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Abstract. A deniable cryptosystem allows a sender and a receiver to
communicate over an insecure channel in such a way that the communi-
cation is still secure even if the adversary can threaten the parties into
revealing their internal states after the execution of the protocol. This
is done by allowing the parties to change their internal state to make it
look like a given ciphertext decrypts to a message different from what
it really decrypts to. Deniable encryption was in this way introduced to
allow to deny a message exchange and hence combat coercion.

Depending on which parties can be coerced, the security level, the
flavor and the number of rounds of the cryptosystem, it is possible to
define a number of notions of deniable encryption.

In this paper we prove that there does not exist any non-interactive
receiver-deniable cryptosystem with better than polynomial security. This
also shows that it is impossible to construct a non-interactive bi-deniable
public-key encryption scheme with better than polynomial security.
Specifically, we give an explicit bound relating the security of the scheme
to how efficient the scheme is in terms of key size. Our impossibility result
establishes a lower bound on the security.

As a final contribution we give constructions of deniable public-key
encryption schemes which establishes upper bounds on the security in
terms of key length. There is a gap between our lower and upper bounds,
which leaves the interesting open problem of finding the tight bounds.

1 Introduction

Alice and Bob live in a country ruled by an evil dictator, Eve. If Alice wants
to communicate with Bob, standard public-key cryptography can be used by
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Alice if she wants to keep Eve from learning the subject of her communication
with Bob. However, if Eve controls the network she will be able to observe that
a ciphertext is traveling from Alice to Bob. Once the evil Eve knows that a
conversation took place, she might get suspicious and force Bob to reveal the
content of the conversation. Can cryptography offer any help to Alice and Bob
against such a powerful adversary? To solve this problem Canetti, Dwork, Naor
and Ostrovsky [CDNO97] introduced the notion of deniable encryption as a tool
to combat coercion.

Using a deniable cryptosystem Alice and Bob can communicate over an in-
secure channel in a way such that even if Eve records the transcript of the
communication and later coerces Alice (resp. Bob, or both) to reveal their inter-
nal state (secret keys, randomness, . . . ), then Alice (resp. Bob, or both) has an
efficient strategy to produce an alternative internal state that is consistent with
the transcript and with a message different than the original one.

Threat model: First note that deniable encryption does not help if Eve has
physical access to Alice and Bob’s computers. In this case nothing can prevent
Eve from seeing everything that Bob sees and therefore learn the encrypted
message—since we want Alice and Bob to actually communicate information
between them, this is unavoidable. On the other hand, if Alice and Bob can
erase their secret information, they could simply lie about the content of a
ciphertext: the standard indistinguishability security requirement implies that
Eve cannot check whether the ciphertext is really an encryption of the message
that Alice and Bob claim it to be. Therefore, as in [CDNO97], we consider the
case where the parties hand their private keys and randomness to Eve, who can
then check that the revealed message is in fact consistent with the ciphertext
she observed earlier. If the parties are able to produce a reasonable explanation
for the ciphertext that Eve observes, this is enough to fight this kind of coercion.

Sender/Receiver/Bi-Deniability: We distinguish between three kinds of denia-
bility, according to which parties can be coerced by Eve. Note that, up to the
number of rounds required by the protocol, sender and receiver deniability are
equivalent: Bob can use a sender-deniable scheme to send a random key K to
Alice, who can use it to encrypt the message M using a one-time pad and send
back C = M⊕K. Now if Bob is coerced he can claim to have received a different
message M ′ by using the sender-deniable property and explain the transcript as
if it contained a different K ′.

When we consider bi-deniability, the case where Eve can coerce both Alice
and Bob, the only coordination that we allow between Alice and Bob is to agree
on which message to fake the ciphertext to. In particular this means that the
parties cannot communicate to each other their internal states, when they have
to produce a fake explanation. This seems to be the only meaningful definition:
if Alice and Bob could communicate this information through a channel not
controlled by Eve, why would they not use this channel to communicate the
original message in the first place?
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Fully-Deniable vs. Multi-Distributional: In a multi-distributional deniable cryp-
tosystem a ciphertext produced with a “fake” encryption algorithm EF can be
later explained as an encryption of any message under the “standard” encryp-
tion algorithm E. In other words, for any m, m′ it is possible to find appropriate
randomness for E, EF such that E(m′) = EF(m). Note however, that Eve might
not believe that the ciphertext was produced using E and ask to see the internal
state for EF and in this case the parties have no efficient strategy to lie about
the content of the ciphertext. A fully-deniable scheme is a scheme where E = EF

and therefore does not present this issue.

Public-key vs. Interactive Cryptosystems: A (receiver/sender/bi)-deniable pub-
lic-key cryptosystem is a public-key cryptosystem that is (receiver/sender/bi)-
deniable. I.e., the cryptosystem consist of a public key known by the sender and
the communication protocol consists of sending a ciphertext to the receiver. A
generic, or interactive, cryptosystem might involve arbitrary interaction.

Security Level: All notions of deniability can be quantified by ε : N→ R+ which
measures how indistinguishable the faked states are from the honest states. As
an example, an ε-receiver-deniable public-key cryptosystem is one in which the
faked secret key is ε-indistinguishable from the honest secret key to a computa-
tionally bounded distinguisher. We will distinguish between schemes where ε is
a negligible function and where ε is of the form 1/p, for some polynomial p. We
will idiosyncratically say that the former kind has negligible security and the
latter polynomial security.

Prior Work, Our Contributions and Open Questions: Deniable encryption was
first introduced and defined in [CDNO97]. They constructed a sender-deniable
public-key cryptosystem with polynomial security, and therefore a receiver-
deniable interactive cryptosystem. In [OPW11] O’Neill, Peikert and Waters
showed how to construct multi-distributional bi-deniable public-key encryption
with negligible security. This is the first scheme that achieves any kind of de-
niability when both parties are corrupted. Recently, Dürmuth and Freeman
announced a fully-deniable (receiver/sender)-deniable interactive cryptosystem
with negligible security [DF11]. However their result was later showed to be
incorrect by Peikert and Waters.

Our contribution to the state of the art on deniable-encryption is to derive
upper and lower bounds on how secure a deniable public-key encryption scheme
can be as a function of the key-size.

Lower bounds: As for lower bounds, we have the following results.
Receiver: We show that any public-key cryptosystem with σ-bit keys can

be at most 1
2 (σ + 1)−1-receiver-deniable.

Sender: We do not know of a non-trivial lower bound for sender-deniable
public-key encryption.

Bi: Since bi-deniable public-key encryption with σ-bit keys implies receiver-
deniable public-key encryption with σ-bit keys, any public-key cryptosys-
tem with σ-bit keys can be at most 1

2 (σ + 1)−1-bi-deniable.
Upper bounds: We show three upper bounds.
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Receiver: If we let κ denote the length of the secret key of the best multi-
distributional receiver-deniable public-key encryption scheme, then there
exists a 1/n-receiver-deniable public-key encryption scheme with key
length σ = O(n2κ).

Sender: If we let κ denote the length of the sender randomness in the best
multi-distributional sender-deniable public-key encryption scheme, then
there exists a 1/n-sender-deniable public-key encryption scheme where
the sender randomness has length σ = O(nκ).

Bi: If we let κ denote the length of the secret key of the best multi-
distributional bi-deniable public-key encryption scheme, then there ex-
ists a 1/n-bi-deniable public-key encryption scheme with key length
σ = O(n4κ).

We phrase the upper bounds in terms of the upper bounds for multi-distributional
schemes. The reason for this is that we do not know of any assumption which al-
lows to construct deniable public-key encryption with polynomial security, which
does not also allow to construct multi-distributional deniable encryption. And,
we do not know of any direct construction of deniable public-key encryption with
polynomial security which is more efficient than going via a multi-distributional
scheme. It therefore seems that multi-distributional schemes are the natural
building block for deniable public-key encryption with polynomial security.

Our upper bounds for receiver-deniability and sender-deniability are similar to
bounds which can be derived from constructions in [OPW11]. Our upper bound
for bi-deniability is new. In [OPW11] a construction of a bi-deniable public-key
encryption scheme is hinted, but no explicit construction is given which makes
it impossible to estimate the complexity. The hinted construction is, however,
different from the one we give here.

Our lower bound for receiver-deniability is a generalization of a result
in [CDNO97], where a similar bound was proven for any so-called separable
public-key encryption scheme. An encryption scheme being separable is, however,
a very strong structural requirement, so it was unclear if the bound in [CDNO97]
should hold for any scheme. In fact, we have not been able to find even a conjec-
ture in the more than a decade of literature between [CDNO97] and the present
result that polynomial security should be optimal in general. Our proof tech-
nique is completely different from the one in [CDNO97], as we cannot make any
structural assumption about the encryption scheme in question.

Our work leaves a number of interesting open problems.

1. Our proof of the upper bounds are via black-box constructions of deniable
public-key encryption with polynomial security from multi-distributional
deniable public-key encryption. This shows that multi-distributional deni-
able public-key encryption is stronger than deniable public-key encryption
with polynomial security. Is it strictly stronger, or does there exist a black-
box construction of multi-distributional deniable public-key encryption from
deniable public-key encryption with polynomial security?
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Table 1. The current state of the art for deniable encryption. The first column dis-
tinguishes between fully-deniable schemes and schemes with multi-distributional deni-
ability. The Sender/Receiver/Bi columns contains “�” if any construction is known; a
“ ✗” indicates an impossibility result; a “?” marks a question that is still open.

Notion Security Interaction Sender Receiver Bi

Full-Deniability Negligible Interactive ? ?
Public-key ? ✗ ✗

Polynomial Public-key � � �
Multi-Distributional Negligible Public-key � � �

2. Our lower bounds do not apply to sender-deniable public-key encryption.
Is it possible to construct sender-deniable public-key encryption with better
than polynomial security?

3. Our lower bounds do not apply to interactive encryption schemes. Is it pos-
sible to construct deniable encryption schemes with better than polynomial
security when arbitrary interaction is allowed?

4. There is a gap between our upper and lower bounds of at least a factor
κ. Since κ itself is typically, for practical purposes, a rather large number
(multi-distributional schemes are not simple objects on themselves), this
gap is important in practice. What are the tight bounds on the security of
a deniable public-key encryption scheme? We conjecture that the bound is
in the order of σ−1.

Non-committing encryption: Canetti, Feige, Goldreich and Naor introduced the
notion of a non-committing cryptosystem, which is similar to the notion of a
bi-deniable cryptosystem, but it is only required that the faking can be done
by a simulator. This simulator is allowed to use public keys with a different
distribution than those in the protocol. This is needed when showing adaptive
security in simulation-based models. It is known [CFGN96] how to implement
non-committing encryption with negligible security. Several improvements over
the original scheme (both in terms of efficiency and assumptions) have been
published in [Bea97, DN00, KO04, GWZ09, CDSMW09].

In [Nie02] it was shown that non-interactive non-committing encryption is im-
possible. This does not imply the negative result we are proving here, as receiver-
deniable public-key encryption does not imply non-committing encryption. In
non-committing encryption both sides have to be faked. In receiver-deniable
encryption, only the receiver has to be faked. In this sense non-committing en-
cryption is a stronger notion than receiver-deniable encryption. But, in fact,
the notions are incomparable, as receiver-deniable encryption on other axes is
stronger than non-committing encryption. As an example, it can be shown that
if a public-key encryption scheme is receiver-deniable, then the parallel composi-
tion of the scheme where the same public key is used to encrypt many massages
is also receiver-deniable. This is a property which non-committing encryption
provably does not have. And, in fact, this self composition property is crucial in
the proof of our lower bound. Also, the result in [Nie02] addresses the case of
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perfect non-committing encryption (the real-world and the simulated world must
be indistinguishable). We are interested in the exact level of security which can
be obtained i.e., given a public-key encryption scheme with a certain secret-key
length, how deniable can the scheme be?

Structure: In Section 2 we formally define the different flavors of deniable public-
key encryption. In Section 3 we show that receiver-deniability is maintained un-
der parallel self-composition with at most a linear security loss. We use that fact
to derive our lower bounds giving us the impossibility result of fully-receiver
deniable encryption. Finally, section 4 contains our results on poly-deniable
encryption schemes.

2 Deniable Public-Key Encryption

In this section we define three different notions of deniable public-key encryption
schemes. These notions correspond respectively to an adversary with the ability
to coerce the receiver, the sender or both parties simultaneously. We model
coercion by letting the adversary request the secret information used in the
encryption scheme by the coerceable parties. Deniability is obtained by letting
the coerceable parties supply fake secret information.

Basic Scheme. All schemes are defined based on the following definition
of a standard public-key encryption scheme consisting of three probabilistic
polynomial-time algorithms (G, E, D):

– G(1κ) generates a key-pair (pk, sk), where pk is the public key, sk is the
secret key and κ is the security parameter. Note that we consider sk to be
the randomness used in G(1κ).

– Epk(m; r) generates a ciphertext c which is an encryption under the public
key pk of message m ∈ {0, 1}� using randomness r. We sometimes write
Epk(m) to make the randomness be implicit.

– Dsk(c) outputs the message m ∈ {0, 1}� contained in the ciphertext c.

Let negl : N → R+ be a negligible function. For all notions defined below we
require correctness, i.e., we require that Pr[Dsk(Epk(m)) = m] > 1−negl(κ), and
IND-CPA security i.e., we require that ∀ PPT (A1, A2), ∃negl(·):

Pr[(pk, sk)← G(1κ), (m0, m1, st)← A1(pk),
c = Epk(mb), b′ ← A2(c, st) : b = b′] < 1/2 + negl(κ) .

Multi-distributional Encryption. We define a general form of deniable
public-key encryption called multi-distributional deniable public-key encryption.
Such a scheme essentially consists of two standard public-key schemes sharing a
common decryption algorithm.
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– The honest scheme (G, E, D) does not provide deniability in itself.
– The fakeable scheme (GF, EF, D) provides deniability in the sense that, for

a ciphertext c fake secret information can be generated. The faked secret
information will make c appear as an encryption of any chosen message m′

in the honest scheme. How this is done depends on the notion of deniability
as defined below.

For a multi-distributional deniable public-key encryption scheme to be correct
we require standard correctness of all public-key schemes (G′, E′, D) where G′ ∈
{G, GF} and E′ ∈ {E, EF}.

The idea behind having two different schemes is to use the fakeable scheme to
encrypt a message m on which the parties would like to have deniability. When
coerced the parties simply claim that they used the honest scheme to encrypt the
fake message m′. This approach has two disadvantages. First, the parties must
decide beforehand whether they later want to deny. Secondly, is the question
of why a coercer should believe the parties, when they claim to have used the
honest scheme. Note that we cannot guarantee deniability, if the coercer insists
on getting the secret information used in the faking process.

Fully-deniable Encryption. An important special case of multi-distributional
deniable public-key encryption is fully-deniable public-key encryption (or just de-
niable public-key encryption). This notion addresses the disadvantages of multi-
distributional encryption mentioned above. For a fully-deniable public-key en-
cryption scheme we have that (G, E, D) = (GF, EF, D), that is there are no special
faking key generation and encryption algorithms. We will often omit the prefix
‘fully’ for simplicity.

Receiver-Deniability. A multi-distributional receiver-deniable public-key en-
cryption scheme consists of five probabilistic polynomial-time algorithms
(G, GF, E, D, FR). Here (G, E, D) is the honest scheme and (GF, E, D) is the fake-
able scheme. Notice that the honest and fakeable encryption algorithm are the
same since faking is only done on the receiver’s side. The faking algorithm FR is
defined as follows:

– For (pk, sk)← GF(1κ) and c← Epk(m), FR(sk, c, m′) generates an alternative
secret key sk′ such that Dsk′ (c) = m′.

Sender-Deniability. A multi-distributional sender-deniable public-key en-
cryption scheme consists of five probabilistic polynomial-time algorithms
(G, E, EF, D, FS). Here (G, E, D) is the honest scheme and (G, EF, D) is the fakeable
scheme. The faking algorithm FS is defined as follows:

– FS(pk, m, r, m′) generates alternative randomness r′ such that EFpk(m; r) =
Epk(m′; r′).
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Bi-Deniability. We assume here to be in a setting where receiver and sender
have individual faking algorithms. This models the fact that, after an initial
stage where the parties can agree on which message to fake to, the sender and
the receiver cannot communicate over a channel that is not controlled by the
adversary—otherwise they could be using this channel to communicate the mes-
sage m in the first place.

A multi-distributional bi-deniable public-key encryption scheme consists of seven
probabilistic polynomial-time algorithms (G, GF, E, EF, D, FR, FS). The faking al-
gorithms FR and FS are defined similar to the receiver-deniable and sender-
deniable notions respectively, that is:

– For (pk, sk)← GF(1κ) and c← EFpk(m), FR(sk, c, m′) generates an alterna-
tive secret key sk′ such that Dsk′(c) = m′.

– FS(pk, m, r, m′) generates alternative randomness r′ such that EFpk(m; r) =
Epk(m′; r′).

2.1 Security Notions

The security notions of the three schemes above, are defined in terms of the
following experiments performed with an adversary A = (A1, A2), where m, m′ ∈
{0, 1}�.

Honest Game (Receiver) Faking Game (Receiver)
(pk, sk)← G(1κ) (pk, sk)← GF(1κ)
(m, m′, st)← A1(pk) (m, m′, st)← A1(pk)
c← Epk(m′; r) c← Epk(m; r)

sk′ ← FR(sk, c, m′)
b← A2(st, c, sk) b← A2(st, c, sk′)

Honest Game (Sender) Faking Game (Sender)
(pk, sk)← G(1κ) (pk, sk)← G(1κ)
(m, m′, st)← A1(pk) (m, m′, st)← A1(pk)
c← Epk(m′; r) c← EFpk(m; r)

r′ ← FS(pk, m, r, m′)
b← A2(st, c, r) b← A2(st, c, r′)

Honest Game (Bi) Faking Game (Bi)
(pk, sk)← G(1κ) (pk, sk)← GF(1κ)
(m, m′, st)← A1(pk) (m, m′, st)← A1(pk)
c← Epk(m′; r) c← EFpk(m; r)

sk′ ← FR(sk, c, m′)
r′ ← FS(pk, m, r, m′)

b← A2(st, c, sk, r) b← A2(st, c, sk′, r′)

Let hA(κ) and fA(κ) be the random variables describing b when running
the honest game and faking game respectively with security parameter κ. The
advantage of A is
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AdvA(κ) = |hA(κ)− fA(κ)| .

We say that a scheme is (receiver/sender/bi)-deniable if AdvA is negligible in κ for
any efficient A. Let ε : N→ R+. We say that a scheme is ε-(receiver/sender/bi)-
deniable if AdvA(κ) ≤ ε(κ) + negl(κ).

2.2 Full Bi-deniablity Implies Full Sender/Receiver-Deniability

Any fully bi-deniable scheme can trivially be turned into both a receiver-deniable
and a sender-deniable scheme. On the surface this seems obvious, if both parties
can fake then they should be able to fake individually as well. Surprisingly,
however, this conclusion cannot be drawn in the multi-distributional setting—in
[OPW11] the authors show that in this setting bi-deniability does imply sender
deniability but not receiver deniability. As stated in Lemma 1 similar subtleties
do not arise in the fully-deniable case. A proof of this can be found in the full
version.

Lemma 1. If (G, E, D, FR, FS) is a fully ε-bi-deniable encryption scheme, then
(G, E, D, FS) is a fully ε-sender-deniable encryption scheme and (G, E, D, FR) is
a fully ε-receiver-deniable encryption scheme.

3 Impossibility of Fully Receiver/Bi-deniable Encryption

In this section we prove the impossibility of fully receiver-deniable and fully
bi-deniable public-key encryption with better than inverse polynomial security.
Since, by Lemma 1, any fully bi-deniable public-key encryption scheme is also
a fully receiver-deniable public-key encryption scheme, it is sufficient to prove
impossibility of fully receiver-deniable public-key encryption. It turns out that
the impossibility follows readily from the fact that full receiver-deniability is
preserved under parallel self-composition with only a linear security loss.

We will use a slightly modified definition of receiver-deniability. Recall that in
the definition from section 2 the faking algorithm FR is invoked as FR(sk, c, m′),
especially it is not given the sender’s randomness r. In this section we will allow
FR to have access to r, that is FR is invoked as FR(sk, m, r, m′). Since we are
proving an impossibility result, this does not weaken the result.

3.1 Security of Parallel Self-composition

Let (G, E, D, FR) be any receiver-deniable public-key cryptosystem. Let n : N→
N be a polynomial in the security parameter κ. We define the parallel self-
composition (Gn, En, Dn, FR

n) as follows:



134 R. Bendlin et al.

Gn(1κ) = G(1κ)

En
pk(m1, . . . , mn; r1, . . . , rn) = (Epk(m1; r1), . . . , Epk(mn; rn))

Dn
sk(c1, . . . , cn) = (Dsk(c1), . . . , Dsk(cn))

FR
n(sk, (m1, . . . , mn), (r1, . . . , rn), (m′

1, . . . , m
′
n)) = sk′ ,

where sk0 = sk, ski ← FR(ski−1, mi, ri, m
′
i) for i = 1, . . . , n and skn = sk′.

Lemma 2. If (G, E, D, FR) is ε-receiver-deniable, then (Gn, En, Dn, FR
n) is nε-

receiver-deniable.

Proof. Let An = (An
1 , An

2 ) be any probabilistic polynomial-time attacker against
(Gn, En, Dn, FR

n). For h = 1, . . . , n we construct from An a probabilistic
polynomial-time attacker Ah = (Ah,1, Ah,2) against (G, E, D, FR). We can then
describe the advantage of An in terms of the advantages of Ah for h = 1, . . . , n.
Since, by assumption on (G, E, D, FR), we have a bound on the advantage of each
Ah, this gives us the bound on the advantage of An. The attacker Ah runs as
follows:

1. Ah,1: Receives pk.
2. Ah,1: Input pk to An

1 and run An
1 to obtain (m1, . . . , mn), (m′

1, . . . , m
′
n) and

state stAn .
3. Ah,1: For i = 1, . . . , h− 1, sample ci ← Epk(m′

i).
4. Ah,1: Output (mh, m′

h, stAh
) where stAh

= ((m1, . . . , mn), (m′
1, . . . , m

′
n),

stAn ,(c1, . . . , ch−1)).
5. Ah,2: Receive (stAh

, c, sk). Let ch = c and skh = sk.
6. Ah,2: For i = h+1, . . . , n, sample ci ← Epk(mi; ri) and ski ← FR(ski−1, mi, ri,

m′
i).

7. Ah,2: Input (stAn , (c1, . . . , cn), skn) to An and run it to obtain a bit b ∈ {0, 1}.
8. Ah,2: Output b.

Let b0
h be the distribution of the bit b output by Ah when run in the honest

game and let b1
h be the distribution of the bit b output by Ah when run in the

faking game.
When Ah is run in the honest game, then skn is computed from an honest

secret key skh as ski ← FR(ski−1, mi, ri, m
′
i) for i = h + 1, . . . , n. When Ah is

run in the faking game, then skn is computed from an honest secret key skh−1

as ski ← FR(ski−1, mi, ri, m
′
i) for i = h, . . . , n, where the first computation

skh ← FR(skh−1, mh, rh, m′
h) is performed by the faking game before skh is

input to Ah. It follows that when Ah is run in the honest game and Ah+1 is run
in the faking game, the values input to An have identical distributions, so b1

h =
b0
h−1. Let AdvAh

denote the advantage of Ah against (G, E, D, FR) and AdvAn

be the advantage of An against (Gn, En, Dn, FR
n). We then have by definition

AdvAh
(κ) = |b0

h − b1
h| and by construction AdvAn(κ) = |b0

n − b1
1|, where κ is the

security parameter. It then follows using telescoping and the triangle inequality
that AdvAn(κ) ≤ nε(κ)+

∑n
h=1 neglh(κ), where all neglh are negligible in κ. The

lemma then follows from the fact that the sum of polynomially many negligible
functions is negligible. 	
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Notice that Lemma 2 means that a faked secret key skn, resulting from FR
n,

must somehow remember the faking of each ciphertext involved in the process.
In other words skn must not only fake a single ciphertext, it must ensure that
every ciphertext ci decrypts to the faked message m′

i with high probability. To
see why consider the efficient adversary A of the receiver-deniable game against
(Gn, En, Dn, FR

n) that simply outputs b = 1 if m′
i = Dsk(ci) for all i = 1, . . . , n

and b = 0 otherwise. By correctness of the encryption scheme and by Lemma 2
the above property of skn becomes clear.

Let s be a bit string of length n. In the proof of the following theorem we
use this property to show how to associate each bit of s with a faking of a
ciphertext and thus how to store s in the memory of the faked secret key skn.
The impossibility result arises from the fact that this can be done even for
random s longer than skn.

3.2 Lower Bound

We here show a lower bound on ε in an ε-receiver-deniable encryption scheme.
This bound immediately gives that one cannot obtain better than polynomial
security. The bound is stated formally in the following theorem:

Theorem 1. Let (G, E, D, FR) be ε-receiver deniable, and let σ be an upper bound
on the length of the secret keys of (G, E, D, FR), including the faked ones. Then
ε ≥ 1

2 (σ + 1)−1 − negl(κ).

Proof. We reach our bound via impossibility of compressing uniformly random
data. Let n = σ+1. We can assume that (G, E, D, FR) can encrypt at least one bit,
so (Gn, En, Dn, FR

n) can encrypt n-bit messages. Furthermore (Gn, En, Dn, FR
n)

is nε-receiver-deniable.
Consider the following communication protocol parametrized by κ. Here is

how the sender works:

1. Sample (pk, sk)← Gn(1κ).
2. Sample uniformly random m′ ← {0, 1}n and let m = 0n.
3. Sample c← En

pk(m; r).
4. Let sk′ ← FR

n(sk, m, r, m′).
5. Send (c, sk′).

On receiving (c, sk′) the receiver outputs m′′ = Dn
sk′ (c).

To bound the probability that this protocol fails i.e., that m′′ �= m′, consider
the following adversary A = (A1, A2) for the receiver-deniable security games
against (Gn, En, Dn, FR

n). On input pk A1 outputs (m, m′, st), where the mes-
sages m and m′ are sampled as in step 2 of the sender algorithm above. The
state st is set to be m′. On input (st, c, sk′) A2 computes Dn

sk′ (c) = m′′ and
outputs 1 if m′′ = m′ = st and 0 otherwise. Now notice that steps 1-4 of the
sender algorithm above correspond to the first four steps of the receiver-deniable
faking game against A. That is the probability that the communication protocol
fails i.e., that m′′ �= m′, is exactly the same as A2 outputting 0 in the faking
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game. In the honest game we have by correctness of (Gn, En, Dn, FR
n) that A2

only outputs 0 with negligible probability. Thus by nε-receiver deniability we
have Pr [m′′ �= m′] ≤ nε(κ)+negl(κ). We later use this bound on the correctness
of the communication protocol to derive our bound, but first we transform the
protocol a bit.

For each κ, let rκ be the value which minimizes the probability that m′′ �= m′

when cκ = Epk(0n; rκ). Consider then the following non-uniform communication
protocol parametrized by κ. Here is how the sender works:

1. Sample (pk, sk)← G(1κ).
2. Sample m′ ← {0, 1}n.
3. Let sk′ ← FR(sk, 0n, rκ, m′).
4. Send sk′.

The receiver outputs m′′ = Dsk′ (cκ), where cκ = Epk(0; rκ). Note that rκ and cκ

are hardwired into the protocol and is therefore not communicated as part of the
protocol. We still have that Pr [m′′ �= m′] ≤ nε(κ)+negl(κ). Using that n = σ+1
we get that (σ + 1)ε(κ) ≥ 1 − Pr [m′′ = m′] − negl(κ). From incompressibility
of uniformly random data it follows that Pr [m′′ = m′] ≤ 2σ−n = 2−1, as the
protocol sends only sk′, which is at most σ bits long and because m′ is uniformly
random and n = σ + 1 bits long. Combining these bounds we get that ε(κ) ≥
1
2 (σ + 1)−1 − negl(κ). 	

In words, this bound says that any public-key cryptosystem with σ-bit keys
can be be at most 1

2 (σ + 1)−1-receiver-deniable. Thus to get negligible receiver-
deniability keys must be superpolynomial in size. This however would contradict
the key generation algorithm being polynomial-time as required by our definition
of a public-key cryptosystem.

4 From Multi-distributional to Poly Deniability

We now give explicit constructions of poly-(sender/receiver/bi)-deniable public-
key encryption schemes from any multi-distributional (sender/reciever/bi)-
deniable public-key encryption scheme respectively. As in [CDNO97, OPW11],
the basic idea in all these constructions is to encrypt a message bit b by first
writing it as b =

⊕n
i=1 bi for random bi’s, and then encrypting each bi indepen-

dently using randomly either the honest or the fakeable encryption scheme. To
fake we just have to identify an index j where the fakeable scheme was used
and use the corresponding faking algorithm. This is no problem for sender and
receiver deniablility since in those cases whoever is running the faking algorithm
knows exactly on which indices the fakeable scheme was used. The bi-deniable
case however is more challenging because sender and receiver must agree on an
index j where they both used the fakeable scheme. As discussed in the intro-
duction, a different solution for this problem was hinted in [OPW11]. All the
constructions are for bit encryption: for longer plaintext space one can simply
run the scheme in parallel.
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In the following subsections we will need two technical lemmas which we
state here. Let a randomized encoding E be a randomized function from {0, 1}
to {0, 1}n. Consider the following game �(A, E) between a randomized encoding
E and an adversary A (an interactive Turing machine):

1. Run A to make it output a bit b ∈ {0, 1}.
2. Sample (b1, . . . , bn)← E(b).
3. Input (b1, . . . , bn) to A and run it to produce a guess g ∈ {0, 1}.
4. Output g.

We define the advantage of A in distinguishing two randomized encodings E0

and E1 to be AdvA(E0, E1) = |Pr [�(A, E0) = 0] − Pr [�(A, E1) = 0] |. Notice
that if we fix b, then E0(b) and E1(b) are random variables, making the statis-
tical distance between them well-defined. Let σb denote the statistical distance
between E0(b) and E1(b) and let σ(E0, E1) = max(σ0, σ1).

Lemma 3. It holds for all adversaries A and all randomized encodings E0 and
E1 that AdvA(E0, E1) ≤ σ(E0, E1).

Lemma 4. Let s = 1, 2, . . . be a parameter. Let N : N → N, where Ns = N(s)
is the number of samples at setting s. For each s, let

Ds =

⎧
⎪⎨

⎪⎩

−p with probability q

q with probability p

0 with probability 1− p− q

,

where p and q might be functions of s. Let Xs,1, . . . , Xs,Ns be Ns i.i.d. variables,
distributed according to Ds. Let Xs =

∑Ns

i=1 Xs,i and let Ss = Pr [Xs ∈ [0, 1
2 )].

Then

Ss ≤ 1
√

pq(p + q)Ns

(
p2 + q2

p + q
+

1
2
√

2π

)

.

The first lemma is trivial to prove, and the second follows directly from the
Berry-Esseen inequality [KS10]. Full proofs can be found in the full version.

4.1 Poly-Sender-Deniability

As a warm up we show that a multi-distributional sender-deniable scheme implies
a poly-sender-deniable scheme. From a scheme (G, E, EF, D, FS) we produce a
scheme (G′, E′, D′, FS

′) which encrypts a single bit b. The produced scheme is
basically the Parity Scheme of [CDNO97] only whereas our scheme is based on
a multi-distributional sender-deniable scheme, the scheme in [CDNO97] is based
on a so-called translucent set.

Key Generation G′(1κ): Output (pk, sk)← G(1κ).
Encryption E′

pk(b): Sample a uniformly random index j ∈ {0, . . . , n} so that j
is even for b = 0 and odd for b = 1. For i = 1, . . . n do the following.
1. For i ≤ j sample ci ← EFpk(1; ri).
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2. For i > j sample ci ← Epk(0; ri).

Output C = (ci)n
i=1.

Decryption D′
sk(C): Parse C as (ci)n

i=1. Compute bi = Dsk(ci) for i = 1, . . . , n
and output b =

⊕n
i=1 bi.

Fake FS
′(pk, b, (j, (ri)n

i=1), b
′): If b = b′ output (j, (ri)n

i=1). Otherwise let r′j =
FS(pk, 1, rj, 0) and j′ = j−1. Let all r′i = ri for i �= j and output (j′, (r′i)

n
i=1).

Theorem 2. If (G, E, EF, D, FS) is multi-distributional sender-deniable, then
(G′, E′, D′, FS

′) is 4/n-sender-deniable.

Proof. Correctness and semantic security is obvious. To prove poly-sender-
deniability we first consider the following hybrid game H1.

H1 proceeds exactly as the faking game for sender-deniability only it modifies
the faking algorithm FS

′ by simply sampling r′j as randomness for the honest
encryption algorithm E, and replaces the ciphertext C = (ci)n

i=1 with C′ =
(c′i)

n
i=1 where c′j = Epk(0; r′j) and c′i = ci for all i �= j. Notice that the H1 only

changes the distribution of r′j and c′j , the distribution of all other inputs to the
adversary remains the same. In other words distinguishing the two games comes
down to distinguishing an honest encryption of 0 from an encryption faked to
an honest encryption of 0. Thus by the multi-distributional sender-deniability of
(G, E, EF, D, FS) the advantage of any adversary in distinguishing the two games
will be negligible in κ.

Now consider another hybrid game H2. H2 proceeds exactly as the honest
game for sender-deniability except that it modifies the encryption algorithm
E′ by picking j in the following way: first it picks a uniformly random index
i ∈ {0, . . . , n} such that i is odd for b = 0 and even for b = 1 (i.e., the opposite
of how E′ picks j) and then sets j = i−1. Notice now that H2 outputs exactly the
same as H1 to the adversary only the output is generated in a slightly different
order. I.e., H1 and H2 are perfectly indistinguishable. However since H2 proceeds
exactly as the honest game, except that it picks j from a different distribution,
distinguishing H2 from the honest game comes down to distinguishing the two
different distributions of j.

In order to utilize Lemma 3 we can view these distributions as randomized
encodings. Let us denote by E0 and E1 the encodings that encodes a bit b as j
1’s followed by n− j 0’s. For E0 j is sampled as in the honest game where the
adversary outputs b and for E1 j is sampled as in the hybrid game H2 where
the adversary outputs b. If j = −1 in the hybrid game E1 will encode this as
a special string, say a 0 followed by n − 1 1’s. First notice that for b = 0 both
games sample j uniformly random in {0, 2, 4, . . . , n−1}, i.e., σ0 = 0. However for
b = 1 the honest game samples j uniformly random in {1, 3, 5, . . . , n} whereas
H2 samples uniformly random in {−1, 1, 3, . . . , n− 2}. Thus clearly σ1 = 4/n.

Now by Lemma 3 we have that any adversary has advantage at most 4/n
in distinguishing the honest game from H2. By the above hybrid argument it
follows that any adversary has advantage at most 4/n+negl(κ) in distinguishing
the honest game from the faking game. I.e., (G, E, EF, D, FS) is 4/n-deniable. 	
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4.2 Poly-Receiver-Deniability

We show that a multi-distributional receiver-deniable scheme implies a poly-
receiver-deniable scheme. From a scheme (G, GF, E, D, FR) we produce a scheme
(G′, E′, D′, FR

′) which encrypts a single bit b.

Key generation G′(1κ): For i = 1, . . . , n sample uniformly random bits ai ∈
{0, 1} and then sample (pki, ski)← Gai , where G0 = G and G1 = GF. Output
(PK, SK) = ((pki)n

i=1, (ski, ai)n
i=1).

Encryption E′
PK(b): Parse PK as (pki)n

i=1. For i = 1, . . . , n − 1, sample bi

uniformly at random and let bn = b ⊕⊕n−1
i bi, compute ci ← Epki(bi) and

output C = (ci)n
i=1.

Decryption D′
SK(C): Parse SK as (ski, ai)n

i=1 and C as (ci)n
i=1. Compute bi =

Dski(ci) for i = 1, . . . , n and output b =
⊕n

i=1 bi.
Fake FR

′(SK, C, b′): If b′ = D′
SK(C) output SK. Otherwise parse SK as

(ski, ai)n
i=1 and C as (ci)n

i=1. Pick a uniformly random index i for which
ai = 1, compute bi = Dski(ci) and let sk′

i = FR(ski, ci, 1 − bi) and a′
i = 0.

For all j �= i, let sk′
j = skj and a′

j = aj . Output SK ′ = (sk′
j , a

′
j)

n
j=1.

If κ is they key length of the underlying scheme then the above scheme has keys
of length nκ. The following result then implies that one can build a 1/n-receiver
deniable scheme with keys of size σ = O(n2κ).

Theorem 3. If (G, GF, E, D, FR) is multi-distributional receiver-deniable, then
(G′, E′, D′, FR

′) is (n− 1)−1/2-receiver-deniable.

Proof. In the following we assume for simplicity that n is odd, a similar analysis
can be made in the case of n even. Correctness and semantic security is obvi-
ous. Using a hybrid argument, the distinguishing probability of any poly-time
adversary against the above scheme is negligible close to the best distinguishing
advantage between the two randomized encoding E0 and E1 defined as follows:

1. E0(b) = (b1, . . . , bn), where the bi ∈ {0, 1} are uniformly random and inde-
pendent except that b =

⊕n
i=1 bi.

2. E1(b) = (b1, . . . , bn) is sampled as follows. First sample b′i ∈ {0, 1} as in
E0(b⊕ 1). Then, if

∑
i b′i = 0, let (b1, . . . , bn) = (b′1, . . . , b′n). Otherwise, pick

a uniformly random j ∈ {1, . . . , n} for which b′j = 1 and then let bj = 0 and
let bi = b′i for i �= j.

The event
∑

i b′i = 0 happens with negligible probability, so we can analyze
under the assumption that this does not happen. In that case the bits bn and
b′n can be computed as bn = b ⊕⊕n−1

i=1 bi respectively b′n = b ⊕⊕n−1
i=1 b′i. So,

one can distinguish D0(b) = (b1, . . . , bn−1) and D1(b) = (b′1, . . . , b
′
n−1) with the

same advantage as one can distinguish E0(b) and E1(b). The distribution D0(b)
consists of n−1 uniformly random bits. The distribution D1(b) consists of n−1
uniformly random bits, where we flipped a random occurence of 1 to 0. For
b ∈ {0, 1}n−1, let #1(b) =

∑n−1
i=1 bi be the number of 1’s in the vector and let

#0(b) = n−1−#1(b) be the number of 0’s. By the symmetry of the distributions,
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it is easy to see that one can distinguish #1(D0(b)) and #1(D1(b)) with the
same advantage as one can distinguish D0(b) and D1(b). Since #1(D0(b)) is
binomially distributed with expectation n−1

2 and #1(D1(b)) = #1(D0(b)) − 1,
it follows that an optimal distinguisher for #1(D0(b)) and #1(D1(b)) is to guess
0 if #1(D) ≥ n−2

2 and guess 1 otherwise, as this is a maximum likelyhood
distinguisher. The advantage of this distinguisher is

Adv =
1
2

∣
∣
∣
∣Pr

[

#1(D0(b)) ≥ n− 2
2

]

− Pr
[

#1(D1(b)) ≥ n− 2
2

]∣
∣
∣
∣

=
1
2

∣
∣
∣
∣Pr

[

#1(D0(b)) ≥ n− 2
2

]

− Pr
[

#1(D0(b)) ≥ n− 2
2

+ 1
]∣
∣
∣
∣

=
1
2

Pr
[

#1(D0(b)) ∈
[
n− 2

2
,
n− 2

2
+ 1

)]

.

From #1(D0(b)) = (n− 1)−#0(D0(b)), we get that 2#1(D0(b)) = #1(D0(b))+
(n− 1)−#0(D0(b)), so #1(D0(b)) = n−1

2 + 1
2 (#1(D0(b)) −#0(D0(b))), and it

follows that

Adv =
1
2

Pr
[
1
2
(#1(D0(b))−#0(D0(b))) ∈

[

−1
2
,
1
2

)]

=
1
2

Pr
[
1
2
#1(D0(b))− 1

2
#0(D0(b)) ∈

[

0,
1
2

)]

.

The last equality follows from n being odd. Consider then Lemma 4, with p =
q = 1

2 and Ns = s−1. The variable Xs in the premise then has exactly the same
distribution as 1

2#1(D0(b))− 1
2#0(D0(b)) when s = n. Plugging p = q = 1

2 and
Ns = n− 1 into Lemma 4 we get that Pr [12#1(D0(b))− 1

2#0(D0(b)) ∈ [0, 1
2 )] ≤

2√
s−1

. 	


4.3 Poly-Bi-Deniability

We show that a multi-distributional bi-deniable scheme implies a poly-bi-
deniable scheme. From a scheme (G, GF, E, EF, D, FS, FR) we produce a scheme
(G′, E′, D′, FS

′, FR
′) which encrypts a single bit.

Key generation G′(1κ): For i = 1, . . . , n2 sample random bits ai ∈ {0, 1}
and then sample (pki, ski) ← Gai(1κ), where G0 = G and G1 = GF. Sam-
ple the ai’s independently with Pr [ai = 0] = 1/n. Output (PK, SK) =
((pki)n2

i=1, (ski, ai)n2

i=1).
Encryption E′

PK(b): Parse PK as (pki)n2

i=1. For i = 1, . . . , n2

1. Sample uniformly random bi ∈R {0, 1} and mi ∈R {0, 1}κ such that
b =

⊕n2

i=1 bi.
2. Compute ci ← Ebi

pki
(m′

i, ri), where m′
i = bimi (0mi = 0κ and 1mi = mi),

E0 = E and E1 = EF.
Output C = (ci)n2

i=1.
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Decryption D′
SK(C): Parse SK as (ski, ai)n2

i=1 and C as (ci)n2

i=1. For i =
1, . . . , n2, compute m′

i = Dsk(ci) and let b′i = 1 if m′
i �= 0 and b′i = 0 if

m′
i = 0. Output b =

⊕n2

i=1 b′i.
Fake (sender) FS

′(PK, b, (ri, mi, bi)n2

i=1, b
′): If b = b′ output (ri, mi, bi)n2

i=1.
Otherwise parse PK as (pki)n2

i=1. Let m′ = min{m′
i = bimi|i ∈ {1, . . . , n2}∧

m′
i �= 0κ} and pick the unique (ewnp.) index k for which m′

k = bkmk = m′

(notice this implies bk = 1). I.e., k is the index of the ci containing the small-
est non-zero plaintext. The minimum is taken according to lexicographic or-
der. Then let r′k = FS(pkk, m′

k, rk, 0κ), m′
k = mk and b′k = 0. For all j �= k,

let r′j = rj , m′
j = mj and b′j = bj . Output (rj , mj , bj)n2

j=1.
Fake (receiver) FR

′(SK, C, b′): If D′
SK(C) = b′ output SK. Otherwise parse

SK as (ski, ai)n2

i=1 and C as (ci)n2

i=1 and compute m′
i = Dsk(ci). Let m′ =

min{m′
i|i ∈ {1, . . . , n2} ∧m′

i �= 0κ} and pick the unique (ewnp.) index k for
which m′

k = m′. I.e., k is the index of the ci containing the smallest non-zero
plaintext. The minimum is taken according to lexicographic order. If ak = 0,
then give up. If ak = 1, then let sk′

k = FR(skk, ck, 0κ) and a′
k = 0. For all

j �= k, let sk′
j = skj and a′

j = aj . Output SK ′ = (sk′
j , a

′
j)

n2

j=1.

Theorem 4. If (G, GF, E, EF, D, FS, FR) is multi-distributional bi-deniable, then
(G′, E′, D′, FS

′, FR
′) is O(n−1/2)-bi-deniable.

Proof. Correctness follows by observing that b′i = bi unless one of the uniformly
random κ-bit messages mi happens to be 0κ, which is a negligible event. Semantic
security is obvious. As for bi-deniability, by a hybrid argument similar to that
in the proofs of Thm. 2 and Thm. 3, distinguishing the honest and faking game
comes down to distinguishing the following two random encodings of a bit b.
1. E0(b) = (b1, . . . , bn2 , a1, . . . , an2), where the bi ∈ {0, 1} are sampled uni-

formly at random except that
⊕n2

i=1 bi = b and the ai ∈ {0, 1} are sampled
such that Pr[ai = 0] = 1/n.

2. E1(b) = (b1, . . . , bn2 , a1, . . . , an2) is sampled as follows. First sample b′i, a
′
i ∈

{0, 1} as in E0(b ⊕ 1). Then, if
∑

i b′i = 0, let (b1, . . . , bn2) = (b′1, . . . , b
′
n2).

Otherwise, pick a uniformly random k ∈ {1, . . . , n2} for which b′k = 1 and then
let bk = 0 and let bk = b′k for i �= k. If a′

k = 1 let ak = 0 and let ai = a′
i for

i �= k.
It happens that a′

k = 0 with probability 1/n, so by adding 1/n to the bound in
the end, we can analyse under the assumption that a′

k = 1. In that case we can
describe E1(b) as above, except that we pick k uniformly at random among the
i’s for which b′i = 1 and a′

i = 1. Then we set bk = 0 and ak = 0 and set bi�=k = b′i
and ai�=k = a′

i.
Given a vector v = (b1, . . . , bn2 , a1, . . . , an2), we let #00(v) be the number

of i’s for which bi = ai = 0 and we let #11(v) be the number of i’s for which
bi = ai = 1. For simplicity we assume that b is uniformly random, such that
b1, . . . , bn2 is uniform in {0, 1}n2

. Deriving the same bound for fixed b = 0
and b = 1 is straight-forward. Let p = 1

2n be the probability that ai = 0
and bi = 0. Let q = n−1

2n be the probability that ai = 1 and bi = 1. The
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expected value of #00(E0(b)) is pn2. The expected value of #11(E0(b)) is qn2,
and #00(E1(b)) = #00(E0(b)) + 1 and #11(E1(b)) = #11(E0(b))− 1. From this
it can be derived as in the proof of Thm. 3 that the maximum likelihood distin-
guisher for E0(b) and E1(b) guesses 0 if q#00− p#11 > 0 and that its advantage
is 1

2 Pr [q#00(E0(b))− p#11(E1(b)) ∈ [0, 1
2 )]. Using Lemma 4 as in the proof of

Thm. 3, with s = n, Ns = s2 and the p and q defined above, it follows that

Pr [q#00(E0(b))− p#11(E1(b)) ∈ [0,
1
2
)] ≤ 1√

s

(√
2 +

1√
π

)

.

The theorem then follows from
√

2 + 1√
π
≤ 2. 	
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