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With a thin coating of low-work-function material, thermionic emission in the cathodic segment of

bare tethers might be much greater than orbital-motion-limited (OML) ion collection current. The

space charge of the emitted electrons decreases the electric field that accelerates them outwards,

and could even reverse it for high enough emission, producing a potential hollow. In this work, at

the conditions of high bias and relatively low emission that make the potential monotonic, an

asymptotic analysis is carried out, extending the OML ion-collection analysis to investigate the

probe response due to electrons emitted by the negatively biased cylindrical probe. At given emis-

sion, the space charge effect from emitted electrons increases with decreasing magnitude of nega-

tive probe bias. Although emitted electrons present negligible space charge far away from the

probe, their effect cannot be neglected in the global analysis for the sheath structure and two thin

layers in between sheath and the quasineutral region. The space-charge-limited condition is located.

It is found that thermionic emission increases the range of probe radius for OML validity and is

greatly more effective than ion collection for cathodic contact of tethers. VC 2015

AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4919945]

I. INTRODUCTION

Electrodynamic tethers are conductive wires allowing

flow of electric current between the ends. Arising from the

relative motion between plasma and tether in the presence of

a planetary magnetic field, a current is induced to flow inside

the tether and the magnetic field exerts a force on this cur-

rent. The tether system exchanges momentum with a plane-

tary magnetosphere and offers the opportunity for in-orbit

“propellantless” propulsion around planets with a magnetic

field and an ionosphere. Bare (uninsulated) tethers elimi-

nated the need for an electron collector at the anodic end.1–3

Possibly using bare tethers with no recourse to a plasma con-

tactor at the cathodic end carries the bare-tether concept to

its full completion. However, actual ion collection along a

cathodic segment is a poor replacement for a hollow cathode.

Thermionic emission from materials with low work function

(W) may be a good replacement.

A low work function material, C12A7:e�, was devel-

oped and studied at the University of Tokyo by the Professor

H. Hosono’s group. In vacuum, C12A7:e� electride was

found to have a high potential for cold-cathode electron

emission. The field-emission characteristics give an

extremely low W value, ca. 0.6 eV.4 However, this electride

surface easily reacts with O2 and/or H2O molecules in the

atmosphere, which strongly suggests that an insulating or

semiconducting layer inevitably develops on the electric sur-

face. It is thus difficult to prepare a pure intrinsic surface to

know an intrinsic work function value.5 In a later study, a

value for W was found to be somewhat higher, ca. 2.4 eV,

although it was still very low.6 Recent study in Colorado

State University gave a value of 0.76 eV.7 In tether applica-

tions, we can expect a low work function due to low density

of air molecules in space. Considering the lowest value

found 0.6 eV, it can emit intense current (10A/m2) at tem-

perature about 300K, well below values (1200K–1300K)

required by state-of-art electron emitting materials, say,

LaB6 and CeB6 (2.7 eV). Another feature of interest of

C12A7:e� electride is its high thermal stability compared to

state-of-art materials. Coating a tether with C12A7:e� would

allow efficient thermionic emission, and so cathodic contact,

at reasonable working temperatures.8,9

Thermionic emission is different from hollow cathode

emission in important respects concerning a tether system:

• Only electrons rather than plasma are emitted.
• Cylindrical rather than spherical geometry is involved,

which allows for collected ion current to follow an explicit

law.
• A relatively definite physical law for emission current is

involved, which is not the case for a hollow cathode, for

which broadly different regimes may exist, giving rise to

quite different schemes/analyses.
• Thermionic emission allows the current to be emitted over

a long segment of tether under a range of voltage-bias val-

ues, other than being emitted only at tether end as with

hollow cathodes.
• Use of laboratory test results in designing hollow cathode

for generic use in space is tricky.

In the case of no emission, current collection and sheath

structure around a spherical Langmuir probe have been stud-

ied in the literature, using radial-motion theory10,11 or

orbital-motion theory for mono-energetic attracted spe-

cies,12–15 while the cylindrical case was investigated for a
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Maxwellian distribution.16–19 The impact of relativistic

effects using similar methods has been analyzed for a possi-

ble Jupiter mission with electrodynamic bare tethers.20,21

The effects of emission were first investigated by Langmuir

for a planar sheath problem, not fully self-consistent but a

good approximation for strong double layers.22 Fluid models

have then been often used in the literature to analyze pla-

nar,23–25 cylindrical,26 or spherical27 sheath structures.

Following orbital-motion theory, Chang and Bienkowski dis-

cussed the electron emission effects in front of spherical and

cylindrical probes, considering their kinetics and the

attracted species as mono-energetic.28

This study, following closely the methods in Ref. 17,

extends the orbital-motion-limited (OML) ion-collection

analysis to investigate the probe response due to electrons

emitted by the negatively biased cylindrical probe. Sections

II and III formulate and model the problem of thermionic

emission in the bare-tether application. In Sec. IV we com-

pute the maximum probe radius-to-Debye length ratio Rmax/

kD for the OML regime to hold, and also locate the space-

charge-limited (SCL) condition, for which the electric field

vanishes at the probe, as result from the space charge arising

from emitted electrons. Results are discussed in Sec. V.

II. BARE TETHERWITH THERMIONIC EMISSION

A bare tether collects (electron collection) and emits

(ion collection or electron emission) current, along the

anodic segment AB (Up> 0) and the cathodic segment BC

(Up< 0) respectively (Fig. 1). The current flowing along the

tether vanishes at both ends. The small cross-sectional

dimension and the kilometers-long length of the tether allow

each point on the cathodic segment to emit current as if it

were part of a cylindrical probe uniformly polarized at the

local tether bias Up< 0, under two-dimensional probe condi-

tions that are also applied to the anodic-segment analysis.

In an unmagnetized plasma at rest, Poisson’s equation

governing the electrostatic potential

1

r

d

dr
r
dU

dr

� �

¼ e

eo
Ne þ Nem � Nið Þ ; (1)

presents axial symmetry with boundary conditions U¼Up at

r¼R, U ! 0 as r ! 1. This is to be supplemented by equa-

tions for number densities of ambient plasma ions Ni and

electrons Ne, and emitted electrons Nem.

As in the case of no emission and a collisionless plasma,

under high bias assumption, ions arrive at the negatively bi-

ased probe as electrons arriving at the positively biased

probe in Ref. 17; thus, Ni and Ne can be calculated by the

same kinetic analysis of the particle trajectories. The Vlasov

equation conserves the distribution function of plasma ions

along their orbits, being an undisturbed Maxwellian distribu-

tion at infinity. Due to the high negative bias, the repelled

plasma electron density is approximated by the simple

Boltzmann law

Ne rð Þ
N1

¼ exp
eU rð Þ
kTe

� �

; (2)

where N1 is the electron and ion particle density at infinity.

Asymptotic analysis of Poisson’s equation had been carried

out from infinity to the probe, crossing regions with different

behaviors, at the particular condition R¼Rmax and beyond

R>Rmax, and high bias.17,18 Rmax is the largest radius for the

OML regime to hold, the current being maximum as17

Ii;eOML � 2RLeN1

ffiffiffiffiffiffiffiffiffiffiffiffiffi

2jeUpj
mi;e

s

; (3)

where R and L are probe radius and length, respectively.

Plotting the potential profile U(r)/Up against R
2/r2 (Fig. 2, as

Fig. 2 in Ref. 17), the curve lies entirely above the diagonal

in case of OML regime (R�Rmax, Ii¼ IiOML), otherwise the

non-OML regime (R>Rmax, Ii< IiOML) applies.
18,19

In the presence of emission, emitted electrons result in

negative space charge, which decreases the electric field that

accelerates them outwards, or even reverses it, decelerating

electrons near the emitting probe. In the case of a monotonic

potential as curve c in Fig. 3, all electrons are accelerated

outwards without meeting any barrier, corresponding to the

emission at any local point on segment CB* (Fig. 1).

Considering the cathodic segment coated with a material

having work function W, the emitted current Iem at this seg-

ment is as high as the maximum current that can possibly be

emitted by the probe Iemp, given by the Richardson-Dushman

(RDS) equation

FIG. 1. Scheme of tether-to-plasma potential Up, tether potential Vt, plasma

potential Vpl and current I along a floating bare tether, operating in drag

mode. Em is the motional electric field, and vrel is tether velocity relative to

ambient plasma.
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Iemp ¼ 2pRL� ART
2
p exp � W

kTp

� �

;

AR ¼ 4pmek
2e

h3
¼ 1:2017� 106 A=m2K2 ;

(4)

as function of W and probe temperature Tp, independent of

bias, with AR the Richardson constant. As jUpj decreases

from tether end C, negative space charge increases its effect,

and at some point B*, the electric field vanishes at the probe

(curve b in Fig. 3), which is the onset of current being SCL.

In Fig. 2, curve b is horizontal at the probe surface R2/r2¼ 1.

Under further decrease of jUpj from B* to zero-bias-point B,

a potential hollow would develop in front of the tether (curve

a in Fig. 3). The resultant local minimum Um would repel

electrons not energetic enough back to the probe, the current

being Iem< Iemp. In Fig. 2, curve a would then actually

exceed the full square frame.

In this work, we concentrate on the monotonic potential

case, corresponding to the segment B*C in Fig. 1. Under

assumptions of high bias and relatively low emission, emit-

ted electrons are accelerated across the sheath, presenting a

small amount of space charge in the quasineutral region far

away from the probe. Outside but close to the sheath, the

behavior of the potential profile would be similar to that of

non-emitting OML ion collection, with modifications arising

from the space charge of emitted electrons, in particular on

the two transitional layers that match the quasineutral and

sheath regions. For simplicity, we consider throughout

R¼Rmax cases, where potential profile curves in Fig. 2 are

tangent to the diagonal at some radius r in the quasineutral

region. Considering equal plasma electron-ion temperature

Te¼Ti¼ T, we look for the general parametric dependence

of Rmax and locate the probe bias where the current starts to

be SCL (curve b in Figs. 2 and 3).

III. MODELLING

In absence of collisions, particles describe free orbits in

the axially symmetric potential field. The condition for a par-

ticle to reach the probe can then be derived from simple me-

chanical conservation laws. In a central force field where

cylindrical symmetry prevails, two constants of motion, in

addition to the axial velocity, characterize the particle orbit,

being transverse energy E and angular momentum J.

For ions, E and J are

E ¼ miv
2
r

2
þ miv

2
h

2
þ eU rð Þ ; J ¼ mirvh ; (5)

with E positive because U1¼ 0 but J covering both positive

and negative values. For an ion with energy E to possibly

exist at r, its J has to satisfy the cutoff boundary16

J2 � J2r ðEÞ ¼ �m2
i r

2
v
2
r � 0 ;

J2r ðEÞ ¼ 2mir
2ðE� eUÞ :

(6)

Actually, for an ion with energy E to arrive at r from infinity,

its angular momentum must satisfy the cutoff boundary

everywhere beyond r, which is called the absorption

boundary

J2 � J�2r ðEÞ � minfJ2r0ðEÞ : r0 � rg : (7)

At radius r, for incoming ions with energy E, the momentum

range is J2 � J�2r ðEÞ. Among these ions, those with J2 <
J�2R ðEÞ arrive and disappear at the probe, leaving the rest

reflected back to r. Thus the outgoing ions at r have the mo-

mentum range as J�2R ðEÞ � J2 � J�2r ðEÞ. After integration of

the undisturbed Maxwellian distribution function over the

energy domain E� 0 and the corresponding J domain for

both incoming and outgoing ions, the ion density at r

becomes17

Ni rð Þ
N1

¼
ð1

0

exp �E=kTð Þ
pkT

� 2� arcsin
J�r Eð Þ
Jr Eð Þ � arcsin

J�R Eð Þ
Jr Eð Þ

" #

dE ; (8)

where J�RðEÞ ¼ JRðEÞ in the case of R�Rmax, and Jr(E)� 0

is chosen for simplicity of presentation.

Electrons are emitted at the probe with a half-

Maxwellian velocity distribution28,29

fem R; vr; vhð Þ ¼ Nempme

pkTp
exp �mevr

2=2þ mevh
2=2

kTp

 !

; (9)

Nemp can thus be associated with Iemp as

FIG. 2. Schematics of potential profile U/Up versus R
2/r2 for given emission,

R¼Rmax, and different bias values.

FIG. 3. Typical potential distributions of a negatively biased probe in the

presence of electron emission.
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Nemp ¼
Iemp=2pRL

e
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2kTp=pme

p : (10)

The emitted current density and particle density versus probe

temperature for different work function are shown in Fig. 4.

The Vlasov equation conserves the distribution function

along electron orbits. Since we consider the case of mono-

tonic potential, vh decreases as angular momentum

Je ¼ mervh; (11)

keeps constant while moving outwards. Radial velocity thus

increases, as energy

Ee ¼ mev
2
r=2þ mev

2
h=2� eD/ ; DU ¼ U� Up ; (12)

keeps constant too, vh decreases, and U increases. As a result,

there is no potential barrier and all electrons emitted at the

probe can reach infinity and are thus present at any r. For elec-

trons with energy Ee, the integration domain of Je is thus

0 � J2e � J2eRðEeÞ ¼ 2meR
2Ee ; (13)

where we defined J2er ¼ 2mer
2ðEe þ eDUÞ. The velocity dis-

tribution integration becomes

Nem rð Þ
Nemp

¼2

ð1

0

exp �Ee=kTp
� �

pkTp
�arcsin

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R2Ee

r2 EeþeDUð Þ

s

dEe :

(14)

Taylor expansion of arcsin
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2x=ðxþ 1Þ
p

around x ! 0 is

arcsin
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2x=ðxþ 1Þ
p

¼ að ffiffiffi

x
p þ O½x	3=2Þ. Under condition of

eDU/kTp 
 1, we have

arcsin

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R2Ee

r2 Ee þ eDUð Þ

s

¼ R

r

ffiffiffiffiffiffiffiffiffi

Ee

eDU

r

þ O
Ee

eDU

� �3=2
 !( )

:

(15)

The emitted electron density becomes

Nem rð Þ
Nemp

� R

r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

kTp

pe U� Upð Þ

s

; (16)

which corresponds to radial motion away from the probe.

This approximation has an error of the order of [kTp/

eDU]3=2, breaking down near the probe surface where the

error becomes infinite. However, the conditions of high bias

and low probe temperature (low energy of emitted electrons)

confine the failure of this approximation to the vicinity of

the probe.

We introduce normalized quantities as

nD ¼ R

kD
; � ¼ Nemp

N1
; h ¼ T

Tp
;

z ¼ r

R
; W zð Þ ¼ � eU rð Þ

kT
> 0 ; (17)

ni;e zð Þ ¼ Ni;e rð Þ
N1

; nem zð Þ ¼ Nem rð Þ
Nemp

; (18)

� ¼ E

kT
; j2z �ð Þ ¼ J2r

2miR2kT
¼ z2 �þWð Þ : (19)

Then Poisson’s equation becomes

1

n2Dz

d

dz
z
dW

dz

� �

¼ ni � ne � �nem ; (20)

Wð1Þ ¼ Wp > 0 ; Wð1Þ ! 0 ; (21)

where densities are

ni zð Þ ¼
ð1

0

exp ��ð Þ
p

� 2� arcsin
j�z �ð Þ
jz �ð Þ � arcsin

ffiffiffiffiffiffi

Wp

p

jz �ð Þ

" #

d� ;

(22)

neðzÞ ¼ expð�WÞ ; (23)

nem zð Þ ¼ 1

z
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ph Wp �Wð Þ
p ; (24)

and the high bias assumption j2z¼1ð�Þ � Wp has been used in

Eq. (22). Note that jr(�)� 0 is chosen for simplicity of pre-

sentation. The absorption boundary j�2z ð�Þ can be illustrated

by considering the z-family of straight lines j2z ð�Þ as in Fig. 5,

the slopes being 1/z2 and x-intercepts being z2W. The change

of z2W follows the ordinate-to-abscissa profile ratio in Fig. 2.

The system (20)–(24) must be solved for given values of all

the parameters �, h, and Wp. Note that the nD value is

assumed to be Rmax/kD, which must be determined as part of

the solution.

IV. SCL CONDITION AND MAXIMUM RADIUS FOR OML

VALIDITY

A. z> z0

As ions moving inwards from infinity, z2W decreases

and the z-line keeps moving to the left for z decreasing for

all positive energies (Fig. 5). This no barrier condition

j�z ð�Þ ¼ jzð�Þ holds until z0, where z2W starts to increase. If
FIG. 4. Richardson-Dushman current density and emitted particle density ver-

sus probe temperature for different work function of the emitting material.
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R¼Rmax, z0 lies on the diagonal in Fig. 2, giving

z20W0 ¼ Wp. For z> z0, the ion density in Eq. (22) becomes

ni zð Þ ¼ 1�
ð1

0

exp ��ð Þ
p

arcsin

ffiffiffiffiffiffiffiffiffi

Wp

j2z �ð Þ

s

d� : (25)

And, due to W � Wp in this region, the emitted electron den-

sity in Eq. (24) can be approximated as

nem zð Þ � 1

z
ffiffiffiffiffiffiffiffiffiffiffi

phWp

p : (26)

Thus the potential for any z� z0 is given by solving the qua-

sineutrality equation

1�
ð1

0

exp ��ð Þ
p

arcsin

ffiffiffiffiffiffiffiffiffi

Wp

j2z �ð Þ

s

d�

�exp �Wð Þ � �

z
ffiffiffiffiffiffiffiffiffiffiffi

phWp

p ¼ 0 : (27)

We can thus determine z0 and W0 by conditions

1þ exp W0ð Þerfc
ffiffiffiffiffiffi

W0

p

	 


¼ 2 exp �W0ð Þ þ 2�

Wp

ffiffiffiffiffiffi

W0

ph

r

; (28)

W0 ¼ Wp=z
2
0 : (29)

Because Eq. (25) is valid as long as R�Rmax, the poten-

tial profile for z> z0 calculated from Eq. (27) is also valid for

R�Rmax, being function of �, h, and Wp only, independent of

R. This indicates that Eq. (25) does not result in d(z2W)/dz¼ 0

at z0, which is the accurate definition of z0. Therefore, the

position of z0 cannot arise from this approximated quasineu-

trality solution directly. In this study, we impose the condition

R¼Rmax and z20W0 ¼ Wp, acquiring z0 and W0 by Eqs. (28)

and (29) before the global sheath solution is found. Then look-

ing for the Rmax value that provides a consistent solution does

require a jump of d(z2W)/dz at z0. However, using locally the

full Poisson’s equation Eq. (20) around z0 and Eqs. (22), (23),

and (26) for particle densities can round the profile at z0, with

no effect beyond its immediate neighbourhood.17

B. z1< z< z0

From z0 inwards, with the quasineutral condition still

holding, the no barrier condition does fail as z2W starts to

increase. Quasineutrality itself is found to break down at

some point z1 where dW/dz diverges. The knowledge of W(z)

itself is required to determine the envelope of the z-lines in

�� j plane, the dashed curve in Fig. 5, and thus to determine

j�z ð�Þ. We approximate this envelope by a hyperbola that is

tangent to the z0 line at �¼ 0 and j2z ¼ z20U0, and limited by

the z1 line as the asymptote for � !117

j2env �ð Þ ¼ j2z1 �ð Þ � z21W1 � z20W0

� �2

z21W1 � z20W0 þ z20 � z21
� �

�
: (30)

Use of Eq. (30), however, requires values for z1 and W1

which are still unknown. Near z1, we have j�z ð�Þ � jenvð�Þ,
and thus the ion density becomes

ni zð Þ ¼
ð1

0

exp ��ð Þ
p

� 2� arcsin
jenv �ð Þ
jz �ð Þ � arcsin

ffiffiffiffiffiffi

Wp

p

jz �ð Þ

" #

d� :

(31)

Use of Eq. (31) for quasineutrality at z1 provides a first

relation for z1 and W1. If we write the quasineutrality equa-

tion as f(z, W)¼ 0, the implicit function theorem gives

df= dW ¼ @f=@Wþ @f=@z � dz= dW ¼ 0. Another relation

thus arises from using the equivalence of the divergent con-

dition dz/dW¼ 0 at z1, rewritten as

@ni zð Þ
@W

�

�

�

�

z1

� @ne zð Þ
@W

�

�

�

�

z1

� @nem zð Þ
@W

�

�

�

�

z1

¼ 0 ; (32)

where @nemðzÞ=@Wjz1 actually vanishes. Thus z1 and W1 can

be found from equations

ð1

0

exp ��ð Þ
p

� 2� arcsin
jenv �ð Þ
jz1 �ð Þ � arcsin

ffiffiffiffiffiffi

Wp

p

jz1 �ð Þ

" #

d�

�exp �W1ð Þ � �

z1
ffiffiffiffiffiffiffiffiffiffiffi

phWp

p ¼ 0 ; (33)

ð1

0

exp ��ð Þ
2p �þW1ð Þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

j2env �ð Þ
j2z1 �ð Þ� j2env �ð Þ

s

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Wp

j2z1 �ð Þ� �þWpð Þ

s

2

4

3

5d�

�exp �W1ð Þ ¼ 0 : (34)

With the approximated envelope, we can determine

�env(z), where the envelope osculates with the z line at. As

the envelope shares the same slope with z line at

�env; dj2envð�Þ= d�j�env ¼ dj2z ð�Þ= d�j�env ¼ z2 gives

�env zð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

z21W1 � z20W0

� �2
z20 � z21
� �

z2 � z21

s

� z21W1 � z20W0

� �

z20 � z21
:

(35)

The relation jzð�envÞ ¼ jenvð�envÞ then directly gives the

potential

W zð Þ ¼
j2env �envð Þ

z2
� �env : (36)

FIG. 5. Straight lines of the z-family lines j2z ð�Þ. A high bias assumption

implies Wp 
 � for the values �¼O(1) of interest in the integrations. As a

result, the z¼ 1 line has a steep slope in this schematic plot.
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Note that, once the potential profile is determined through-

out, the resultant overall particle density ni� ne� �nem can

be used to evaluate the error of Eq. (30) as jenv(�) approxima-

tion. For ion density at any radius between z0 and z1, we

have in Eq. (22)

j�z ð�Þ ¼ jenvð�Þ; for � < �envðzÞ
¼ jzð�Þ; for � � �envðzÞ :

(37)

The maximum error evaluated for values h¼ 4, �¼ 0, 20,

50, 70, and 100 is found of the order of 1% or less, validating

that approximation.

C. Two transitional layers

From z1 inwards, because of the sharp increase in W,

quasineutrality breaks down. A very thin transitional layer,

in the vicinity of z1, takes the solution to a radius z2 a bit

closer to the probe, where W, rather than dW/dz, is found to

actually diverge as W�W1 / (z� z2)
�2. The structure of

this layer is considered in the Appendix. The location of z2 is

found in Eq. (A6) as

z2 ¼ z1 1� bn2ð Þ ; n2 � 3:42 ; b �
ffiffiffiffiffiffi

2

kl

s

1

n2Dz
2
1

0

@

1

A

2=5

; (38)

where k and l are defined in Eqs. (A2) and (A3). As different

from the determination of z0, z1, W0 and W1, the value of z2,

which depends on nD appearing in b, cannot be calculated

until the entire sheath structure is solved. If nD is somehow

poorly determined, the same applies to z2.

A second thin transitional layer around z2 is needed to

match the solution inside the sheath. At this layer, being thin

and faraway from the probe under high bias assumption,

space curvature can be ignored in 2D Laplace operator of

Poisson’s equation, equivalently z� z2. In this layer how-

ever, the complete expression of the RHS of Poisson’s equa-

tion needs to be retained as

d2W

n2D dz2
¼
ð1

0

exp ��ð Þ
p

2� arcsin

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

j2env �ð Þ
z22 �þWð Þ

s

2

4

�arcsin

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Wp

z22 �þWð Þ

s #

d�� �

z2
ffiffiffiffiffiffiffiffiffiffiffi

phWp

p ; (39)

where the ambient electrons density has been neglected. To

match the first transitional layer, we have the behavior of the

potential from z2 outwards as

W ¼ 12

kn2D z1 � z1bn2 � zð Þ2
þW1 : (40)

From z2 inwards, to match the sheath at the top of this layer,

the sharp increase of W results in j2z ð�Þ 
 jenvð�Þ and z22W 

� for the values �¼O(1) of interest, thus giving the ion den-

sity as

ni ¼
j

pz2

ffiffiffiffiffiffi

Wp

W

r

; (41)

where j is

j ¼
ð1

0

2 exp ��ð Þjenv �ð Þ
ffiffiffiffiffiffi

Wp

p d�� 1 : (42)

Poisson’s equation becomes

d2W

n2D dz2
¼ j

pz2

ffiffiffiffiffiffi

Wp

W

r

� �

z2
ffiffiffiffiffiffiffiffiffiffiffi

phWp

p : (43)

After changing variables

g ¼ gp
W

Wp

; gp ¼
pWp

jz2n
2
D

 !2=3

; u ¼ ln
z2

z
: (44)

Poisson’s equation becomes

d2g

du2
¼ 1

ffiffiffi

g
p � ls

ffiffiffiffiffi

gp
p ; ls ¼

�

j

ffiffiffiffiffiffiffiffiffi

p

hWp

r

; (45)

where the dz� z2 du has been applied. If ls=
ffiffiffiffiffi

gp
p

is much

smaller than 1=
ffiffiffi

g
p

, we can assume g� g0þ g1, where g1 �
g0 is the correction due to small ls=

ffiffiffiffiffi

gp
p

. Then we have

d2g

du2
� 1

ffiffiffiffiffi

g0
p � g1

2g
3=2
0

� ls
ffiffiffiffiffi

gp
p : (46)

After integrating the resultant equations g000 ¼ 1=
ffiffiffiffiffi

g0
p

and

g001 ¼ �g1=2g
3=2
0 � ls=

ffiffiffiffiffi

gp
p

, we find the behavior at inward

tip of the second transitional layer for increasing u

g ¼ 3u

2

� �4=3

� 9ls
20

ffiffiffiffiffi

gp
p u2 : (47)

As g becomes large along with u, moving into the sheath,

ls=
ffiffiffiffiffi

gp
p

becomes comparable to 1=
ffiffiffi

g
p

, and the two-term

expansion in Eq. (47) provides the matching condition for

the sheath.

D. Sheath

Inside the sheath, z-lines lie far to the right, leading to

jz¼1ð0Þ � jzð�Þ � jzð0Þ and j�z ð�Þ ¼ jenvð�Þ  jz¼1ð0Þ, the ion

density then reading

ni zð Þ ¼ j

pz

ffiffiffiffiffiffi

Wp

W

r

; (48)

where j is given by Eq. (42). Although this approximation

fails near the probe, as with the approximation Eq. (24), the

high bias assumption makes space-charge effects negligible

within some neighborhood of the probe. Moreover, in the

case of sufficient electron emission, the ion space charge is

small compared to that of the emitted electrons and thus the

error of this approximation can be further neglected. The

plasma electron density can be ignored inside the sheath, and

the emitted electron density used is the fluid approximation

of Eq. (24). We impose a bound nem¼ 1 if nem> 1. Poisson’s

equation now becomes
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1

zn2D

d

dz
z
dW

dz

� �

¼ j

pz

ffiffiffiffiffiffi

Wp

W

r

� �

z
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ph Wp �Wð Þ
p : (49)

Using same changes of variables as Eq. (44) yields Poisson’s

equation as

d2g

du2
¼ exp �uð Þ 1

ffiffiffi

g
p � ls

ffiffiffiffiffiffiffiffiffiffiffiffiffi

gp � g
p

 !

: (50)

To match with the behavior of the potential at the inward tip

of the second transitional layer given by Eq. (47), for small

u> 0 we have

g ¼ 3u

2

� �4=3

� 9lsu
2

20
ffiffiffiffiffi

gp
p ; g0 ¼ 12uð Þ1=3 � 9lsu

10
ffiffiffiffiffi

gp
p ; (51)

where the curvature effect, represented by the factor e�u in

Eq. (50), is ignored.

Equation (50) must be integrated from small u, with the

behavior of Eq. (51), till reaching the probe at z¼ 1, i.e.,

up ¼ lnz2. Integration depends on the unknown parameter

nD. For given �, h, and Wp, the corresponding

nDmð�; h;WpÞ ¼ Rmax=kD is determined by trial iteration, till

condition g(up)¼ gp is satisfied

g lnz2 nDmð Þ½ 	 ¼ pWp

z2jn
2
Dm

 !2=3

: (52)

For decreasing values of Wp, the derivative dg/du at the

probe keeps positive until the SCL condition dg/du¼ 0 is

reached. The probe potential here, WSCL(�, h), is the mini-

mum of Wp values that allow monotonic potential profile.

V. RESULTS AND DISCUSSION

Let us discuss the results with some typical data in

space, kT¼ 0.1 eV and a somewhat low day density

N1¼ 3� 1011/m2. Results are shown for a tentative tether

temperature h¼ 4 (Tp� 290.1K) and several emitted elec-

tron densities, �¼ 20, 50, 70, and 100, corresponding to

work function W� 0.708, 0.685, 0.677, and 0.668 eV,

respectively.

For different � values and a range of Wp values, Figure 6

shows Rmax/kD and dg= dujz¼1, Figure 7 shows

W0; W1; Wp=z
2
1, and Wp=z

2
2, and Figure 8 shows the parame-

ters b, j, gp, and ls. The results for the case of no emission

(�¼ 0) are also shown in the figures. Except for the �¼ 0

case, the curves end at the probe potential WSCL(�, h), where
SCL condition is met. The values of Rmax/kD in Fig. 6 are

slightly different from the value also given in Ref. 17

because of our use of Eq. (38) for z2, instead of a further

approximation Wp=z
2
1 ¼ ð1þ 2bn2ÞWp=z

2
2 as in Eq. (A6) of

Ref. 17. Figure 9 shows W/Wp versus 1/z2 profiles for

�¼ 100, and Wp¼ 5000, 1000 and 300. Because the second

transitional layer is not actually solved (only the solution

behavior being found at both layer ends), this layer is not

shown in this figure.

A. Effects of emitted electrons

For a given Wp, the space charge effect from emitted

electrons increases with emission level � due to more

emission from the probe. For a given �, the effect

increases with decreasing Wp. This is because electric

field inside the sheath accelerates the electrons less if Wp

decreases, which thus results in more space charge

everywhere. The influence of � and Wp on space charge

effect is indicated by the parameter ls in Eq. (50), shown

in Fig. 8(d).

As shown by Fig. 6(a), thermionic emission clearly

increases the range of radius R for OML validity. At very

high probe bias, after emitted electrons have been acceler-

ated by the strong electric field, their space charge results in

negligible effect throughout the sheath. Therefore, Rmax is

close to its value for no emission and dg= dujz¼1 changes

like an ion sheath without emission. Decrease of Wp or

increase of � in Eq. (50) enlarges ls as shown in Fig. 8(d),

increasing electron space charge effect inside the sheath. For

a given level �, with Wp decreasing, excess of electron space

charge reduces the electric field in front of the probe, which

decreases sharply when approaching the SCL condition, as

shown in Fig. 6(b). The more intense the emission is, the

higher WSCL(�, h) is.
We note that for higher emission level �, more numeri-

cal difficulties for locating the exact SCL condition,

dg= dujz¼1 ¼ 0, are encountered. This is probably due to

increased space charge effect near SCL condition, as com-

pared to lower emission level. Therefore, for higher emission

level �, a small change in Wp renders a greater change in

dg= dujz¼1. We can still determine however the SCL probe

potential to five significant figures.

FIG. 6. The maximum radius and the derivative at the probe for h¼ 4 and

several �, and for a range of Wp. Except for the case �¼ 0, curves end at the

probe potential where the SCL condition is met, being WSCL¼ 26.2, 89.7,

143.0 and 238.8 for �¼ 20, 50, 70, and 100, respectively.
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Figure 9 shows the smooth matching among profile

layers. However, we can see that the gap between sheath and

first transitional layer increases as Wp decreases, which is

also shown as the difference between z1 and z2 in Figs. 7(c)

and 7(d). Given by Eq. (38), the thickness of these two tran-

sitional layers increases with b (Fig. 8(a)), which weakened

the validity of the expansions implied in the derivations.

Although the emitted electron density will be negligible

far away in the quasineutral region, its effect cannot be gen-

erally neglected throughout z> z2. To discuss the effects of

emitted electrons, we construct the solution which ignores

their space charge outside the sheath, thus keeping a given �
value in the sheath attached to the probe, but setting �¼ 0 in

Eqs. (28), (33), and (A2) for z0, z1, W0, W1 and l, and also ls
in Eq. (51) for the matching between second transitional

layer and sheath. As expected from reduced electron space

charge, the SCL condition is met at some lower potential

(Table I), showing significant difference.

FIG. 7. W0; W1; z
2
1=Wp, and z22=Wp

versus Wp, for h¼ 4 and several �
values.

FIG. 8. b, j, gp, and ls versus Wp, for

h¼ 4 and several � values.

FIG. 9. Potential profiles for h¼ 4, �¼ 100, and three values of biasWp.
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If emitted electrons are considered negligible outside the

sheath, the values of z0, z1, W0, and W1 will be the same as the

case of no emission from the probe (�¼ 0). This is because,

under condition R¼Rmax, they do not need information from

the sheath. We compare the results of W0, W1 and Wp=z
2
1 for

each � to that of �¼ 0, Figs. 7(a)–7(c). For very high potential,

changes of � or Wp cause negligible effects on the results. The

error due to the no-emitted-electron-outside approximation

increases with Wp decreasing or � increasing. For the range of

parameters we have considered, because WSCL(�¼ 20) is much

lower than that for other � values, a maximum error, around

50% decrease in the values, is found at �¼ 20 when the SCL

condition is met. Thus, the emitted electron density cannot

always be ignored at z0 and z1, leaving alone further closer to

the probe. Consequently, a maximum 50% decrease in nDm
with no-electron-outside approximation is also found at for

�¼ 20 and WSCL(�¼ 20). Evaluating the emitted electron den-

sity at z0, �� nem(z0), shows a maximum density around 0.15

for �¼ 20 and WSCL(�¼ 20), being not negligible. In the case

of a tether cathodic segment, considering uniform temperature

and work function, although the emitted electron density can be

safely ignored far below point B* in Fig. 1, it cannot near B*.

B. Current

To evaluate the effectiveness of thermionic emission, it

is important to compare the RDS thermionic current, Eq. (4),

with the respective OML collection current at equal bias

jWpj, Eq. (3), the ratio being

ffiffiffiffiffiffi

me

mi

r

Iemp

IiOML

¼ Iemp

IeOML

¼ �

ffiffiffiffiffiffiffiffiffiffiffi

p

hjWpj

r

; (53)

with � and Wp typically large. The ratio Iemp=IiOML is much

larger than the ratio Iemp=IeOML shown in Fig. 10, with a fac-

tor of
ffiffiffiffiffiffiffiffiffiffiffiffiffi

mi=me

p

� 171 for oxygen ions. This large ratio

clearly shows that thermionic emission is far more efficient

than ion OML collection in tether cathodic current exchange.

The ratio Iemp=IeOML compares the thermionic emission at

the cathodic segment to the electron OML collection at the

anodic segment for equal bias jWpj. Figure 10 shows that the

ratio is of order unity, which suggests that there will be no

large disparity in the lengths of the cathodic and anodic seg-

ment, making current emission/collection similarly effective

in tether applications.

However, although higher emission would undoubtedly

emit more current in the monotonic case, the SCL condition

is met at higher probe potential (Fig. 6). Thus point B* is

moved more towards the cathodic end, leaving longer seg-

ment where current is Iem< Iemp. As a result, whether more

RDS emission (say lower work function or higher

temperature) would always increase the cathodic contact ef-

ficiency still needs to be discussed in the analysis of the

potential hollow case. The parametric design of a bare-tether

system is ambient dependent, with effects of tether tempera-

ture due to heating under operation, plasma density, and tem-

perature. The analysis for the potential hollow case will be

important to choose the proper length of the coated cathodic

segment for each mission.
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APPENDIX: TRANSITIONAL LAYER AT Z1

Due to the sharp potential increase, the j-line moves to

the right from z1 to z2, keeping nearly parallel as shown in

Fig. 5, giving j�z ð�Þ � jenvð�Þ for the values �¼O(1) of inter-

est. Thus the ion density will be as in Eq. (31). We can expand

the RHS of Poisson’s equation about z1 and W1, to order

z1� z and (W�W1)
2, which represents the divergent behavior

of quasineutral potential at z1,W�W1 ffiffiffiffiffiffiffiffiffiffiffiffiz1 � z
p

, leading17

d2W

n2D dz2
¼ l

z1 � z

z1
þ k

W�W1ð Þ2
2

; (A1)

where the parameters l and k are given by

l¼
ð1

0

exp ��ð Þ
p

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

j2env �ð Þ
j2z1 �ð Þ� j2env �ð Þ

s

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Wp

j2z1 �ð Þ� �þWpð Þ

s

2

4

3

5d�

� �

z1
ffiffiffiffiffiffiffiffiffiffiffi

phWp

p ; (A2)

k ¼
ð1

0

exp ��ð Þ
4p �þW1ð Þ2

2jenv
3j2z1 �ð Þ � 2j2env �ð Þ
j2z1 �ð Þ � j2env �ð Þ
� 3=2

(

�
ffiffiffiffiffiffi

Wp

p 3j2z1 �ð Þ � 2 Wpð Þ
j2z1 �ð Þ � �þWpð Þ
� 3=2

)

d�� exp �W1ð Þ :

(A3)

TABLE I. Comparison of probe potential when the SCL condition is met,

whether considering (WSCL) or not (WSCLn) the emitted electron density out-

side the sheath.

�¼ 20 �¼ 50 �¼ 70 �¼ 100

WSCL 26.2 89.7 143.0 238.8

WSCLn 10.1 46.4 81.4 147.9

FIG. 10. The emitted electron current compared with OML electron current

at same jWpj, h¼ 4.
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After defining

z1 � z

z1
¼ bn �

ffiffiffiffiffiffi

2

kl

s

1

n2Dz
2
1

0

@

1

A

2=5

n ;

W�W1 ¼
ffiffiffiffiffiffiffiffi

2lb

k

r

Y : (A4)

Poisson’s equation becomes the first Painleve transcendent30

with initial condition that matches smoothly the quasineu-

trality solution from z1 outwards

d2Y

dn2
¼ Y2 þ n ; lim

n!�1
�Y ¼

ffiffiffiffiffiffiffi

�n
p

: (A5)

For the expansion to be valid in this thin layer, it is required

b to be small, which is validated as in Fig. 8(a). Integration

shows Y diverging as� 6/(n� n2)
2 at n ! n2� 3.42, giving

z2 as
13,17

z2 ¼ z1ð1� bn2Þ ; n2 � 3:42 : (A6)

This layer is shown in Fig. 2 as the curve passing through the

circle markers. It matches well with the solution between z0
and z1, and then tends to infinity as a pole at z2. As W2

diverges at z2, is actually left undetermined; neither z2 nor

W2 are marked in the figures.
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