
Lower-Bound-Constrained Runs
in Weighted Timed Automata

Patricia Bouyera, Kim G. Larsenb, Nicolas Markeya

aLab. Spécification & Vérification, CNRS & ENS Cachan, France
bDept. Computer Science, Aalborg University, Denmark

Abstract

We investigate a number of problems related to infinite runs of weighted timed au-
tomata (with a single weight variable), subject to lower-bound constraints on the
accumulated weight. Closing an open problem from [1], we show that the existence
of an infinite lower-bound-constrained run is—for us somewhat unexpectedly—
undecidable for weighted timed automata with four or more clocks.

This undecidability result assumes a fixed and known initial credit. We show
that the related problem of existence of an initial credit for which there exists
a feasible run is decidable in PSPACE. We also investigate the variant of these
problems where only bounded-duration runs are considered, showing that this
restriction makes our original problem decidable in NEXPTIME. We prove that
the universal versions of all those problems (i.e, checking that all the considered
runs satisfy the lower-bound constraint) are decidable in PSPACE.

Finally, we extend this study to multi-weighted timed automata: the existence
of a feasible run becomes undecidable even for bounded duration, but the
existence of initial credits remains decidable (in PSPACE).

1. Introduction

Weighted (or priced) timed automata [2, 3, 4] have emerged as a useful
formalism for formulating a wide range of resource-allocation and optimization
problems [5, 6], with applications in areas such as embedded systems [7]. In [1],
a new class of resource-allocation problems was introduced, namely that of con-
structing infinite schedules subject to boundary constraints on the accumulation
of resources.

More specifically, we proposed weighted timed automata with positive as well
as negative weight-rates in locations, allowing for the modeling of systems where
resources (e.g. energy) are not only consumed but also possibly produced. As a
basic example, consider the two-clock weighted timed automaton A in Fig. 1 with
infinite behaviours repeatedly delaying in `0, `1, `2 and `3 for a total duration of
two time units, with one time unit spent in `0 and `3 and one time unit spend in
`1 and `2 (we silently assume an invariant on all locations, imposing that clock y
has to always remain below 2). The values (+2, +3 and +4) in the four locations

Preprint submitted to Elsevier November 29, 2013

indicate the rate by which energy is produced (or consumed, when negative),
and the values (−2 and −3) on the edges indicate instantaneous updates to the
energy level (there is only one weight variable in this example). Clearly, the
energy remaining after a given iteration will depend not only on the initial energy
but also highly on the distribution of the two time units over the four locations.

+3

`0

+2

`1

+4

`2

+4

`3

x := 0

−2 −3

x = 1

−3

y = 2, y := 0

Fig. 1: A 2-clock weighted timed automaton A (with implicit global invariant y ≤ 2)

e

t
0 1 2

2

4

6

`0
`1

`2 `3

e

t
0 1 2

2

4

6

`2
`0

`1
`3

e

t
0 1 2

2

4

6

`0
`1 `2

Fig. 2: Three possible behaviours (representing the evolution of the location and energy level
with time) in A (with initial credits 8, 2 and 1, resp.)

In this paper we consider a number of problems related to infinite runs
subject to lower-bound constraints on the accumulated weights (e.g. infinite
runs where the energy level never goes below zero). In the absence of an upper
bound and if there is only one weight variable, it suffices to consider runs along
which the accumulated weight is maximized. Fig. 2 illustrates three such energy-
maximizing behaviours of A. For initial energy 8, the maximum energy left after
one iteration is 8, thus providing an infinite lower-bound schedule. In contrast,
an initial energy level of 1 does not even permit a single iteration (let alone an
infinite schedule), and an initial energy level 2 leaves at maximum 1, for which
we already know that no infinite lower-bound schedule exists. In this simple
(non-branching) example, it can be shown that 1.5 is the least initial credit for
which it is possible to come back to `0, and 5 is the minimal initial credit that
allows an infinite-duration run.

For weighted timed automata with a single clock and a single weight variable,
the existence of a lower-bound constrained infinite run has been shown decidable
in polynomial time [1] with the restriction that no discrete updates of the
accumulated weight occur on transitions. In [8], it is shown that the problem
remains decidable if this restriction is lifted and even if the accumulated weight
grows not only linearly but also exponentially. In contrast, the existence of
interval-constrained infinite runs—where a simple energy-maximizing strategy
does not suffice—have recently been proven undecidable for weighted timed

2

automata with varying numbers of clocks and weight variables: e.g. two clocks
and two weight variables [9], one clock and two weight variables [10], and two
clocks and one weight variable [11]. Also, the interval-constrained problem is
undecidable for weighted timed automata with one clock and one weight variable
in the game setting [1].

Still, the general problem of existence of infinite lower-bounded runs for
weighted timed automata has remained unsettled since [1]. In this paper we close
this open problem showing that it is undecidable for weighted timed automata
with four or more clocks and one weight variable. Given that this problem looks
rather simple (since there is only one weight variable, it suffices to consider
energy-maximizing runs), we find this result quite surprising and somewhat
disappointing. Thus, we consider a number of related problems for which we
show decidability and settle complexity. In particular, the undecidability result
assumes a fixed and known initial energy level. We show that the related problem
of existence of an initial energy level allowing an infinite lower-bound constrained
run is decidable in PSPACE in the one-weight case. We also investigate the
variant of these problems, where the lower-bound constraint is only imposed for
a limited duration: for instance, for the weighted timed automaton in Fig. 1 and
initial energy level of 4, we may want to settle the existence of a run along which
the energy level remains non-negative during the first 4.7 time units, say. Note
that the time-bounded paradigm has recently emerged as a pertinent restriction
option for the verification of real-time systems [12] (in quite the same way as
bounded model checking has been used for untimed systems [13]). We show that
this restriction makes our original problem decidable and NEXPTIME-complete
(assuming only one weight variable). Our result has to be compared with
rectangular hybrid automata, for which time-bounded reachability has recently
been shown decidable in EXPSPACE (no matching lower bound is provided,
though), under the hypothesis that all rates are non-negative (if rates can
be negative, the problem is undecidable) [14]. Our model of weighted timed
automata is a special case of rectangular hybrid automata, in which all variables
are clocks (rate 1) and one variable can have non-negative as well as negative
rates. Therefore none of the two decidability results implies the other. We refer
to Table 1 for a summary of the aforementioned results.

We also extend this study to multi-weighted timed automata, showing that
the above decidability result for the existence of a time-bounded constrained run
does not carry over to that multi-dimensional setting (our undecidability proof
uses ten weight variables, but only one clock). Still, the existence of an initial
credit in the time-bounded setting is proven to remain decidable.

Finally, we also consider the universal versions of all the above problems (i.e.,
checking that all the considered runs satisfy the lower-bound constraint), and
prove that they all are decidable in PSPACE.

3

2. Definitions

2.1. Basic definitions

We write R≥0, Q≥0 and N respectively for the set of nonnegative reals,
rationals and integers. We assume that X is a finite set of variables called clocks.
A valuation v of the clocks is a mappingX → R≥0. If v is a valuation and t ∈ R≥0,
we write v + t for the valuation which assigns v(x) + t to clock x. If R ⊆ X,
we write v[R → 0] for the valuation which assigns 0 to clocks in R and v(x)
to x ∈ X \R. We write Φ(X) for the set of formulas (called clock constraints)
defined by φ ::= true | φ∧φ | x ∼ c with x ∈ X, ∼ ∈ {<,≤,=,≥, >} and c ∈ N.
The semantics of such formulas is given by sets of valuations and defined in a
natural way.

We assume that W is a finite set of variables called weights. A valuation u
of the weight variables is a mapping W → R. Given u′ ∈ RW , we write u+ u′

for the valuation mapping each w ∈W to u(w) + u′(w). A valuation u is said
nonnegative if u(w) ≥ 0 for all w ∈W .

A multi-weighted timed automaton (or weighted timed automaton in short)
is a tuple A = 〈L,L0, X,W, inv, E, disc, rate〉 consisting of a finite set L of
locations, a finite set L0 ⊆ L of initial locations, a finite set X of clocks, a finite
set W of weights, a location invariant mapping inv : L → Φ(X), a finite set
E ⊆ L×Φ(X)×2X×L of edges, and, for each weight variable w in W , functions
ratew : L → Z and discw : E → Z, which respectively indicate how the weight
variable w is to be updated when waiting in a location and when crossing an
edge. In the sequel, for a location ` ∈ L and an edge e ∈ E, we write rate(`) and
disc(e) for the vectors (ratew(`))w∈W and (discw(e))w∈W .

The semantics of a weighted timed automaton is defined as an infinite-state
transition system GA = 〈S, T 〉 with

• S = {(`, v, u) ∈ L× (R≥0)X ×RW | v |= inv(`)},

• T ⊆ S × S contains two types of transitions:

– delay transitions, which do not involve a change in the location:

{(`, v, u)→ (`, v′, u′) | ∃t ∈ R≥0. v′ = v + t and u′ = u+ rate(`)× t}

– action transitions:

{(`, v, u)→ (`′, v′, u′) | ∃e = (`, g, R, `′) ∈ E.
v |= g and v′ = v[R→ 0] and u′ = u+ disc(e)}.

The above semantics is that of a timed automaton with extra weight variables,
which evolve with rate rate(`) in location ` and in a discrete manner (following
the disc function) when firing transitions. Notice that if (`, v, u)→ (`′, v′, u′) ∈ T ,
then for all γ ∈ RW , there exists γ′ ∈ RW such that (`, v, γ)→ (`′, v′, γ′) ∈ T .
That is, the weight variables do not constrain the behaviour of the automaton.
A (finite or infinite) run (`0, v0, u0) → (`1, v1, u1) → . . . of GA will be called

4

a weighted run, and we will sometimes use the underlying standard timed run
(`0, v0) → (`1, v1) → . . . , which forgets about the weight information. Since
two consecutive delay transitions can be merged, we require that along any
run, delay- and action transitions alternate (by possibly inserting zero-delay
transitions between two consecutive action transitions). We define the length
of a run as its number of action transitions. If (`0, v0, u0) is the first state of
a run %, u0 is the initial credit ; % is said to be initial if `0 ∈ L0 and v0 = 0,
the valuation which assigns 0 to every clock. If % is a timed run, then for every
valuation u0 of the variables in W , there is a unique corresponding weighted run
with initial credit u0.

2.2. The lower-bound constrained problems

2.2.1. The existential and universal L-problems.

Fix an initial credit1 u0 ∈ QW . An infinite timed run % = (`0, v0) →
(`1, v1) → (`2, v2) . . . of A satisfies the lower-bound constraint L(u0) (which
we write % |= L(u0)) if along the corresponding weighted run (`0, v0, u0) →
(`1, v1, u1)→ (`2, v2, u2) . . . with initial credit u0, ui is nonnegative for every i.
In that case we say that the run is feasible with initial credit u0, or simply that
the corresponding weighted run is feasible.

We say that A |= ∃∞L(u0) (resp. A |= ∀∞L(u0)) whenever there exists an
initial infinite run % s.t. % |= L(u0) (resp. for every initial infinite run % with
initial credit u0, it holds % |= L(u0)). The first (resp. second) problem is called
the existential (resp. universal) L-problem, and denoted with ∃∞L(u0) (resp.
∀∞L(u0)).

2.2.2. The time-bounded L-problems.

Fix an initial credit u0 ∈ QW and a time bound T ∈ Q≥0. A timed run
% = (`0, v0) → (`1, v1) → (`2, v2) . . . satisfies the T -time-bounded lower-bound
constraint L(u0) (which we write % |=T L(u0)) whenever the following holds2:

• the total duration of % is at most T , and can be strictly less than T only
if % is infinite. We let p0 be the number of transitions along %;

• if (`0, v0, u0) → (`1, v1, u1) → (`2, v2, u2) . . . is the weighted run corre-
sponding to % with initial credit u0, then for every i ≤ p0, ui is nonnegative.

We then say that A |= ∃TL(u0) (resp. A |= ∀TL(u0)) whenever there
exists an initial run % such that % |=T L(u0) (resp. for all initial finite runs
of duration T and for all initial infinite run of duration at most T , it holds
% |=T L(u0)). The first (resp. second) problem is called the existential (resp.
universal) time-bounded L-problem . In short we write ∃TL(u0) (resp. ∀TL(u0)).

1We restrict to rationals from this point on, as considering irrational weights would lead to
undecidability, as is the case with irrational guards [15].

2Various similar definitions could be considered instead of this one, for instance requiring
that the duration is always (at least) T . Such variants could be handled by our techniques
with minor amendments.

5

2.2.3. Existence of an initial credit.

The above four problems assume a fixed and known initial credit u0. We are
interested also in the existence (and synthesis) of an initial credit for which the
previous problems can be answered positively. Formally, for Q ∈ {∃,∀} and
α ∈ Q≥0 ∪ {∞}, we write A |= ∃u0.QαL(u0) whenever there exists an initial
credit u0 ∈ QW such that A |= QαL(u0). In short we denote this problem by
∃u. QαL(u).

2.3. Summary of our results

fixed initial credit existence of initial credit

∞
≤ 1c, = 1w: in EXPTIME [8]

≥ 4c, ≥ 1w: undecidable

≥ 1c, ≥ 4w: undecidable [10]

= 1w: in PSPACE

≥ 3c, = 1w: PSPACE-c.

T

= 1w: in NEXPTIME

≥ 5c, = 1w: NEXPTIME-c.

≥ 1c, ≥ 10w: undecidable

in PSPACE

≥ 3c: PSPACE-c.

Table 1: Summary of our results (where e.g. “≥ 3c” refers to automata with at least three
clocks, and “= 1w” concerns automata with exactly one weight variable.

In this paper we solve several of the various above-mentioned problems. We
prove that the problem of the existence of a feasible run is undecidable in general,
with the notable exception of time-bounded feasible runs in the presence of a
single weight variable.

On the other hand, the problem of the existence of an initial credit for which
a feasible run exists is shown decidable (in polynomial space) in most cases
(we were not able to solve the case of infinite-duration runs for multi-weighted
timed automata). Our results (for the case Q = ∃) are summarized in Table 1
(the previously known results are displayed in gray). We distinguish the time-
bounded (written T) and time-unbounded (written ∞) cases. In this table,
constraints such as ≥ 3c (resp. ≥ 1w) refer to the number of clocks (resp. weight
variables) used in our proof. When unspecified, we mean that the result holds for
arbitrarily many clocks (or weights). When Q = ∀, we prove that all problems
can be solved in polynomial space, and are PSPACE-complete as soon as the
automaton has at least three clocks.

3. Undecidability of A |= ∃∞L(u0) with one weight variable

We first prove the undecidability of the existential L-problem. While its proof
is not of the most difficult, the result is quite surprising (at least to us) as the
problem looks rather simple (it amounts to checking that, by maximizing the
accumulated weight, we can keep it non-negative).

6

Theorem 1. The existential L-problem is undecidable for the class of weighted
timed automata with at least four clocks and one weight variable (and rates in
{0, 1}).

We only give a proof sketch here, which is simple to understand but requires
five clocks. Another proof can be obtained by using the encoding of the hardness
proof in Section 5.2.

Sketch of proof. Consider the automata depicted on Fig. 3. Writing x0 for
the value of clock x when entering `0, the effect of these automata is to add x0
(resp. 1− x0) to the weight, while preserving the value of all the clocks (provided
that these values are in [0, 1)). Using these modules, it is then easy to enforce
linear constraints between clocks: Fig. 4 is an example, in which each box is a
copy of one of the automaton of Fig. 3 (after possibly exchanging the role of x
and y). Discrete values between boxes represent a discrete increase or decrease
of the weight variable. It is easily checked that for any run in this module with
initial credit 0 and clock values x0 and y0 for clocks x and y, the final weight is 0
and the final values of the clocks are unchanged (assuming they are in [0, 1)).
Moreover, such a run exists if, and only if, y0 ≤ 2x0. Using such modules, we can
encode reachability in a four-clock timed automaton with additive constraints
(which is proven undecidable in [16]) as a reachability in a five-clock single-weight
timed automaton (with z as the extra clock, used in the modules of Fig. 3).
This reduction uses five clocks, but the above automata for checking additive
constraints can also be used to encode Turing machines, using only four clocks
(cf. Section 5.2). �

`0

rate=0

`1

rate=1

y=1
y:=0

y=1
y:=0

x=1

x:=0

z=0 z=1
`0

rate=1

`1

rate=0

y=1
y:=0

y=1
y:=0

x=1

x:=0

z=0 z=1

Fig. 3: Automata for crediting x0 and 1− x0

+x +x +(1− y) +y +(1− x) +(1− x)
−1 −2

Fig. 4: Automaton for checking y ≤ 2x

4. Undecidability of A |= ∃TL(u0) with several weight variables

In this section, we prove that when several weight variables are used, the
L-problem is already undecidable when considering time-bounded paths.

Theorem 2. The time-bounded L-problem is undecidable with ten weight vari-
ables and one clock.

7

Proof. We follow the idea of the proof of [14] for the undecidability of the
time-bounded reachability problem in rectangular hybrid automata.

We encode the behaviour of a two-counter machine as a time-bounded
execution in a multi-weighted timed automaton. The classical idea to do so
is to have weight variables store the values of the counters at time t, and to
update those values until time t + 1, according to the next instruction of the
two-counter machine. In order to achieve such a reduction within bounded
time, the timestamps will occur earlier and earlier, in such a way that time will
converge. Namely, the n-th step of the run of the two-counter machine will be
encoded at time 1− 1/4n. Counters a1 and a2 of the two-counter machine will
be encoded using two weight variables b1 and b2, with bi = 4−(n+ai) at the n-th
step.

This way, decrementing a counter requires keeping the corresponding weight
unchanged; incrementing the counter requires dividing the weight by 16, and
leaving it unchanged corresponds to dividing the weight by 4. These updates will
have to be performed in time 3/4n+1 between the n-th and n+1-st configurations.
We also have to generate our special “clock” producing ticks at dates 1− 1/4n.
We now explain how we perform these computations.

A generic gadget. We first give a generic gadget, which we use several times in
the reduction. This module divides the value of some weight variable, say c1,
by k2, where k ≥ 2 is a given integer. As we explain below, the computation is
made quickly enough to fit in our reduction.

t

slop
e
−
k

slo
pe

+
1

weight variable c
weight variable dc0

c0
k2

Fig. 5: Dividing c0 by k2

To alleviate the presentation, we first con-
sider a slightly different problem, where both a
lower-bound and an upper-bound are imposed on
the weight variables: more precisely, we require
that the values of the weight variables always
remain between 0 and 1 during the computa-
tion. The reduction to the L-problem is then
easy [10], as it suffices to associate with each
weight c a weight c′ whose value is kept equal
to 1− c. Then requiring that both c and c′ are
nonnegative amounts to require that the value
of c lies in [0, 1]. This in turn can be used to
ensure that the value of c is precisely zero, using
two consecutive discrete updates +1 and −1.

We now define our module. It uses two weight variables c and d, whose
behaviour is depicted on Fig. 5. The idea is as follows: in a first phase c
has rate −k, until it reaches zero (after c0/k time units). At that time, d has
value c0/k, and then decreases with rate −k. This lasts c0/k

2 time units, so that c
(having rate 1 in this second phase) equals c0/k

2 when d = 0. Thus c has been
divided by k2, and the duration of this computation is c0 ·(k−1+k−2). The gadget
achieving this computation is depicted on Fig. 6. We name it Mod(c/k2, d, z) to
indicate that it divides c by k2 and involves one extra weight variable d and one
clock z. If the above gadget is entered with values c = α ∈ [0, 1] and d = 0, then

8

`0
ċ = −k
ḋ = +1

`1

`2
ċ = +1

ḋ = −k
`3

`4
ċ = 0

ḋ = 0

Mod(c/k2, d, z)

c++

z:=0

c−−

z=0

d++

z:=0

d−−

z=0

test c = 0 test d = 0

Fig. 6: Module for dividing by k2

Mod(u/22, v, t)`t0 `t4
tick!

t = 0, tick!

Fig. 7: Module echoing ticks at time 1− 1/4n

there is a unique run traversing that module under the L-constraint, and the
gadget is escaped with c = α/k2 and d = 0. The time spent before entering `4
is α · (1/k + 1/k2).

Generating the sequence of timestamps. We now build a gadget echoing ticks
at dates 1− 1/4n, for all n. These ticks are used to synchronise two or several
modules: a transition labelled with tick? can only take place if a transition
tick! is available (and taken) at the same time. The resulting behaviour can be
captured by a timed automaton without ticks.

The tick module involves a weight variable u, which has value 1/4n when
echoing the n-th tick (i.e., at time 1− 1/4n). Hence it has to be divided by 4
between two consecutive ticks. This is achieved by using Mod(u/22, v, t), which
at step n runs in time 1/4n · (1/2 + 1/22), i.e., 3/4n+1, which is precisely the
duration between the n-th and n + 1-st ticks. The corresponding module is
depicted at Fig. 7. Assume the gadget is entered at time tn = 1 − 1/4n with
u = 1/4n and v = 0. As explained above, location `t4 is entered after 3/4n+1

time units (with clock t being zero). It is left immediately, echoing a tick, so that
the module is re-entered at time tn+1 = 1− 1/4n+1, with u = 1/4n+1 and v = 0.

Encoding the instructions. Let p be an instruction. We first assume that p
decrements counter ai, and then goes to instruction q. This is the easiest case to
handle, as we have to keep the weights unchanged. The module of Fig. 8 achieves
this. Notice that there are no timing constraints for entering and exiting this
module, but instead it has to synchronise on the ticks.

Now assume that instruction p increments counter ai before moving to q.
We need then a gadget that, when entered with weight value 1

4n+α (for every n
and for every α) is exited with weight value 1

4n+1+α+1 , which corresponds to
dividing the weight by 16. This is achieved by using module Mod(bi/4

2, ci, zi),

9

p, `i0
ċi = 0

ḋi = 0
q, `i0

tick? tick?

Fig. 8: Module for decrementing

Mod(bi/4
2, ci, zi) q, `i0p, `i0 p, `i4

tick? tick?

Fig. 9: Module for incrementing

Mod(bi/2
2, ci, zi) q, `i0p, `i0 p, `i4

tick? tick?

Fig. 10: Module keeping a counter unchanged

Mod(bi/2
2, ci, zi)

q, `i0

r, `i0

p, `i0 p, `i4
tick?

tick?

zi = 0

tick?
zi > 0

Fig. 11: Module for zero-tests

in which bi is the counter we use to encode counter ai and ci is an auxiliary
weight associated with counter ai. The gadget is then mostly Mod(bi/4

2, ci, zi),
decorated with ticks on its incoming and outgoing edges, as displayed on Fig. 9.
One can check that the computation is over before the exiting tick is emitted.

At each step, one of the counters is unchanged, which is encoded by dividing
the value of its associated weight variable by 4. This is achieved using the
module of Fig. 10. Again, one can check that we have enough time to perform
this computation before the next tick: the time taken to divide bi = 1/4n+ai

by 22 is (1/4n+ai) · (3/4), which is less than 3/4n+1.
Finally, assume instruction p is a zero-test, going to instruction q if counter ai

is zero and to r otherwise. Our module will divide by 22 (as we want to keep
counters unchanged). As we just explained above, this takes time (1/4n+ai)·(3/4).
As a consequence, we can synchronise on tick immediately if, and only if, ai = 0.
Hence our module is as depicted on Fig. 11.

10

Global reduction. Each instruction p of the two-counter machine requires updat-
ing both weight variables, due to our encoding. We thus have to consider the
asynchronous product of the two modules updating weights b1 and b2. This in
turn has to run in parallel with our special timer echoing ticks, with synchroni-
sation on those signals.

It remains to plug the resulting modules together, according to the instruc-
tions of the two-counter machine. Finally, we drop edges going out of states
corresponding to the halting state of the two-counter machine, and replace them
with a self-loop decrementing one of the counters by one. This way, the halting
state of the two-counter machine is reached if, and only if, there is no feasible
run of duration less than one in our multi-weighted timed automaton.

To conclude, notice that our reduction makes use of three clocks and six
weight variables: indeed, each counter requires one weight variable for storing
its value, and one additional weight variable and one clock for performing the
instructions. Then the automaton generating the ticks also involves two more
weight variables and one clock. However, our modules use lower- and upper-
bound constraints; using only L-constraints, we have to duplicate each weight
variable, hence using twelve weights.

Remark 3. The global reduction could be achieved slightly differently, by updating
the weights encoding the counters one after the other. This requires adapting the
encoding in the following ways:

• make the timer alternatively issue two kinds of ticks, namely tick1 and
tick2;

• change the encoding of the counters: counter a1 would be encoded with
weight value 1/42n+a1 , while a2 would be encoded as 1/42n+1+a2 . Updating
the values of the counters would then amount to dividing the weights by 4,
16 or 64, which we can easily achieve.

This way, the modules managing both counters can share their auxiliary weight
variable and their auxiliary clock, thus reducing to ten weight variables and two
clocks.

In order to spare one more clock, we notice that the clock t used for the
generation of the ticks might be omitted, since it is only used to enforce urgency,
i.e., that no time elapses in some of the states. This can be enforced using weight
variables, e.g. by assuming rate +1 for u in location `t1, and rate +1 for v in
location `t3, and rate −1 for v in `t4. Thanks to the constraints on the weights,
this will enforce delay zero in those locations, without using clock t. The global
reduction then uses ten weight variables and one clock. �

5. Decidability of A |= ∃TL(u0) with one weight variable

In this section, we show the decidability of the existential problem, when we
restrict to the time-bounded setting and a single weight variable. We also char-
acterize the exact complexity of this problem. We assume basic knowledge about
regions, a classical technique to prove various results in timed automata [17].

11

Theorem 4. The existential time-bounded L-problem is NEXPTIME-complete
for weighted timed automata involving five clocks or more and with one weight
variable.

5.1. Upper bound

We fix a weighted timed automaton A with a single weight variable, and we
assume that it has an extra clock u that is never reset. We fix a time bound
T ∈ Q≥0 and an initial credit c0 ∈ Q≥0 for the unique weight variable.

From a run witnessing that A |= ∃TL(c0), our approach consists in building
an exponential-size witness. The new witness may have the same duration as the
original one, or it may reach a configuration from which there is a feasible zero-
delay cycle with non-negative effect on the accumulated weight. We detail the
proof for the case where the automaton only has non-strict clock constraints, and
assume that the initial witnessing run is finite (Sections 5.1.1 to 5.1.5). We then
explain how to handle infinite runs in Section 5.1.6. Handling strict guards is
much more technical, and is presented in the technical appendix Appendix A.

5.1.1. Zero-delay cycles.

A zero-delay cycle on state (`, v) is a path starting and ending in (`, v) in
which all delay transitions are zero-delay. In particular, such a cycle cannot visit
a resetting transition, unless the reset clock already has value 0 in v.

Our first task is to detect those configurations from which a zero-delay cycle is
feasible. For a state (`, v) and a non-negative real c, we set the Boolean predicate
profit((`, v), c) to true iff there is a zero-delay cycle from (`, v, c) back to (`, v, c′)
for some c′ ≥ c, along which the lower-bound constraint is satisfied. Such a cycle
is called a profitable zero-delay cycle. Note that profit((`, v), c) = profit((`, v′), c)
whenever v and v′ belong to the same region r (because no time elapses), so that
the region-based predicate profit((`, r), c) is well-defined (in the obvious way).
Moreover, detecting zero-delay cycles can be achieved efficiently:

Lemma 5. Given (`, r), we can compute in polynomial time the smallest c such
that profit((`, r), c) holds, if any. Furthermore it is a natural number.

Proof. It suffices to consider the subgraph of the region automaton where only
region r appears. This is a weighted graph whose size is at most |L|, the number
of locations of the automaton. Using a modified Bellman-Ford algorithm [1], we
can compute the least c for which profit((`, r), c) holds, if any. This algorithm
runs in polynomial time, and returns a natural number (because discrete weights
are integers). �

We use this predicate to abstract weighted runs: from a state (`, v, c) satisfying
profit((`, v), c), there is an infinite run (whose total duration is finite, a.k.a. a
Zeno run) satisfying the lower-bound constraint3. Furthermore as we shall

3Notice that, using similar techniques, we could easily handle different variants of our
time-bounded problem, for instance if it is required that the witness run must have duration

12

prove in Section 5.1.6, any (Zeno) infinite witness will visit a state satisfying
profit((`, v), c). Hence we have reduced our problem to that of finding a finite
witness, either with duration T or with duration less than T but ending in a
state which carries a profitable zero-delay cycle.

5.1.2. Reduction scheme.

We now claim and explain our main technical lemma. Our NEXPTIME-
membership result, as stated in Theorem 4, follows from this lemma, as the
algorithm simlpy consists in nondeterministically constructing the path step-by-
step.

Lemma 6. If A has a feasible run % from some (`0, v0, c0) to some (`, v, c) of
duration T , then A has also a feasible run %′ of length N in4 O(T · |X|3 · |L|2),
starting from (`0, v0, c0) and ending in (`′, v′, c′) such that:

• either (`′, v′) = (`, v) and c′ ≥ c, and v′(u) = v(u);

• or from (`′, v′, c′) there is a profitable zero-delay cycle.

In order to bound the length of the witness run, we split it in segments in
which the integral part of clock u is constant. We then show that such segments
can be made short enough, while still satisfying the lower-bound constraint and
possibly improving the final accumulated weight.

For the rest of the proof we assume we are given a finite weighted run

% : (`0, v0, c0)
δ(t0)−−−→ (`0, v0 + t0, c

′
0)

e1−→ (`1, v1, c1)
δ(t1)−−−→ (`1, v1 + t1, c

′
1) . . . wit-

nessing the fact that A |= ∃TL(c0).
The [i..j]-segment of %, denoted %[i..j], is defined as (`i, vi, ci) → · · · →

(`j , vj , cj). Segment %[i..j] is said flexible whenever for every clock x ∈ X \ {u},
there exist an integer 0 ≤ dx ≤M (where M is the maximal constant of A) and
an index i < hx ≤ j + 1 such that

• clock x is not reset along %[i..hx − 1];

• for every i ≤ k < hx, it holds dx ≤ vk(x) < dx+1 (we assume M +1 =∞);

• and for every hx ≤ k ≤ j, it holds 0 ≤ vk(x) ≤ 1.

The index hx corresponds to the first transition where x is reset. Roughly,
a flexible segment can be split into at most 2|X|+ 1 parts (with the first and last
resets (if any) of each clock as the boundaries). In each part, we can “move” the
delays (while preserving the total duration of each part), allowing us to make
this witness shorter while preserving the initial and final clock valuations and
augmenting the value of the weight variable.

at least T : when a state (`, v, c) with profit((`, v), c) is visited, the weight variable can be
made arbitrarily large, and the lower-bound constraint is lifted. It just remains to decide the
existence of a run along which a sufficient amount of time elapses, with no weight constraint.

4Precisely, N =
(
1 + (|X|+ 1) · (1 + (|L|+ 1) · |L| · (|X|+ 1)2)

)
· (bT c + 1), where bT c is

the integral part of T .

13

The following lemma states that a segment of duration less than 1 can be
decomposed into a small number of flexible subsegments.

Lemma 7. Let %[i..j] be a segment of duration less than 1. Then %[i..j] can be
split into at most |X|+ 1 many flexible segments.

Proof. Since %[i..j] has duration less than 1, there are at most |X| many delay
transitions along which some clock reaches the upper bound of the unit interval
to which it belongs (that is, changes integral part with no reset operation). This
defines at most |X|+ 1 segments, which clearly are flexible. �

Consider a flexible segment %[i..j] = (`i, vi, ci)
δ(ti)−−−→ . . .

ej−→ (`j , vj , cj) along
which clock u has constant integral part. We define, for every i < h ≤ j,
δh =

∑h−1
k=i tk. For every clock x that is reset along %[i..j] we write mx (resp. nx)

for the index of the first (resp. last) edge along which x is reset. The run %[i..j]
is depicted on Fig. 12.

emx emy = eny enx ej
%[i..j] ×

(`i, vi, ci)
×

(`j , vj , cj)

first reset of x

unique reset of y

last reset of x

δmx

δmy = δny

δnx

δj

checkpoints

emx emy = eny enx ej
%′i→j ×

(`i, vi, ci)
×

(`j , vj , c
′
j)

with c′j ≥ cj
no reset of x no reset of x

no reset of y no reset of y

Fig. 12: A flexible segment

We transform %[i..j] into a shorter run %′i→j that starts in (`i, vi, ci) and
fires edges ej (resp. emx , enx) after exactly δj (resp. δmx , δnx) time units.
Furthermore that run will not reset clock x before firing emx after δmx time
units, and it will not reset clock x after having fired enx after δnx time units
(see Figure 12). This enforces that the clock constraints are satisfied along the
new run, and that the final state of %′ is the same as that of %. Edges emx ,

14

enx (for x ∈ X) and ej act as checkpoints. Between two checkpoints we will
“optimize” the accumulated weight (which will ensure that c′j ≥ cj) and shorten
the path (which will prove the existence of a short witness).

5.1.3. Transformation of a segment between two checkpoints.

Let us first discuss how the fractional parts of the clocks compare to that
of the universal clock u. A valuation v is said Y -small (for some Y ⊆ X)
whenever for every y ∈ Y , it holds 0 ≤ frac(v(y)) ≤ frac(v(u)) (where frac(q) is
the fractional part of q). Notice that for any t < 1− frac(v(u)), any valuation
reached from v within t time units is Y -small.

We now focus on one segment between two checkpoints. It is characterized
by a constraint described by a tuple γ = ((`, v, c), α, e, B,R, c′) where:

(a) (`, v, c) is the initial state of that segment;

(b) the duration α ∈ R>0 of that segment, assuming that frac(v(u)) + α < 1;

(c) the final edge e of that segment;

(d) the set B ⊆ X of clocks that should not be reset along that segment, except
possibly on the last edge e; we require that v is (X \B)-small;

(e) the set R ⊆ X of clocks that should have value 0 at the end of the segment
(when firing e);

(f) a lower bound c′ ∈ R≥0 for the accumulated weight at the end of the
segment.

We write Rγ(A) for the set of runs satisfying constraint γ (defined in an ob-
vious way). Intuitively, if we replace a segment of a feasible run with another
segment satisfying the same constraint γ, then the newly constructed run is still
feasible.

The following lemma shows that any constraint γ can be fulfilled by a short
segment.

Lemma 8. Let K = (|L|+ 1) · (|L| · (|X|+ 1)). The following two properties
are equivalent:

(i) there is a finite run % in Rγ(A);

(ii) there is a run of length at most K that either is in Rγ(A) or reaches a
state (`′, v′, c′) from which there is a profitable zero-delay cycle.

Roughly, the idea is to postpone any delay in a location with negative rate
to the latest appearance of that location along the run, and to transfer all delays
in a location with positive rate to its first appearance along the run. This
transformed run is in Rγ(A), delays in at most |L| locations, and still satisfies
the lower-bound constraint on the rate. Then we can remove the zero-delay
cycles (unless they are profitable).

Proof of Lemma 8. Pick a finite run % in Rγ(A), and modify it as follows: for
every location `1 in which a positive delay is spent along %, do the following:

15

• if rate(`1) ≥ 0, then transfer all delays spent in such a location to the first
occurrence of `1 along % where some positive delay is already spent;

• if rate(`1) < 0, transfer all delays spent in such a location to the last
occurrence of `1 where some positive delay is already spent.

We can do so since none of the guards along % is violated because of this change:
indeed, if x ∈ B, from the first positive delay on, x is in (dx; dx + 1) all along %
(as % is flexible and x is not reset along %). If x /∈ B, then v is {x}-small. Assume
that some transition has a guard x = c (with c > 0) along %. Then no delay is
spent before this transition, or no delay is spent after. Hence there is no transfer
of delay from one side of this transition to the other, so that the guard is still
fulfilled in the new run. Similarly, if there is a guard x = 0 in the original run,
then no time is elapsed since the previous reset of x (or since the beginning if x
is zero at the beginning), and the guard is still fulfilled in the new run. Finally,
if there is a guard x ∈ [c; c+ 1], then transferring delays to the beginning of the
run (before a reset of x) may increase the value of x, but as v(x) < v(u) and
frac(v(u)) < 1 all along %, then x ∈ [c; c+ 1] is still fulfilled along the new run.
Transferring delay after a reset of x would still keep x ∈ [0; 1].

The modified run delays in at most |L| locations, the lower-bound constraint
is still satisfied (because the accumulated weight in any location of the new run
is at least as high as in the original run).

We name %′ the new run, which is a new witness for (i). Consider a subrun
of %′ that is taken in zero-delay: if a state (`1, v1) is visited twice along that
subrun and if the corresponding cycle has a non-positive effect, then we can
remove that part of the run, the overall weight will be larger and we still have a
witness for (i); if such a cycle has a positive effect, then profit((`1, v1), c1) is true
(c1 is the credit at the first visit), and the rest of the run can be dropped.

The resulting run delays in at most |L| locations, and is acyclic in the zero-
delay segments. In a zero-delay segment, once a clock is reset, it remains equal
to 0: therefore, the length of such an acyclic zero-delay segment is at most
|L| · (|X| + 1). The length of the resulting run is thus bounded by (|L| + 1) ·
(|L| · (|X|+ 1)). This run is a witness for (ii). �

We now formalize an equivalence between constraints.

Lemma 9. Assume we are given a constraint γ = ((`, v, c), α, e, B,R, c′). Fix
Y ⊆ X such that v is Y -small, and fix another Y -small valuation v̂ that agrees
with v on X \Y , and s.t. for every x ∈ Y , v(x) = 0 implies v̂(x) = 0. We define
the constraint γ̂ as ((`, v̂, c), α, e, B,R, c′). Then:

1. If Rγ(A) 6= ∅, then Rγ̂(A) 6= ∅. Furthermore, if there is a run in Rγ(A)
with final accumulated weight e, then there is one in Rγ̂(A) with the same
final accumulated weight.

2. If % ∈ Rγ(A) and %̂ ∈ Rγ̂(A), writing v′ (resp. v̂′) for the valuation at the

16

end of % (resp. %̂), we have that: ∀x ∈ (X \ Y) ∩B, v′(x) = v̂′(x)
∀x ∈ R, v′(x) = v̂′(x) = 0
v′ and v̂′ are ((X \B) ∪ Y)-small

Proof. Pick a flexible run %′ in Rγ(A). We explain why this run can be mimicked
(with the same delay- and action transitions) from (`, v̂, c), yielding a flexible

run in Rγ̂(A). Write %̂′ for the run (we prove below that all guards are fulfilled,
so that this is really a run in A) obtained by mimicking %′ from (`, v̂, c). First,

all valuations along %′ are Y -small, since v(u) = v̂(u) and both %′ and %̂′ have
duration α. Furthermore, for y ∈ Y , if v(y) = 0 then v̂(y) = 0. Therefore for

clocks in Y , all constraints that are satisfied along %′ are satisfied along %̂′. For
clocks not in Y , v and v̂ agree, so that all conditions are fulfilled for being a
flexible run in Rγ̂(A).

We now prove the second point. Along both % and %̂, clocks in B are not
reset (except possibly for those also in R). Therefore as v and v̂ initially agree
on X \ Y , we get the two first lines. The third point is straightforward. �

5.1.4. Flexible segments.

We come back to our flexible segments %[i..j] = (`i, vi, ci)
δ(ti)−−−→ . . .

ej−→
(`j , vj , cj), and consider the checkpoints defined earlier. We write I = {i, j} ∪
{mx, nx | x ∈ X} for the indices corresponding to checkpoints, and we assume
that it is ordered as I = {i0 < i1 < · · · < ip}. For each 0 ≤ h < p, we consider
the constraint

γh = ((`ih , vih , cih), δih+1
− δih , eih+1

, Bh, Rh, cih+1
)

where Bh = {x ∈ X | ih < mx or ih ≥ nx} and Rh = {x ∈ X | vih+1
(x) = 0}.

The set Bh is the set of clocks that should not be reset (except possibly on the
last edge). We first argue why this is a proper constraint. Condition (b) is by
assumption on clock u whereas condition (d) requires some arguments that we
give now. Pick y /∈ Bh: it means that my ≤ ih < ny. We have that vih(y) ≤
δih−δmy since y was reset at edge my (and also possibly later). In the meantime
frac(vih(u)) = frac(v(u)) + δih ≥ δih . Therefore 0 ≤ vih(y) ≤ frac(vih(u)), which
implies condition (d).

We build a run % solving the constrained problem γ0, then γ′1, then γ′2, etc.
Constraints γ′h will only differ from γh in the initial valuation (which will still
satisfy the hypotheses of Lemma 9). We proceed by induction on h. First note
that for every h, vih is

(⋃
k<h(X \Bk)

)
-small. Assume that v′ih is related to vih

as in the hypotheses of Lemma 9 (with Yh =
⋃
k<h(X \Bk)). We build a run in

Rγ′
h
(A) (γ′h is same as γh except for the initial valuation which is v′ih instead

of vih). The run %[ih..ih+1] is in Rγh(A). Applying the first part of Lemma 9 we
get that Rγ′

h
(A) is non-empty. Applying Lemma 8, we select a run %′ih→ih+1

of
length bounded by K in Rγ′

h
(or ending in a state carrying a profitable zero-delay

17

cycle, which concludes the proof). Applying the second part of Lemma 9, we
get that the final valuation of %′ih→ih+1

, say v′ih+1
, is ((X \Bh) ∪ Yh)-small. By

construction, for all clocks x such that vih+1
(x) = 0 (this is Rh), v′ih+1

(x) = 0.

Valuation v′ih+1
therefore satisfies the hypotheses of Lemma 9.

Initially we assume v0 = v′0. We have thus constructed by induction runs
%′ih→ih+1

that can be glued together, yielding a run %′i→j of duration δ. The

final state of %′i→j is (`j , vj , c
′
j) (by construction), and c′j ≥ cj . Furthermore the

length of %′i→j is at most (2|X|+ 1) ·K. We have proved:

Proposition 10. Take a flexible segment %[i..j] of %, such that clock u has
constant integral part along %[i..j]. We can construct a feasible run %′i→j from
(`i, vi, ci) and of length at most (2|X| + 1) · K, such that either it ends in
a configuration from which a profitable zero-delay cycle can be taken, or the
following holds:

• its duration is that of %[i..j];

• if (`j , v
′
j , c
′
j) is its final configuration, then v′j = vj, and c′j ≥ cj.

5.1.5. Complexity.

The NEXPTIME upper bound is obtained by guessing a path (that is, a
sequence of transitions) of length at most N in A and then checking by some
linear programming resolution whether there exists a witness along that path
which satisfies the lower-bound constraint and the time constraint. This is in
NEXPTIME (assuming that T is given in binary).

5.1.6. Case where the witness % is infinite.

We now assume that % = (`0, v0, c0)→ . . . (`n, vn, cn) . . . is an infinite witness
of total duration no more than T . We will show that there is a finite run which
satisfies the lower-bound constraint L(c0) and which ends in a state from which it
is possible to follow a zero-delay cycle while satisfying the lower-bound constraint
and whose accumulated weight is non-negative (we can define a predicate profit≥0

similar to profit, but where the accumulated weight is non-negative instead of
positive).

There exists n such that the tail %[n..∞) of the witness is flexible (and clock u
lies within one time unit): indeed, since % has finite duration, there is a position
after which the integral parts of all the clocks are constant. For all locations `1
with rate(`1) > 0 in which some delay is spent along %[n..∞), we transfer all
delays in location `1 to its first occurrence where some delay is spent. We remove
all delays spent in some location `2 with rate(`2) ≤ 0. Since all clocks have
constant integral part along the tail, the clock constraints are preserved, and
this yields a new witness %′, such that %′m→+∞ is zero-delay, for some m: we can
extract from that tail a zero-delay cycle which satisfies the lower-bound constraint
and has a non-negative accumulated weight.

18

5.2. Lower bound

In this section, we prove the lower bounds of Theorem 4. We reuse the modules
defined in the proof of Theorem 1 for checking linear constraints between clocks.
These modules can be used to check constraints of the form αx+ βy+ γ ≥ 0, for
integers α, β and γ. If we allow integer rates (instead of only 0 and 1), we can
assume the total time spent to check such a linear constraint is constant (2 time
units).

5.2.1. Encoding a rule of a Turing machine.

We encode a (non-deterministic) Turing machine over alphabet {0, 1} as
follows. Assume the tape content is w1(q, a)w2 where w1, w2 ∈ {0, 1}∗, q is a
state of the Turing machine and a ∈ {0, 1} is the content of the cell which is being
read. We encode this with a location (q, a) and with the values of two clocks x1
and x2, whose binary representation will be enc(x1) = 0.w1 (we write w1 for the
word obtained from w1 by reading from right to left) and enc(x2) = 0.w2.

We assume that (b,→, q′) ∈ δ(q, a) is a possible transition from (q, a) in
the Turing machine. In order to be able to mimic that transition, we want to
go to state (q′, c) with two clocks5 y1 and y2 such that enc(y1) = 0.b · w1 and
enc(y2) = 0.w′2 where w2 = c · w′2. The symbol c ∈ {0, 1} is the content of the
new cell which is pointed. In terms of value, we have to enforce:

2y1 = x1 + b and y2 = 2x2 − c.

The module is depicted on Figure 13. We write U on a transition instead of
u = 1, u := 0. On every location, for every clock x that is not already used in an
outgoing transition, there is a self-loop x = 1, x := 0, which is omitted on the
figure (for readability). The module works as follows:

• in the first part (until module Test(2y1 = x1 + b)), the automaton non-
deterministically resets clock y1, and checks that the new value has the prop-
erty that after exactly two time units (i.e. after the second U -transition),
it holds 2y1 = x1 + b.

• then, non-deterministically again, the automaton jumps to one of the two
branches:

– the left branch corresponds to the case where c = 1: this is checked
by the module Test(2x2 ≥ 1). We then have to set y2 accordingly,
which is achieved by non-deterministically resetting y2 and checking
that y2 = 2x2 − 1.

– the right branch is for the case where c = 0: the encoding is similar to
that used in the upper branch, adapted to the fact that c = 0. Notice
that we have to test a strict inequality, namely 2x2 < 1. This is

5For the sake of readability, our reduction involves six clocks. However, clock y2 needs not
to be fresh, and we will be able to use x1 instead since it is not used later in the module.

19

q, a

Test(2y1 = x1 + b)

Test(2x2 ≥ 1) Test(2x2 < 1)

Test(y2 = 2x2 − 1) Test(y2 = 2x2)

q′, 1 q′, 0

y1 := 0

U

U

U U
U U

y2 := 0 y2 := 0

U U

U U

u := 0

Fig. 13: Mimicking instruction (β,→, q′) ∈ δ(q, α) (self-loops omitted)

−1 0 1 0
z := 0

u > 0

U z := 0

z = 1

UU

Fig. 14: Automaton for testing that the energy level is positive

achieved by crediting the variable with 1− 2x2 and checking that this
value is positive. This in turn can be tested by the module depicted
on Figure 14: this module checks positiveness of the weight variable
while preserving the values of the weight and of all clocks, except
possibly the auxiliary clock z.6

We assume that the total time needed to traverse this module is the
same along both branches (even if it means adding some more states).
We write d1 for that constant.

5.2.2. The global reduction.

We fix a non-deterministic Turing machine M and an input w of length n.
We use the encoding of instructions of a non-deterministic Turing machine as in
the previous section, and we glue all modules together. We add an initialization
module which leads to (q0, w1), set x1 to 0 and x2 to

∑n
i=2 wi2

−(i−1); this
can easily be achieved using module Test(2n−1x2 −

∑n
i=2 wi2

n−i = 0), in total

6Similarly as for y2, clock z needs not be fresh, and it can be replaced by clock x1, which is
not re-used later in the module.

20

time d2 = n− 1 (using rates 2n−1, 2n−2). We parametrize A with an integer K,
yielding A[K]. In A[K], a new clock t is reset when reaching the initial state
of M (after the initialization phase), and is used in an invariant t ≤ d1K in all
locations (except the initialization phase and the halting location). Furthermore
from every location (except locations of the initialization phase and the halting
location) we can go to a sink location with discrete weight −4 when t ≥ d1K
(we call these transitions the bad transitions). Notice that the maximal value
of the accumulated weight within a module while mimicking the instructions of
M never exceeds 3: hence, if this transition to the sink state is taken, then the
lower-bound constraint will be violated. The halting location has no outgoing
transition, and we can wait there as long as we want, with rate zero.

Our reduction involves seven clocks: four clocks are used for simulating the
instructions of the Turing machine, and three auxiliary clocks u, z and t are used
in the construction. However, as already mentioned, in both branches below
Test(2y1 = x1 + b), clock x1 is not used anymore and can be used to play the
role of z (in the test for strict inequalities) and of y2.

Proposition 11. M halts on input w with a computation of at most K steps
iff A[K] |= ∃(d1K+d2)+1L(0).

Proof. Assume M has a halting computation of length k (with k ≤ K) on w.
Then in A, we can first safely initialize the two clocks x1 and x2, and reach the
initial state of the Turing machine. The initialization phase takes d2 time units.
Then the instructions of the computation can also be safely mimicked, and each
instruction takes d1 time units. Hence globally the execution takes then d2 +d1k
time units before reaching the halting location, and we can wait there enough
time to meet the requirement.

Assume that A[K] |= ∃(d1K+d2)+1L(0). Then it means that we have first
safely initialized the clocks, and then mimicked properly instructions. And
then as we have not violated the lower-bound constraint, it means that we
have reached a halting location at the latest when t = pK (since otherwise we
should have taken the bad transition to the sink state, violating the lower-bound
constraint). �

If K is exponential (in n), the binary encoding of K, and therefore the binary
encoding of d1K + d2, is polynomial. The above reduction implies NEXPTIME-
hardness for the existential time-bounded L-problem when the time bound is
given in binary.

Remark 12. Notice that if we lift the time bound (hence we don’t need clock t),
we encode a (generic) non-deterministic Turing machine. This provides another
proof of Theorem 1, which uses only four clocks.

6. The universal L-problems

In this section we show that the universal L-problems are much easier to
solve than the existential L-problems. Interestingly, this is also the case when
considering several weight functions.

21

Theorem 13. The universal and the universal time-bounded L-problems are
PSPACE-complete, even when considering several weight variables.

The PSPACE lower bounds for single-weight timed automata are straight-
forward reductions from the reachability problem in timed automata: if there
is a run reaching the final location, then there is a run of duration at most

T
def
= |R(A)|, where R(A) is the region automaton of A (see [17]). Therefore by

giving a negative rate to accepting locations and rate zero to other locations, and
setting all discrete updates to zero, the non-reachability problem is equivalent to
the universal L-problem, be it time-bounded (by T) or not.

The PSPACE upper bound can be proven using the corner-point abstraction
Rcp(A) of A; the corner-point automaton is a weighted finite automaton that
refines the region abstraction. Intuitively, a corner point is a pair (r, v) made
of a region and of one of its extremal points (notice that v does not necessarily
belong to r, but it belongs to its closure). These form the state space of the
corner-point abstraction. Transitions are computed in the natural way: there
is a “delay” transition from (r, v) to (r, v + 1) when both v and v + 1 belong
to the closure of r, and from (r, v) to (r′, v) when v belongs to the closures of
both r and r′, and r′ is the immediate time successor of r. The former kind of
transition corresponds to elapsing almost one time unit in a region, and thus is
decorated with the rate (or vector of rates) of the corresponding location. The
latter kind of transitions have duration almost zero, and thus come with no
weight. Finally, action transitions are computed in the natural way. We refer
to [18] for more details on the corner-point abstraction. The result then relies
on the following lemma.

Lemma 14. A |= ∀∞L(w0) if, and only if, Rcp(A) |= ∀∞L(w0).

Proof. Assume that there is an infinite run % = (`0, v0, w0) → (`1, v1, w1) . . .
which does not satisfy the lower-bound constraint for one of the weight variables,
say for variable c. Take a prefix of %, say %[0..n], which violates the lower-bound
constraint: there is 0 ≤ i ≤ n such that wi(c) < 0. Prop. 3 of [18] (rephrased in
our setting) states that there is a finite path π in Rcp(A) with the weight being
smaller: hence this path violates the constraint as well.

Conversely take an infinite path π in Rcp(A) which violates the lower-bound
constraint for weight variable c, and take a violating prefix. Then Prop. 6 of [18]
states that for every ε > 0, there exists a real path whose weight is ε-close to
that of π, hence becomes negative (when ε is taken small enough). �

Lemma 15. Rcp(A) 6|= ∀∞L(w0) if, and only if, one of the following conditions
is satisfied:

(1) there is a reachable cycle with a negative effect for some weight variable c;

(2) there is an acyclic path from the initial state, which can be extended into an
infinite path, that yields a negative value for some weight variable c.

22

Proof. Take a path which violates the lower-bound constraint. If it contains a
cycle with negative effect, then (1) holds. Otherwise consider a prefix which
violates the lower-bound constraint. We can remove from that prefix all cycles
(since they have non-negative effect), and we still get a counter-example, which
furthermore satisfies (2). �

The above conditions can be checked in PSPACE (the size of Rcp(A) is
exponential, and a path in Rcp(A) can be guessed using polynomial space).

This algorithm can be adapted to handle the time-bounded problem, by
adding a clock u, which is never reset, but is used in an invariant u ≤ T on
every location. From every location we add a transition constrained by u = T
leading to a sink location where the weight remains constant. This yields an
automaton B such that

A |= ∀TL(w0) ⇔ B |= ∀∞L(w0).

We apply the previous algorithm to B. The size of R(B) is exponential in the
size of A and T . This yields a PSPACE algorithm for deciding A |= ∀∞L(c0).

7. When the initial credit is not known

We prove here that if the initial credit is not known, then most of the problems
can be solved in PSPACE. More precisely we prove the following theorem.

Theorem 16. It is possible to decide the existence of an initial credit for which

• a time-bounded feasible run exists in a multiple-weight timed automaton;

• a feasible run exists in a single-weight timed automaton;

• all runs are feasible in a multiple-weight timed automaton.

We first focus on the upper bounds, and then turn to the lower bounds.

7.1. PSPACE upper bound in the time-bounded case

In order to prove the upper bounds for the time-bounded problems, the idea
is to reduce the size of possible witnesses using a construction similar to that in
Lemma 6, which allows to bound the weight variation along a possible witness
and therefore gives information on how much the initial credit has to be for
satisfying the lower-bound constraint along the witness. We first focus on the
universal problem. The result relies on the following characterisation, which can
be checked in polynomial space.

Lemma 17. Let A be a weighted timed automaton. A 6|= ∃w.∀TL(w) iff there is
a finite initial timed run of duration at most T , which ends in some configuration
(`, v) s.t. from (`, v), there is a zero-delay cycle with negative accumulated weight
for one of the variables.

23

Proof. For every weight variable c of A, we write Bc for the weighted timed
automaton corresponding to A with unique weight variable c. Then, it is obvious
that A |= ∃w.∀TL(w) iff for every weight variable c, Bc |= ∃wc.∀TL(wc). It is
therefore sufficient to prove the above statement under the assumption that A
has a single weight variable.

The right-to-left implication is obvious.
Assume A 6|= ∃w.∀TL(w), fix a timed run % of duration at most T (those will

be the only possible witnesses contradicting ∀TL(w)). We transform % as in the
proof of Lemma 6 but we minimize the weight instead of maximizing it (and
we do not require the lower-bound on the weight be satisfied). This yields an
alternative finite run %′ which satisfies the following conditions (N is the uniform
bound of Lemma 6):

• its duration is at most T ;

• its length is at most N ;

• at any point in time, its accumulated weight is smaller than that of %;

• additionally,

(i) either it reaches a state (`, v), from which there is a zero-delay cycle
with a negative accumulated weight,

(ii) or its duration is that of %.

Assume we are in case (ii). If we start with initial credit 0, the accumulated
weight never goes below −(N+T) ·R where R is the maximal absolute value for a
rate or a weight decorating a location or an edge of the automaton. Therefore by
setting w0 = (N+T) ·R, we get that %′ |= L(w0). By construction, %′ has smaller
accumulated weight than % at any point in time, which implies % |= L(w0).

Assume towards a contradiction that case (i) never happens. This means that
for all runs % of duration at most T , % |= L(w0). This contradicts the assumption
that A 6|= ∃w.∀TL(w). Therefore there is a run % such that its corresponding %′

satisfies (i). �

Then, we handle the case of the existential problem. The two conditions of
the lemma below can be checked in polynomial space.

Lemma 18. A |= ∃w.∃TL(w) iff there is a finite initial run % such that:

(i) either its duration is T ;

(ii) or its duration is no more than T , and it ends in configuration (`, v) s.t.
from (`, v), there is a zero-delay cycle which is almost-profitable7 for every
weight variable.

7Almost-profitable is the same as profitable, except that we require non-negativity instead
of positivity.

24

Proof. Assume A |= ∃w.∃TL(w), and take a witness run %. If % is finite,
then (i) holds. If % is infinite, we apply a construction similar to the proof of
Section 5.1.6, except that we remove all delays in all locations once we are in
the last time-unit of the witness. We compensate the loss due to the removal of
(small) delays by increasing the initial values of the weight variables. We get a
finite run which satisfies the condition (ii) (the cycle needs not be simple).

Assume that either (i) or (ii) holds. If (i) holds, then we can choose a large
enough initial credit to compensate any decrease in the weight along %: if the
length of % is `, then if we start with initial credit 0 for weight variable c, the
value of c never goes below −(` + T) · Rc, where Rc is the maximal absolute
value for a rate or a weight decorating a location or an edge of A for variable c.
Therefore by setting w0(c) = (`+ T) ·Rc for every weight variable c, we get that
% |= L(w0). If (ii) holds, then we easily get an infinite witness for the property.
The initial credit will only be used to compensate any loss along the finite run
leading to the cycle. Therefore A |= ∃w.∃TL(w). �

7.2. PSPACE upper bound in the time-unbounded case

In this section, if A is a weighted timed automaton, we write Rcp(A) for its
corner-point abstraction (see [18]).

We first focus on the problem ∃w.∃∞L(w). The result only holds for weighted
timed automata with a single weight variable. The following lemma immediately
yields the PSPACE upper bound.

Lemma 19. Assume A has a single weight variable. Then, A |= ∃w.∃∞L(w)
iff Rcp(A) |= ∃w.∃∞L(w).

Proof. Let % be a witness for A |= ∃w.∃∞L(w). We project % on Rcp(A), yielding
an infinite weighted tree. For each index i there is a branch π′i of length i of the
tree, with overall weight better than that of %[0..i] ([18, Prop. 6]). Since the
tree is finitely branching, applying König’s lemma, there is an infinite branch
π of the tree such that π′i coincide with π[0..i]. Let i1, . . . , in, . . . the sequence
of such positions i’s. W.l.o.g. we assume that the accumulated weight along
(π[0..i]) for i→∞ converges, say to γ (which might be infinite). If γ is finite,
this is a stationary sequence (since Rcp(A) is a weighted finite automaton with
integral values), and we can therefore find a cycle with overall weight zero: this
yields a witness for the property (we can then easily compute a bound for the
initial credit). If γ = ∞, then we can find an increasing subsequence, and we
therefore exhibit a cycle with positive weight, yielding a witness.

Assume now that π is a witness for Rcp(A) |= ∃w.∃∞L(w). If clock con-
straints are non-strict, π is a real timed run in A, which witnesses the property.
With strict constraints, we can just notice that the witness in Rcp(A) can be
chosen as a reachable simple cycle that will be profitable in the sense of Ap-
pendix Appendix A, and to build a feasible infinite run over an iterate of that
cycle, as made in the proof of Lemma 22. �

We now turn to the universal problem. As an obvious consequence of
Lemma 14, we have that:

25

Lemma 20. A |= ∃w.∀∞L(w) iff Rcp(A) |= ∃w.∀∞L(w).

This condition can also be checked in polynomial space by detecting cycles
with negative weight in Rcp(A).

7.3. PSPACE lower bounds

The lower bounds will be proven by reduction from the reachability problem
in timed automata, which is known to be PSPACE-hard already when there are
three clocks [19].

We first focus on the universal problems. We fix a timed automaton A and
we build the weighted timed automaton B with a single weight variable, by
assigning weight and rate zero everywhere in A, and from the final location of
A we go to a sink location, with a self-loop labelled with weight −1. We define
T = |R(A)|. The following four properties are then equivalent:

(i) the final location of A is reachable;

(ii) the final location of A is reachable in no more than T time units;

(iii) B 6|= ∃w.∀∞L(w);

(iv) B 6|= ∃w.∀TL(w).

For the existential case, the argument is similar to the previous one: automa-
ton B is now obtained from A by assigning weight and rate −1 everywhere: for
any initial credit the weight of any run will decrease to infinity unless we allow
to escape to a rate-zero location. From the final location of A we go to a sink
location, with a self-loop of weight zero. The very same equivalent properties
can be stated for this case.

8. Conclusion

Weighted timed automata with energy constraints are a nice formalism
for modeling resource consumption in real-time systems. Unfortunately (and
surprisingly), we proved that reachability in this framework is undecidable
(though it was proven decidable for one-clock automata).

Still, we have been able to identify variants of the problem where algorithms
exist: in particular, following [14], we believe that the time-bounded variant of
the problem is interesting, and we would like to push it further by analyzing
the decidability of various problems that are undecidable in general. One of the
problems of interest is the existence of a path that satisfies both a lower-bound
and an upper-bound constraint. On another direction, some variants of our
models, for instance allowing one to set the weight to some value, are also on
our agenda for future work.

Acknowledgments. This work has been partly supported by ERC Starting grant
EQualIS (308087) and by European project Cassting (FP7-ICT-601148).

26

References

[1] P. Bouyer, U. Fahrenberg, K. G. Larsen, N. Markey, J. Srba, Infinite runs
in weighted timed automata with energy constraints, in: FORMATS’08,
vol. 5215 of LNCS, Springer, 33–47, 2008.

[2] G. Behrmann, A. Fehnker, T. Hune, K. G. Larsen, P. Pettersson, J. Romijn,
F. Vaandrager, Minimum-cost reachability for priced timed automata, in:
HSCC’01, vol. 2034 of LNCS, Springer, 147–161, 2001.

[3] R. Alur, S. La Torre, G. J. Pappas, Optimal paths in weighted timed
automata, in: HSCC’01, vol. 2034 of LNCS, Springer, 49–62, 2001.

[4] P. Bouyer, U. Fahrenberg, K. G. Larsen, N. Markey, Quantitative analysis
of real-time systems using priced timed automata, Communications of the
ACM 54 (9) (2011) 78–87.

[5] G. Behrmann, K. G. Larsen, J. I. Rasmussen, Optimal scheduling using
priced timed automata, SIGMETRICS Performance Evaluation Review
32 (4) (2005) 34–40.

[6] K. G. Larsen, J. I. Rasmussen, Optimal conditional reachability for multi-
priced timed automata, in: FoSSaCS’05, vol. 3441 of LNCS, Springer,
234–249, 2005.

[7] M. Woehrle, K. Lampka, L. Thiele, Segmented state space traversal for
conformance testing of cyber-physical systems, in: FORMATS’11, vol. 6919
of LNCS, Springer, 193–208, 2011.

[8] P. Bouyer, U. Fahrenberg, K. G. Larsen, N. Markey, Timed automata with
observers under energy constraints, in: HSCC’10, ACM Press, 61–70, 2010.

[9] K. Quaas, On the interval-bound problem for weighted timed automata, in:
LATA’11, vol. 6638 of LNCS, Springer, 452–464, 2011.

[10] U. Fahrenberg, L. Juhl, K. G. Larsen, J. Srba, Energy games in multi-
weighted automata, in: ICTAC’11, vol. 6916 of LNCS, Springer, 95–115,
2011.

[11] N. Markey, Verification of embedded systems – Algorithms and complexity,
Mémoire d’habilitation, École Normale Supérieure de Cachan, France, 2011.

[12] J. Ouaknine, J. Worrell, Towards a theory of time-bounded verification, in:
ICALP’10, vol. 6199 of LNCS, Springer, 22–37, 2010.

[13] A. Biere, A. Cimatti, E. M. Clarke, Y. Zhu, Symbolic model checking
without BDDs, in: TACAS’99, vol. 1579 of LNCS, Springer, 193–207, 1999.

[14] Th. Brihaye, L. Doyen, G. Geeraerts, J. Ouaknine, J.-F. Raskin, J. Worrell,
On reachability for hybrid automata over bounded time, in: ICALP’11, vol.
6756 of LNCS, Springer, 416–427, 2011.

27

[15] A. Puri, An undecidable problem for timed automata, Discrete Event
Dynamic Systems 9 (2) (1999) 135–146.

[16] B. Bérard, C. Dufourd, Timed automata and additive clock constraints,
Information Processing Letters 75 (1-2) (2000) 1–7.

[17] R. Alur, D. L. Dill, A theory of timed automata, Theoretical Computer
Science 126 (2) (1994) 183–235.

[18] P. Bouyer, E. Brinksma, K. G. Larsen, Staying alive as cheaply as possible,
Formal Methods in System Design 32 (1) (2008) 2–23.

[19] C. Courcoubetis, M. Yannakakis, Minimum and maximum delay problems in
real-time systems, Formal Methods in System Design 1 (4) (1992) 385–415.

Appendix A. Proof of Theorem 4 in the presence of strict guards

The proof of Theorem 4 assumes timed automata have only non-strict con-
straints. However Theorem 4 is still valid if we relax this hypothesis. In this
appendix, we explain how the algorithm can be modified for handling strict
constraints. It basically impacts three points in the proof, as we now explain.

I First the notion of profitable zero-delay cycle has to be extended to cycles
that can be taken in arbitrary small but possibly non-zero delays.. This is for
instance the case of a simple loop constrained by x > 0 and which resets clock x.
Such a cycle might be used to generate feasible infinite runs “for free”, even
though time does not diverge.

A finite sequence τ of edges can be taken arbitrarily fast from (`, v) whenever
there exists ε > 0 such that for every 0 < ε′ ≤ ε, there exists a run from (`, v)
along τ of duration at most ε′. A particular case is when the sequence of edges
can be taken in zero-delay.

Let τ be a cyclic sequence of edges in the region automaton which can be
taken arbitrarily fast, and assume that the initial and target region-state of that
cycle is (`, r). Let c ≥ 0. We say that τ generates a profitable cycle with arbitrary
small delays from (`, v, c) with v ∈ r whenever (i) there exists ε > 0 such that
for every 0 < ε′ ≤ ε, there is a feasible run from (`, v, c) along τ , of duration at
most ε′; and (ii) the sum of all discrete costs along τ is nonnegative. If this is the
case, we set the predicate profitτ ((`, v), c) to true. First notice that valuations in
the same region cannot be distinguished by predicate profitτ :

Lemma 21. If profitτ ((`, v), c) and v′ ∈ [v], then profitτ ((`, v′), c).

Proof. Let %′ be a run along τ from (`, v′), and assume it has positive duration.
Let ε > 0 be smaller than any positive delay along %′, and let 0 < ε′ ≤ ε. Let %
be a feasible run along τ from (`, v, c) of duration at most ε′. The same sequence
of delays can be made from (`, v′, c), and this yields a feasible run along τ of
duration at most ε′: profitτ ((`, v′), c) is set to true.

28

Assume that there is a single run along τ from (`, v′), which has duration
zero. Then there is also a single run from (`, v) along τ , which has duration
zero (since this is a property of the underlying regions). If played from (`, v, c),
this run is feasible, and so is the one from (`, v′, c). Hence the expected result.

�

The interest of profitable cycles lies in the following lemma:

Lemma 22. If profitτ ((`, v), c), then there is an infinite feasible run from
((`, v), c) along τω. Note that even though the run is infinite, its duration
might be finite.

Proof. Write τ = e1e2 . . . ep, and ci for the discrete cost of edge ei.

• Assume there is some location along τ with a positive rate and in which
some positive delay can be spent. Then it is not hard to be convinced that
there is some feasible run from (`, v, c) to (`, v′, c′) with c′ ≥ c+

∑p
i=1 ci ≥ c

(start from a feasible run, and transfer most of the delays in this cost-
interesting location). Now it holds that profitτ ((`, v′), c) and therefore
profitτ ((`, v′), c′) since c′ ≥ c. We can then iterate the argument.

• Assume that the sum of discrete costs along τ is positive. This is easy to see
that there is a feasible run along τ from (`, v, c) to some (`, v′, c′) such that
c′ ≥ c. Since profitτ ((`, v′), c), this implies that there is an infinite feasible
run from (`, v, c) (obtained as previously by iterating the sequence τ).

• Assume now that all locations along τ have nonpositive rate and that
the sum

∑p
i=1 ci is zero. Either along τ , some delay has to be spent in

a location with negative rate (and this is then the case from every (`, v′)
with v′ ∈ [v]), or no delay has to be spent in such locations. In the second
case, it is possible to build a feasible run along τ from (`, v, c) to some
(`, v′, c) (spend zero time in all locations with negative rates), in which
case it is easy to iterate the process.

In the first case, for every feasible run from (`, v, c) along τ , the target
state (`, v′, c′) is such that c′ < c. However delays can be made as small
as we want, hence for every δ > 0, we can find a feasible run from (`, v, c)
to (`, v′, c′) with c − δ < c′ < c such that cost 0 is never hit along that
run. We can then mimick such a run from (`, v′, c′) with very small delays,
and we get that profitτ ((`, v′), c′) is true. We can iterate the process from
(`, v′, c′), and we get an infinite feasible run as expected.

In all cases we build an infinite run along τω which is feasible. �

If there exists τ such that profitτ ((`, v), c), then we set predicate profit+((`, v), c)
to true: this means that there exists some cycle that can be iterated in such a
way that an infinite feasible run can be generated from (`, v, c). Every predicate
profitτ ((`, •), c) is uniform by region (Lemma 21), it is therefore also the case for
profit+((`, •), c): we define the predicate profit+((`, r), c) where r is a region.

It remains to prove that such profitable regions can be computed, by extending
Lemma 5 as follows:

29

Lemma 23. Given (`, r), we can compute in polynomial space the set {c |
profit+((`, r), c) holds}. If this set is non-empty, its infimum is a natural number.

Proof. It suffices to consider the subgraph of the region automaton where only
states that can be reached from (`, r) by arbitrary small delays appear, and
to indicate for each transition whether it is taken in zero delay, or whether it
requires a positive delay. The transitions are furthermore decorated by discrete
costs, and each location is labelled by its rate. This is an extended weighted
graph, which can be analyzed by standard graph algorithms to compute the
desired values. The graph might have exponential size, but can be computed
on-the-fly; The algorithm of Lemma 5 can then be adapted here, computing the
infimum of {c | profit+((`, r), c) holds} and whether this infimum can be reached.

�

In the rest of the algorithm the notion of profitable zero-delay cycle has to
be replaced by the notion of profitable cycle with arbitrary small delays.

I The second point where strict constraints do have an impact is in the proof
of Lemma 8, where runs are transformed by setting delay zero in some locations.
Delays spent in a given location are postponed to the first or the latest appearance
of this location along the run (depending on the cost of this location), and in all
other occurrences the delay spent is set to zero. In the more general context of
strict constraints, this is not possible, since some positive delay might have to
elapse before a transition can be fired (due to strict constraints).

However we can twist the transformation to take into account strict con-
straints: the idea is to replace the zero-delay transitions by arbitrary small delays.
We call the original run %, and let γ be the sequence of edges underlying %,
and (`i)0≤i≤p be the sequence of locations which are visited. A run along γ
is characterized by the sequence of delays spent in each location. We write
(di)0≤i≤p for the sequence of delays characterizing %. We apply the transfer
mentioned in the original proof and this yields a sequence of delays (d′i)0≤i≤p.
If d′i > 0, we say the corresponding location `i is full-delay. If d′i = 0, the
corresponding location `i is said zero-delay. There are at most |L| full-delay
locations.

Unfortunately, due to strict constraints, the sequence of delays (d′i)0≤i≤p may
not define a real run of the automaton. The idea is then to only transfer partially
the delays in the “full-delay” locations, and we realize that whatever the partial
transfer, it defines a real run of the system which is also feasible (same proof as
the original). In the following the run defined by (d′i)0≤i≤p is called the abstract
run. It represents a family of concrete runs obtained by partial transfer, as
explained above.

Assume that there exists some concrete run obtained by partial transfer,
which visits some configuration (`, v, c) with profit+((`, v), c). Then pick the first
position i0 (with 0 ≤ i0 ≤ p) from which there is a concrete run visiting such
a profitable configuration at position i0. We will bound the length of the run
until position i0, instead of bounding the total length of the run. Therefore,

30

from now on, w.l.o.g. we assume that no concrete run visits a state from which
a profitable cycle can be taken.

Let κ be a maximal segment (sequence of edges) of τ along which all lo-
cations are zero-delay (that is, d′i = 0). We will analyze portions of concrete
runs along κ, and we write abusively i ∈ κ for the set of indices defining κ.
A concrete realization (d′′i)i∈κ over κ is said fast from (`, v, c) whenever it can
be arbitrarily compressed: for every 0 < λ ≤ 1, there is a sequence (d′′′i)i∈κ such

that
∑
i∈κ d

′′′
i ≤ λ ·

(∑
i∈κ d

′′
i

)
, and such that the concrete realization (d′′′i)i∈κ

from (`, v, c) visits the same regions as that defined by (d′′i)i∈κ. Note that the
abstraction of κ is zero-delay, this is why we will be interested in fast realizations
of κ. Note also that such fast concrete realizations always exist.

We fix the initial configuration (`, v, c) to enter κ, and consider a fast (feasible)
realization (d′′i)i∈κ. We let (`′, v′, c′) be the final configuration of that realization.
We aim at modifying that realization into another which is feasible, shorter and
ends up at the same valuation, with a cost which is larger than or equal to c′.
There are several positions along κ which are crucial: the edges where some clock
is reset for the first time, and the edges where some clock is reset for the last
time. If we respect these edges, and the delay between those edges, even though
we remove some fragments of κ, we will end up at the same state (possibly with
a different cost), and the removal will be harmless for the rest of the concrete
run, if the final cost is larger than or equal to c′. We therefore mark all those
edges in κ, and we will “fix” those positions together with the first and the last,
and we will reduce the length of the segment between two such positions.

Let κ′ be a segment between two fixed positions. Assume κ′ = e1 . . . ek.
Initialize Y0 = ∅, and define for 0 ≤ i < k, Yi+1 = Yi ∪ Y (ei) where Y (ei) is the
set of clocks which is reset by edge ei. We now consider along κ′ a maximal
sequence κ′′ along which Yi is constant, and for every location which appears
along κ′′, we mark the first occurence of a location with positive rate where
some time elapse and the last occurence of a location with negative rate where
some time elapse. Between two such marked locations, if a location ` is visited
twice, then the corresponding cycle has nonpositive accumulated discrete cost
(otherwise a profitable cycle could be taken, which is assumed not to be the
case). We can therefore remove that part, and transfer all delays into the
marked versions of the locations. This yields a (shorter) concrete run which is
feasible (same argument as with the transfer in the original proof). The new
final cost is larger than or equal to the original final cost, since it is obtained
after removal of cycles with nonpositive discrete cost (all costs spent in some
location are preserved). Finally, due to the construction, it is not difficult to
check that the final valuation after κ is preserved. The construction is illustrated
on Figure A.15.

This results in a bound for κ of (2|X|+ 1) · (|X|+ 1) · (|L|+ 1) · |L|. Globally
we can therefore bound the length of % by:

(|L|+ 1) ·
(

(2|X|+ 1) · (|X|+ 1) · (|L|+ 1) · |L|
)
.

31

κ: zero-delay sequences of edges

%
(`, v, c) (`′, v′, c′)efirst

x elast
yefirst

y elast
x

κ′

efirst
x

efirst
y

Y0 = ∅

e

Yi
Yi+1 = Yi ∪ Y (e)

Yj Yk = Yj

Yj Yk

`

≥ 0

` ` `′

< 0

`′`′ `′′

Cycles can be removed

Fig. A.15: Scheme of the proof for strict constraints

I The case of infinite runs is quite easy to handle, by adapting the original
proof. We first restrict to a suffix %′ of the run % which is flexible (and clock
u lies within one time unit). Along that tail, a region-state is visited infinitely
often, say at configurations (`ij , vij , cij)j≥0. Write %(j) for the portion of the run
between (`ij , vij , cij)j≥0 and (`ij+1 , vij+1 , cij+1). The accumulated discrete costs

along the %(j)’s cannot be all negative, otherwise the run % would not be feasible.
Pick %(j) whose accumulated discrete cost is nonnegative. Due to the flexibility
of the suffix, the delays along %(j) can be made as short as we want while keeping
the feasibility: we have detected a feasible profitable cycle. We have therefore
transformed the infinite feasible run into a finite feasible run which reaches a
configuration (`, v, c) with profit+((`, v), c) set to true.

32

Appendix B. Biographies of authors

Patricia Bouyer-Decitre holds a PhD in
Computer Science from ENS Cachan (2002). She
is a CNRS researcher since 2002 at Laboratoire
Spécification et Vérification (LSV, CNRS & ENS
Cachan, France). She has held visiting positions
at Aalborg University (Denmark) in 2002 and
Oxford University (UK) in 2007.

Patricia Bouyer-Decitre is the principal inves-
tigator of ERC Starting Grant project EQualIS,
whose aim is to enhance the design and verifica-
tion of interacting systems, by providing quantitative analysis methods for such
systems. Her main research topics are timed systems, model checking, games for
synthesis and quantitative aspects of verification.

She was the recipient of a Marie Curie fellowship in 2006, of the Bronze
medal of CNRS in 2007 and of the Presburger Award given by the EATCS in
2011.

Kim Guldstrand Larsen holds an MSc in Mathe-
matics and Computer Science from Aalborg University
(1982) and a PhD in Computer Science from Edin-
burgh University (1986). He is a full professor in
Computer Science at Aalborg University since 1993,
and has held visiting appointments at research cen-
ters like ENS Cachan (France), SICS (Sweden), Up-
psala University (Sweden), and Carnegie-Mellon Uni-
versity (U.S.A).

Kim Guldstrand Larsen is Honary Doctor (Honoris
Causa) at Uppsala University (1999) and Ecole Normal
Superieure de Cachan, Paris (2007). He is honary
member of the Academia Europaea (2012). He is member of the Royal Danish
Academy of Sciences and Letters and member of the Danish Academy of Technical
Sciences. He received in 2005 the Danish Citation Laureates Award, Thomson
Scientific Award as the most cited Danish Computer Scientist in the period
1990-2004. He is Knight of the Order of Dannebrog (2007).

He is member of the board of the Danish Independent Research Councils, and
newly reappointed Danish National Expert for the ICT Programme under EU.
He is director of the Danish-Chinese research center IDEA4CPS – Foundations
of Cyber-Physcial Systems funded by the Danish National Research Foundation
(2011-2017). He is director of InfinIT, the Danish ICT Innovation Network
funded by the Danish Council for Technology and Innovation. The key research
areas of Kim G. Larsen include concurrency theory, model checking, real-time
and hybrid systems, stochastic systems, games and synthesis. In 2013 he received
the CAV Award for his long-term effort on the tool UPPAAL.

33

Nicolas Markey holds a PhD in Computer
Science from Orléans University (2003). He is
a CNRS researcher at Laboratoire Spécification &
Vérification (LSV) of École Normale Suprieure de
Cachan (ENS Cachan, France) since 2004. He was
a post-doctoral researcher at Université Libre de Brux-
elles (ULB, Belgium) in 2003-2004.

Nicolas Markey is the leader of the team TEMPO
at LSV, which focuses on the verification, optimization
and synthesis of complex computerized systems in
which quantitative aspects (e.g. real-time) play an important role. He is the
coordinator of the European project FP7-Cassting, where the aim is to study
non-zero-sum games in order to develop algorithms for synthesizing complex,
multi-agent systems. His main research topics are model checking, temporal
logics, quantitative aspects of verification, and games for synthesis.

34

