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Abstract: This paper proposes an impact localization system based on the fiber Bragg grating (FBG) 
array and minimum variance distortionless response (MVDR) beamforming algorithm. The linear 
FBG array, which contains seven FBG sensors, is used for detecting impact signals. Morlet wavelet 
transform is applied for extracting narrow-band signals of impact signals. According to the MVDR 
beamforming algorithm, the system realizes single-impact and multi-impact localizations. The 
localization system is verified on a 500 mm×500 mm×2 mm carbon fiber reinforced polymer (CFRP) 
plate for single-impact and multi-impact localizations. The average locating error and the maximum 
locating error are 6.8 mm and 9.9 mm, respectively. 
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1. Introduction 

For high-performance and lightweight structures, 
the increasing demands from aircraft industry 
stimulate application and development of composite 
materials [1, 2]. In the practical application of 
composite structure, impact can cause various barely 
visible damages, such as matrix cracking, ply 
delamination, and fiber fracture [3, 4]. The damages 
seriously degrade the security of composite structure 
[5, 6]. Therefore, impact event should be timely 
localized for the damage detection. Many methods 
have been researched for impact localization. But 
the localization object is mainly single-impact. In 
practice, multiple impact events often appear at the 
same time. Hence, the multi-impact localization 
method is imperative for the composite structure.  

Due to light weight and immunity to 
electromagnetic interference, fiber optic sensors 
have been widely researched for impact localization 
on the composite structure. Kirkby et al. [7] applied 
a triangle technology to locate impact source on 
composite panels by using fiber Bragg grating (FBG) 
sensors. Fu et al. [8] used the hyperbolic curves 
algorithm and four fiber optic sensors to achieve 
impact localization on the composite plate. Frieden 
et al. [9] obtained the location of impact through 
interpolation of a reference data set, consisting of 
arrival time delays and known location. The 
methods need the arrival time of impact signals. 
When multiple impact events simultaneously appear, 
the mixed impact signals of different impact sources 
need to be distinguished for obtaining arrival time of 
impact signals and locating multi-impact. Riberiro et 
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al. [10] and Jang et al. [11] used FBG sensors and 
the neural network method to obtain the location of 
impact source on the composite structure, 
respectively. Lu et al. [12] proposed support vector 
regression to determine impact source on the 
composite structure by using FBGs. Jiang et al. [13] 
used the extreme learning machine and FBG sensor 
network to obtain the location of impact. Lu et al. 
[14] applied least squares support vector machines 
and FBG sensors to localize impact. These methods 
can realize multi-impact localization, but a large 
number of training samples are needed before 
impact localization. 

This paper proposes a multi-impact localization 
system based on the FBG array and minimum 
variance distortionless response (MVDR) 
beamforming algorithm. A high speed FBG 
interrogation system is designed to detect impact 
signals. Morlet wavelet transform is applied to 
extract narrow-band signals of impact signals. 
MVDR beamforming algorithm is applied to 
localize multi-impact by the impact signals of FBG 
array. The system and localization algorithm are 
verified on a composite plate. The paper provides a 
novel multi-impact localization algorithm. 

2. Localization algorithm 

2.1 MVDR beamforming algorithm 

N sensors compose a line sensor array. The 
spacing of the neighboring sensors is d, as shown in 
Fig. 1. The coordinate of Sensor Si is (id, 0) 
( 0,  1,  ,  i N=  ). Assuming that K impacts occur, 
the coordinate of impact is 
( , )k kx y ( 1,  2,  ,  k K=  ). The output signal of 
Sensor Si can be expressed as 

1
( ) ( ) ( )

K

i ki i
k

z t s t n t
=

= +∑           (1) 

where ( )kis t  and ( )in t  are the impact signal of the 
kth impact and noise signal, respectively. S0 is 
considered as the reference sensor. The kth impact 
causes the elastic waves with a certain frequency 

component ω . The impact signal of the kth impact 
source, which is received by Sensor Si, can be 
represented by 

      j0
0( ) ( ) kik

ki k
ki

rs t s t e
r
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where kiτ  is the arrival time difference between S0 
and Si, kir  is the distance from the kth impact 
source to Si, and 0 ( )ks t  is the impact signal which 
is received by S0 and comes from the kth impact 
source. It can be expressed as 
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where c  is the wave velocity. Let ( , )k kx ya  
denote the steering vector. It is represented as 

0( , ) kijk
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For the whole sensor array, the signal vector can 
be expressed as  

( ) ( , ) ( ) ( )t x y t t= +Z A s N         (5) 
where  

1 2( ) [ ( ), ( ), , ( )]T
Nt z t z t z t= ⋅⋅ ⋅Z  
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1 2( ) [ ( ), ( ), , ( )] .T
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The steering vector ( , )k kx ya  can be given by  

( , ) [ ( , ), ( , ), , ( , )] .T
k k k1 k k k2 k k kN k kx y a x y a x y a x y= ⋅⋅ ⋅a  
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Fig. 1 Localization algorithm. 
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The essence of beamforming is to linearly 
combine the signals from sensors in a manner, that is, 
with a certain weighting, examining signals arriving 
from a specific location [15, 16]. The beamforming 
process is shown in Fig. 2. 
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zN(t)
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�
�

Σ
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( ) ( )V t t= HW Z

 
Fig. 2 Beamforming algorithm. 
As for the linear array with N sensors introduced 

above, the output of beamforming can be expressed 
as 

( ) ( )HV t t= W Z               (7) 
where 1 2[ , , , ]T

Nw w w= ⋅⋅ ⋅W  is the weighted vector. 
The output power of the linear array is     

[ ( ) ( )]H HP E V t V t= = W RW        (8) 
where [ ( ) ( )]HE t t=R Z Z  is the covariance matrix 
of signals of the sensor array.  

The objective of the MVDR beamforming 
algorithm is to preserve the power output of the 
impact signal and minimize the power output of 
interference and noise [17, 18]. Then the essence is a 
question of minimizing the constraint: 

min HW RW  to subject ( , ) 1H x y =W a   (9) 
where ( , )x ya  is the steering vector. The solution 
of the above problem is given by 

MVDR
( , ) .

( , ) ( , )H

x y
x y x y

−

−
=

1

1

R aW
a R a

      (10) 

According to (8) and (10), the output power of 
MVDR is                 

MVDR
1( , ) .

( , ) ( , )HP x y
x y x y−

= 1a R a
     (11) 

In practical applications, R  is estimated by a 
finite number of data vectors:  

1ˆ H

L
=R ZZ               (12) 

where R̂  is the estimation of R , and L  is the 
number of the snapshots. Hence, the output power 
can be expressed as      

MVDR
1( , ) .ˆ( , ) ( , )H

P x y
x y x y−

=
1a R a

     (13) 

When the MVDR beamforming algorithm is 
used for impact localization, the monitoring area is 
divided into a large number of points. The steering 
vector ( , )x ya  of each point is obtained. According 
to the covariance matrix R̂  of impact signals of 
sensor array and (13), the output power of each 
point is calculated. Based on the values of output 
powers, localization imaging is compounded. The 
location of peak of output power is the impact point.  

2.2 Morlet wavelet transform 

The MVDR beamforming algorithm requires 
that the impact signal is a narrow-band signal. The 
elastic waves caused by impact are wide-band 
signals. Therefore, the Morlet wavelet transform is 
introduced for extracting the narrow-band signal of 
the impact signal. Moreover, the arrival time 
difference of impact signals of different sensors is 
obtained by the Morlet wavelet transform. 
According to the arrival time difference, the wave 
velocities in different directions are calculated on 
the composite material.  

The Morlet wavelet transform of impact signals 
( , )u x t  is expressed as   

*1( , , ) ( , ) t bT x a b u x t dt
aa

ψ
+∞

−∞

− =  
 ∫W    (14) 

where * ( )tψ  is the complex conjugate of the 
mother wavelet, a  is the scale factor, and b  is the 
time factor. The Morlet wavelet is given by [19]  

2
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The Fourier transform is given by 
2( )

8( )
b

ce
ω

ω ω
πΨ ω

− −
=             (16) 

where 2b bf ω π=  is the wavelet bandwidth, and 
2c cf ω π=  is the center frequency. The function 

can be considered as a modulated Gaussian function. 
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Therefore, the narrow band signal, whose central 
frequency is cω , is extracted by the Morlet wavelet 
transform. The bandwidth is limited in the range of 
[ ]( ) 2,( ) 2c b c bω ω ω ω− + . The impact signal 

( , )u x t  can be considered as a time harmonic 
motion of two signals of unit amplitude with 
different frequencies 1ω  and 2ω  propagating in 
the x-direction as follows:   

1 2 2j( ) j( )( , ) 1k x t k x tu x t e eω ω− − − −= +       (17) 

where 1k  and 2k  are the wave numbers. 
Introduction:  

* * *
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The module value of impact signal is acquired 
by the Morlet wavelet transform:  

| ( , , ) | 2 | ( ) | 1 cos( ).0T x a b a a b kxΨ ω ω= + ∆ − ∆W  
(19) 

When b k ω= ∆ ∆ , the module value is the 
maximum. The time difference of impact signals of 
different sensors are obtained by the peak time of 
module values. 

3. Localization experiments  

3.1 Experimental setup 

The experimental setup contains a carbon fiber 
reinforced polymer (CFRP) plate with a dimension 
of 500 mm×500 mm×2 mm. The ply sequence is 
[45/0/−45/90/0/−45/0/−45/0]s. Four edges of the 
plate are clamped tightly by metal fixture. The FBG 
sensor is used for detecting the impact signal. The 
length and reflectivity of the FBG are 3 mm and 
70%, respectively. The wavelengths of FBGs are 
within the limits of 1550±0.1 nm. The high speed 
FBG interrogation system comprises amplified 
spontaneous emission (ASE) source, edge-filter, 
couplers, photoelectric detectors (PD), amplifier 
(AMP), and data acquisition equipment with 

sampling frequency of 5 mHz. The wavelengths 
parameters of FBGs all lie in the edge range of 
wavelength of ASE source. Power demodulation 
method, based on edge filter principle [20, 21], 
satisfies the need of acquiring high frequency 
signals. Impact events are generated by steel balls 
with the diameter of 20 mm. 

3.2 Wave velocities measurement  

According to (3), the MVDR beamforming 
algorithm needs wave velocity for impact 
localization. Due to the anisotropy of composite 
material, the wave velocities of different directions 
are different. Therefore, the wave velocities of 
different directions should be measured for the 
MVDR beamforming algorithm. 

Four FBGs are stuck on the CFRP plate, as 
shown in Fig. 3. The coordinates of FBGs are (150, 
0), (0, −150), (−150, 0), and (0, 150), respectively. 
The high speed FBG interrogation system is shown 
in Fig. 4. Impact experiment is preformed on A point 
first. The angle between AS1 and x axis is 30°. 
Impact signals of S2 and S4 are shown in Fig. 5. 
Figure 6 is the frequency spectrum of the signal of S2. 
The impact signal is a wide-band signal. The 
frequency band mainly is from 0 kHz to 100 kHz. 
The narrow-band signals, whose central frequency is 
45 kHz, are extracted by the Morlet wavelet 
transform. The arrival time difference of the signals 
of S2 and S4 is obtained by the peaks of module 
values of the narrow-band signals, as shown in Fig. 7. 
According to the distance difference between AS2 
and AS4 and the arrival time difference of the signals 
of S2 and S4, the wave velocity ( 90c ) of 90° direction 
is calculated. The arrival time difference ( t∆ ) of the 
signals of S1 and S2 is extracted. The wave velocity 
( 30c ) of 30° direction is obtained by 

1 2

30 90

S A S AL L
t

c c
− = ∆ . 

According to the above method, the wave 
velocities of the other directions are calculated, as 
shown in Fig. 8.
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Fig. 3 Wave velocities measurement.                      Fig. 4 Interrogation system. 
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Fig. 7 Time difference of narrow-band signals.              Fig. 8 Wave velocities of different directions. 

 
3.3 Localization experiments 

Localization experiments are performed in   
400 mm×400 mm monitoring area. Seven FBGs are 
stuck on x axis, as shown in Fig. 9. The coordinate of 
FBG S4 is (0, 0). The spacing of the neighboring 
FBGs is 10 mm. The signal demodulation system is 
consistent with Fig. 4. The system includes the ASE 
source, edge-filter, couplers, PD, AMP, and data 
acquisition equipment. A single-impact experiment 
is performed on (−85, 229) which is randomly 

selected. The impact signals of FBG array are shown 
in Fig. 10. According to the Morlet wavelet 
transform, the narrow-band signals of impact signals 
are extracted, as shown in Fig. 11. The monitoring 
area is divided into 160000 points. The steering 
vector ( , )x ya  of each point is calculated. 
According to (13), the output power of MVDR of 
each point is calculated. The output powers are 
considered as pixel values. Then the localization 
image is obtained, as shown in Fig. 12. The 
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coordinate of the maximum output power is impact 
point. The coordinate of the single-impact 
experiment is (−89, 232). To evaluate the accuracy 
of the results, an error function is defined as   

2 2
actual predicted actual predicted( ) ( )x x y yε = − + −   (20) 

where actual actual( , )x y  is the coordinate of actual 
impact source and predicted predicted( , )x y  is the 
coordinate of predicted impact source. Hence, the 
localization error of the single-impact is 5.7 mm. 

Dual-impact events are randomly selected to 
verify the multi-impact localization. The coordinates 
of dual-impact are (53, 65) and (167, 361). The 
impact signals and narrow-band signals are shown in 
Figs. 13 and 14, respectively. According to the 
MVDR beamforming algorithm, the multi-impact 
localization is shown in Fig. 15. The predicted 
coordinates of dual-impact are (59, 67) and (171, 
367). The localization errors are 6.3 mm and     
7.2 

 mm, respectively. 
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Fig. 9 Localization experiment. 
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Fig. 10 Impact signals of single-impact. 
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Fig. 11 Narrow-band signals of single-impact. 

 
Fig. 12 Single-impact localization. 
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Fig. 13 Impact signals of dual-impact. 
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Fig. 14 Narrow-band signals of dual-impact. 
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Fig. 15 Dual-impact localization. 

In order to further verify the capacity of the 
multi-impact localization of the MVDR 
beamforming algorithm, five dual-impact 
experiments are performed. The results of 
localization experiments are shown in Table 1. The 
average error and the maximum error are 6.8 mm 
and 9.9 mm, respectively. The experiments 
demonstrate that MVDR beamforming algorithm 
can determine location of impacts. 

Table 1 Localization results. 
Impact 
event 

Actual coordinate 
(mm) 

Predicted coordinate 
(mm) 

Error 
(mm) 

1 (−181,76) (−136,238) (−178,80) (−133,236) 5 3.6 
2 (−65,273) (−58,110) (−69,279) (−63,116) 7.2 7.8 
3 (52,79) (131,196) (46,75) (137,203) 8.1 9.2 
4 (178,89) (151,259) (179,93) (158,262) 4.1 7.6 
5 (128,113) (−139,197) (121,106) (−136,192) 9.9 5.8 

4. Conclusions 

The paper proposes an impact localization 
system based on the FBG network and MVDR 
beamforming algorithm. An FBG linear array is 
utilized for detecting impact signals. The edge-filter 
method is used for signal interrogation. The Morlet 
wavelet transform is mainly applied for extracting 
the narrow-band signals of impact signals. The 
MVDR beamforming algorithm is employed for 
impact localization. The localization system is 
verified on 500 mm×500 mm×2 mm CFRP plate for 
single-impact and multi-impact localizations. The 
average localization error and the maximum 
localization error are 6.8 mm and 9.9 mm, 
respectively. The experiments demonstrate that the 

localization system can localize the multi-impact. 
Hence, it can meet the requirements of practical 
multi-impact localization. 
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