:

_ws ¼ vs

_vs ¼ 2
1:5

ms

kðŵ 2 w0Þ
0:5ws þ

1:5

ms

kðŵ 2 w0Þ
0:5w0

þ
1

ms

kðŵ 2 w0Þ
1:5 2 g

8>>>>><
>>>>>:

ð5Þ

This linear ordinary differential equation system is found to

be a stiff system [16] from its two eigenvalues. Thus we

utilize the following AðaÞ stable fourth-order method

proposed by Gear [16] to solve Eq. (2)

Ynþ4 ¼
1

25
ð48Ynþ3 2 36Ynþ2 þ 16Ynþ1 2 3Yn þ 12hFnþ4Þ

ð6Þ

where Y ¼ {ws;vs}
T and F ¼ {vs; ð1=msÞkðŵ2wsÞ

1:5 2 g}T;
and h denotes the increment between two immediate time

steps.

Numerical experiments have shown that the large time

increment can be used to accomplish an impact process in

the above scheme.

3.2. Modeling failures of fiber and matrix

Recently, Hou et al. [6] summarized the stress-based

failure criteria for fiber failure, matrix cracking and matrix

crushing as shown in Fig. 3 and Table 1. This technique is

Fig. 3. (a) Fiber failure; (b) matrix cracking; (c) matrix crushing.

Fig. 2. Impact model.
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obviously based on some average meaning, which has been

adopted by many previous studies [4–6,10] to deal with

these three types of failure. Here, we adopted this technique

[6]. Furthermore, according to Maxwell’s principle vij=Ej ¼

vji=Ei and the constitutive relation of the single layer in

laminates, we introduce a strategy for updating the stresses

and the equivalent strategy for updating elastic constants as

shown in Table 2.

The failure criteria in Table 1 are used to check the

failure state of each layer in every element for laminates. At

first, five stress components within a specific layer of an

element are obtained by averaging the corresponding

components from nine Gaussian points within the element,

and then submitted into the failure criteria. If the stress state

satisfies the failure criteria, the material constants in this

layer of the element should be modified according to the

strategy in Table 2. Parameters d and e in Table 2, which are

determined by pilot calculation, describe damage-resisting

capability of laminates.

3.3. Modeling delamination

Some authors also deal with the delamination using the

one-off stress-based failure criteria, e.g. [4,6]. Although it

was partially successful in some limited cases, its

applicability to predict the delamination damage remains

unjustified [10] since the stress field is redistributed at the

onset of delamination. Davies and Zhang [7] tried to employ

the stress-based criterion to predict the delamination sizes.

Their conclusion is that it has clearly little relevance with

reality except perhaps for the initial damage in the thinner

plates, but only at the onset. On the other hand, impact tests

on thermoset and thermoplastic composites [1] have shown

that the delamination results from a dynamic fracture

process. It seems that a fracture mechanics approach may be

more appropriate for characterizing the delamination. This

view has been fully verified by Davies and Zhang [7]. Here,

we adopted this viewpoint and only focused on the major

delamination of the bottom interface.

3.3.1. Failure criterion for delamination

We employ Griffith criterion of strain energy release rate

for the delamination propagation. The failure criterion and

some presumptions can be expressed as:

1.
G # GC not extend

G . GC extend

(
ð7Þ

where GC is the value of the critical or threshold strain

energy release rate.

2. At a specific moment, the stresses at the front of the

delamination are assumed to maintain unchanged while

the crack grows.

3. The critical strain energy release rate GC is assumed to be

a constant.

4. The crack grows along the direction in which the largest

strain energy release rate is produced.

Here, we use a series of line segments to approximate the

profile of the delamination front. For this purpose, a

technique for computing the strain energy release rate at

the delamination front in the Mindlin plate model is

Table 2

Strategy of updating elastic constants

Updating strategy of stress

in Ref. [8]

s11 ¼ s22 ¼ s33 ¼ 0;

s12 ¼ s23 ¼ s31 ¼ 0

(fiber failure)

s22 ¼ 0; s12 ¼ 0

(matrix cracking)

s22 ¼ 0 (matrix crushing)

Updating strategy of elastic

constant in this paper

d q 0; e=minðEi; vj;GkÞ . 0;

e=minðEi; vj;GkÞp 1

Ei ¼ maxðEi=d; eÞ E2 ¼ maxðE2=d; eÞ E2 ¼ maxðE2=d; eÞ

vij ¼ maxðvij=d; eÞ v12 ¼ maxðv12=d; eÞ v12 ¼ maxðv12=d; eÞ

Gij ¼ maxðGij=d; eÞ G12 ¼ maxðG12=d; eÞ

(fiber failure) (matrix cracking) (matrix crushing)

Note: i; j; k ¼ 1; 2; 3; if not specified.

Table 1

Failure criteria of fiber and matrix and strategy of updating stresses [8]

Failure stress

state

Failure criteria Updating strategy

of stresses

Fiber failure s11

XT

� �2

þ
s2

12 þ s2
13

S2
f

 !
$ 1

s11 ¼ s22 ¼ s33 ¼ 0;

s12 ¼ s23 ¼ s31 ¼ 0

Matrix cracking

if s22 $ 0

s22

YT

� �2

þ
s12

S12

� �2

þ
s23

Sm23

� �2

$ 1

s22 ¼ 0; s12 ¼ 0

Matrix crushing

if s22 , 0

1

4

2s22

S12

� �2

þ
Y2

Cs22

4S2
12YC

2
s22

YC

þ
s12

S12

� �2

$ 1

s22 ¼ 0

XT: fiber directional (1-axis) tensile strength; YT: transversal (2-axis)

tensile strength; YC: transversal (2-axis) compressive strength; S12:

laminates’ plane (1–2 plane) shearing strength; Sf: shearing strength

causing fiber failure; Sm23: cross sectional (2–3 plane) shearing strength

causing matrix cracking.
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proposed. Considering two small rectangular elements L

and D shown in Fig. 4, which represent intact part and

delaminated part respectively, the delamination extension

can be thought of as a transition from state L to state

D. Firstly, the increment of elastic strain energy during the

deformation from L to D is

dp ¼
1

2

ð
ð0sij

0eij þ
0si3

0ei3 2 sijeij 2 si3ei3Þdz;

ði; j ¼ 1; 2Þ

ð8Þ

where sij; eij;
0sij and 0eij represent the in-plane stresses and

strains of elements L and D, respectively. Similarly, si3; ei3;
0si3 and 0ei3 represent the transverse shear stresses and

strains, of elements L and D, respectively.

Secondly, according to presumption 2 stated above, the

work of internal forces during deformation is:

dw ¼
ð
½0sijð

0eij 2 eijÞ þ
0sieð

0ei3 2 ei3Þ�dz;

ði; j ¼ 1; 2Þ

ð9Þ

Then, the energy released can be written as:

dp ¼ dw 2 dp ð10Þ

Therefore, the strain energy release rate G is:

G¼
dp

dA
¼
ð
½0sijð

0eij 2 eijÞþ
0sieð

0ei3 2 ei3Þ2
1

2

	ð0sij
0eij þ

0si3
0ei3 2sijeij 2si3ei3Þ�dz=dA;

ði; j¼ 1;2Þ

ð11Þ

Here, in fact, we utilize a hybrid model by comprehensively

considering the effects of the tension and transverse shear

stress/strain components. The above theory for calculating

the strain energy release rate is similar to that in Ref. [17],

but we extended it from the classical plate theory into the

Mindlin plate theory.

3.3.2. Modeling delamination and solution of dynamic

contact problem

A quarter of the plates in Fig. 1, i.e. the top right corner, is

modeled using the FEM mesh as shown in Fig. 5.

For 08/908/08 cross-ply laminates under the low-velocity

impact, the major delamination only appears on the bottom

interface, i.e. 908/08 interface. Without an onset criterion for

delamination, we presume that there is an initial tiny

delaminated element under the impact point. It was found

that the results, e.g. final delamination size, are insensitive to

the pre-defined initial delamination size when the area of

this element is small enough (less than 0.05% of the whole p

late). Furthermore, the portion of plates near the impact p

oint, which is considered the possible delaminated area, is

meshed into double-layer Mindlin plate elements, while the

portion far from the impact point is meshed into single-layer

Mindlin plate elements, as shown in Fig. 5. Naturally, the

continuity of the displacements on the borderline between

the single-layer portion and the double-layer portion should

be maintained. Also, before delamination occurs, three

displacement components on the interfaces of the upper/

lower elements within the double-layer portion are enforced

to be identical using the penalty functions. After the

occurrence of delamination, these penalty functions should

be removed and the contact effect must be taken into account

at the interface. Prompted by the idea in Ref. [18], we

construct a first-order continuous penalty function, letting

pz ¼
�pz e2bgz gz $ 0; not impenetrate

�pz 2 kgq
z gz , 0; impenetrate

(
;

ðb; k q 0Þ

ð12Þ

where gz ¼ ŵup 2 ŵlow is the gap function, and �pz is the

actual normal contact force.

The above strategy neglects friction between the two

delaminated layers. It can be recognized that pz in Eq. (12) is

just the correction term conjugate to the normal contact

force between delaminated layers. �pz is an unknown

quantity, which can be obtained implicitly by using the

following iteration scheme:

loading stage : iþ1pz

¼

ipz e2bðgi
zþgiþ1

z Þ igz $ 0; not impenetrate

ipz 2 kðgi
z þ giþ1

z Þq igz , 0; impenetrate

8<
: ð13aÞ

unloading stage : iþ1pz ¼ 2kgiþ1
z ð13bÞ

Fig. 5. FEM model.

Fig. 4. View of the delamination front for calculating strain energy release

rate (upper diagram is front view and lower diagram is top view).
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It has been identified [4,7,10] that all damages are

completed before the maximum impact force. Here, to

reduce the computational cost, in the unloading stage, we

employed a simple technique, in which, the two delami-

nated layers are connected to move together by limiting the

contact iteration number to be 1 and inserting the strong

penalty functions at the interface. The selection of

parameter q will directly affect the rate of convergence.

We set q ¼ 1.5 from numerical experiences.

3.3.3. Implementation of delamination failure criterion

As shown in Fig. 6, assuming that the profile of the

delamination front and the neighboring stresses/strains at

time t are known, we simulate the delamination extension

using the following procedure:

1. Perform stress extrapolation and stress smoothing using

the Gaussian integration points on elements on the

delamination front.

2. Calculate the strain energy release rate Gi ði ¼

0; 1; 2;…; 2N 2 1; 2NÞ; of the points on the delamination

front by employing Eq. (11).

3. Calculate the average strain energy release rate of line

segments on the delamination front Gi ¼ ðG2i22 þ

G2i21 þ G2iÞ=3 ði ¼ 1; 2;…;NÞ:
4. Sort G i and obtain the sequence Gi1 $ Gi2 $ · · ·GiN $ 0:
5. Under the delamination growth criterion, i.e. Eq. (7) and

the presumption 4 in Section 3.3.1, if Gik $ GC $ Gikþ1 ;
we let the delamination extend n elements along the

exterior normals of the line segments i1; i2;…; ik0 ðk
0 # kÞ;

where k0 is a parameter and n represents the growth length

within one time increment Dt. In the present FEM codes,

we keep k0 ; 1 in all our numerical simulations. That

means, among all the segments that are greater than Gc,

only the one with the largest strain energy release rate

extends within one time step. Obviously, it is unreason-

able to let all segments of the larger strain energy release

rate than the critical one extend simultaneously since the

stress/strain fields will be redistributed after the extension

of the segment of the largest strain energy release rate.

If the actual crack growth length is less than one element

length within the time increment Dt, n should be kept as

1. In computation, this requirement is satisfied by

automatically adjusting the time increment. Simply

speaking, when the calculated energy release rate

becomes closer to the critical value, we gradually reduce

the current time increment in proportion. Also, as long as

the delamination extension occurs, we further reduce the

time step in proportion. In this case, it is reasonable to set

n ¼ 1; i.e. the extension of one element within one time

step.

6. Update data structure and form a new profile of the

delamination.

3.4. Adaptive strategy

The adaptive strategy includes the following three

aspects: (a) adjusting the time increment according to stress

rate; (b) updating the stiffness matrix according to the

current extent of deformation; (c) modifying penalty

parameters according to the current degree of damage,

which are explained as follows.

Generally, the time increment should be adjusted

according to the damage evolution and the extent of

deformation instead of keeping constant. In the FEM

code, we take the impact point as the reference point.

According to the stress rate at this point, we automatically

adjust the time increment under the precondition of

sufficient precision.

Because some local areas of laminates are in the state of

large deformation during the impact process, the non-linear

stiffness matrix needs to be updated step-by-step including

its re-formation and re-decomposition. To reduce the

computational cost, in the FEM code, we use the deflection

at the impact point as a yardstick to measure the extent of

deformation of laminates, and then to decide whether to

update the stiffness matrix. Specifically, whenever the

deflection at impact point accumulatively increases by a

fixed constant within some time steps, the stiffness matrix is

then updated once. This constant is set from experience to

be around 0.3% of the total thickness of plates.

Two penalty parameters in Eqs. (13a) and (13b), b and

k, have the direct influence on the convergence property of

the contact iteration. We adjust the parameter k according

to the equivalent bending stiffness in the delaminated area,

which decreases due to the delamination and the updating

of material constants caused by the matrix cracks as shown

in Table 2. We set k to be the product of the greatest

bending stiffness coefficients in the delamination area and a

specific large positive value, e.g. 1000.0. Furthermore, we

adjust parameter b according to the current average

delamination gap. Practically b can be set to be the

product of the average gap and an adjustment factor, which

is determined by the approach of trial and error. This

adjustment factor is chosen to be 1.5 to attain a satisfactory

convergence rate.

Fig. 6. Schematic view of delamination extension.
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Fig. 7. Flowchart of FEM program.
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4. Flow chart of the present FEM code

Based on the previous proposed numerical model, we

developed an FEM code, which is shown in Fig. 7. There are

three major loops in this flowchart. The outermost loop is

the time integration loop for computing the responses at the

various time points. Before the step obtaining the strain/

stress, there are two non-linear iteration loops. The outer

loop is the non-linear iteration for solving the impact force

calculated by Eq. (3). The inner loop is the non-linear

iteration for analyzing the dynamic contact problems

between the delaminated layers using Eqs. (13a) and

(13b). Both non-linear iterations are carried out using the

Newton–Raphson algorithm.

5. Conclusions

We have developed an FEM model based on the 9-node

Mindlin plate element for directly simulating the low-

velocity impact-induced damage in laminated plates. This is

an integrated numerical model, which includes various

aspects, such as the damage criteria for the various damages,

the updating strategy of plates stiffness due to various

damages, the efficient solution of the ordinary differential

equation of the rigid ball, the detailed modeling of the

various damages, the dynamic contact problem between

delaminated layers, adaptive techniques for enhancing the

computational efficiency, etc. In fact, this complicated and

detailed numerical model has been set up based on our long-

term work in this field from 1995. Many critical aspects of

this code based on the proposed approach have been verified

through many previous experimental and numerical results

[11–13,17]. In Part II of this two part series, we will further

demonstrate the justification and effectiveness of the present

approach through the comparison with some experimental

results. After the verification, many aspects of the low-

velocity impact-induced damage process will also be

investigated through the solution of many carefully

designed models using the present numerical technique.

Acknowledgements

We would like to thank Professor W.M. Zheng for his

help. Computer systems used include the 144-node TS108

cluster system at Tsinghua University, and SW I system at

Beijing High Performance Computer Center. Some authors

were supported by the Natural Science Foundation of China

under Grant 59875045 and by Basic Research Foundation of

Tsinghua University under Grant JC200020.

References

[1] Sun CT, Grady JE. Dynamic delamination fracture toughness of a

graphite/epoxy laminate under impact. Compos Sci Technol 1988;31:

55–72.

[2] Choi HY, Wu HY, Chang FK. A new approach toward understanding

damage mechanisms and mechanics of laminated composites due to

low-velocity impact. Part II. Analysis. J Compos Mater 1991;25:

1012–38.

[3] Choi HY, Wu HY, Chang FK. Effect of laminate configuration and

impactor’s mass on the initial impact damage of graphite/epoxy

composite plates due to line-loading impact. J Compos Mater 1992;

26:804–27.

[4] Choi HY, Chang FK. A model for predicting damage in graphite/

epoxy laminated composites resulting from low-velocity point impact.

J Compos Mater 1992;26:2134–69.

[5] Collombet F, Lalbin X, Lataillade JL. Impact behavior of laminated

composites: physical basis finite element analysis. Compos Sci

Technol 1998;58:463–78.

[6] Hou JP, Petrinic N, Ruiz C, Hallett SR. Prediction of impact damage

in composite plates. Compos Sci Technol 2000;60:273–81.

[7] Davies GAO, Zhang X. Impact damage prediction in carbon

composite structures. Int J Impact Engng 1995;16:149–70.

[8] Zheng S, Sun CT. A double-plate finite element model for the impact-

induced delamination problem. Compos Sci Technol 1995;53:111–8.

[9] Davies GAO, Hitchings D, Wang J. Prediction of threshold impact

energy for onset of delamination in quasi-isotropic carbon/epoxy

composite laminates under low-velocity impact. Compos Sci Technol

2000;60:1–7.

[10] Wang H, Vu-Khanh T. Fracture mechanics and mechanisms of

impact-induced delamination in laminated composites. J Compos

Mater 1995;29:156–78.

[11] Hu N. A solution method for dynamic contact problems. Comput

Struct 1997;63:1053–63.

[12] Sekine H, Hu N, Natsume T, Fukunaga H. Low-velocity impact

response analysis of composite laminate with a delamination. Mech

Compos Mater Struct 1998;5:257–78.

[13] Hu N, Sekine H, Fukunaga H, Yao ZH. Impact analysis of composite

laminates with multiple delaminations. Int J Impact Engng 1999;22:

633–48.

[14] Pica RDW, Hinton E. Finite element analysis of geometrically non-

linear plate behavior using a Mindlin formulation. Comput Struct

1980;11:203–15.

[15] Tan TM, Sun CT. Wave propagation in graphite/epoxy laminates due

to impact. J Appl Mech 1985;52:6–12.

[16] William HP. Numerical recipes in C: the art of scientific computing,

2nd ed. Cambridge: Syndicate; 1995. p. 734–48.

[17] Kamiya S, Sekine H, Yagishita Y. Computational simulation of

interlaminar crack extension in angle-ply laminates due to transverse

loading. J Compos Mater 1998;32:744–65.

[18] Zavarise G, Wriggers P, Schrefler BA. A method for solving contact

problems. Int J Numer Meth Engng 1998;42:473–98.

C.F. Li et al. / Composites: Part A 33 (2002) 1055–10621062


	Low-velocity impact-induced damage of continuous fiber-reinforced composite laminates. Part I. An FEM numerical model
	Introduction
	Description of damage patterns
	FEM model and numerical techniques
	Impact dynamics
	Modeling failures of fiber and matrix
	Modeling delamination
	Adaptive strategy

	Flow chart of the present FEM code
	Conclusions
	Acknowledgements
	References


