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We present some new lower bound estimates of the first
eigenvalue for compact manifolds with positive Ricci curva-
ture in terms of the diameter and the lower Ricci curvature
bound of the manifolds. For compact manifolds with bound-
ary, it is assumed that, with respect to the outward normal, it
is of nonnegative second fundamental form for the first Neu-
mann eigenvalue and the mean curvature of the boundary is
nonnegative for the first Dirichlet eigenvalue.

1. Introduction.

For a smooth n-dimensional closed Riemannian manifold Mn whose Ricci
curvature satisfies

Ric(Mn) ≥ (n− 1)K > 0(1.1)

for some positive constant K, it has been shown by A. Lichnerowicz [6] in
1958 (see also [7]) that the first positive eigenvalue λ of the manifold M has
a lower bound

λ ≥ nK.(1.2)

The aim of this paper is to give some new lower bound estimates in
terms of the lower Ricci curvature bound (n − 1)K and the diameter d of
the manifold M . The main results of this paper are summarized in the
following two theorems.

Theorem 1. Let Mn be a closed Riemannian manifold with Ric(Mn) ≥
(n − 1)K ≥ 0 and diameter d. Then the first positive eigenvalue λ on Mn

satisfies the lower bound

λ ≥ 1
4
(n− 1)K +

π2

d2
.(1.3)

Theorem 2. Let Mn be a compact manifold with nonempty boundary and
with Ric(Mn) ≥ (n− 1)K ≥ 0.
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(a) Assume that the boundary ∂M is weakly convex, that is, the second
fundamental form with respect to the outward normal is nonnegative.
Then the first positive Neumann eigenvalue λ on Mn satisfies the same
lower bound (1.3).

(b) Assume that the mean curvature with respect to the outward normal
of the boundary ∂M is nonnegative. Then the first positive Dirichlet
eigenvalue λ on Mn satisfies the lower bound estimate

λ ≥ 1
4

{
(n− 1)K +

π2

r2

}
(1.4)

where r is the inscribed radius for M .

These results generalize the Li-Yau [5] and Yang-Zhong [11] (cf. [4], [9])
estimates where they proved that the first positive eigenvalue satisfies λ ≥
π2

d2 for closed manifolds with nonnegative Ricci curvature. Notice that for
manifolds with small diameter, Theorem 1 is better than the estimate (1.2)
by A. Lichnerowicz. P. Li has conjectured that the first positive eigenvalue
should satisfy the lower bound

λ ≥ (n− 1)K +
π2

d2
.(1.5)

A proof of this conjecture would unify the Li-Yau and Yang-Zhong estimate
for manifolds with nonnegative Ricci curvature with the Lichnerowicz esti-
mate (1.1). It is my pleasure to thank Professor P. Li for raising to me this
interesting problem.

Theorems 1 and 2 follow from Theorems 4.1 and 4.2, which are more pre-
cise statements of our results. Our ideas are based on the gradient estimate
technique for eigenfunctions which was developed by P. Li and S.T. Yau
[3], [5]. Some preliminary lemmas are proved in Section 2 and the gradi-
ent estimates of eigenfunctions are presented in Section 3. These estimates
introduce a higher order term associated with the positive lower bound on
the Ricci curvature in the gradient estimates of Li-Yau and Yang-Zhong.
When K = 0, our gradient estimates reduce to the estimates derived by
Li-Yau and Yang-Zhong. The proof of Theorems 4.1 and 4.2 are presented
in Section 4.

2. Some Preliminary Lemmas.

Throughout this paper, M will be a compact n-dimensional Riemannian
manifold with or without smooth boundary with Ric(M) ≥ (n− 1)K ≥ 0.

Let v be a normalized eigenfunction of a positive eigenvalue λ on M with
either Dirichlet or Neumann boundary condition if ∂M 6= ∅, that is,

∆v = −λv,(2.1)
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such that

min v(x) ≥ −1 and max v(x) = 1(2.2)

if ∂M 6= ∅ and v is a Dirichlet eigenfunction, and

min v(x) = m1 − 1 and max v(x) = m1 + 1(2.3)

if ∂M 6= ∅ and v is a Neumann eigenfunction or ∂M = ∅, where 0 ≤ m1 < 1
is the median of v.

To give a unified presentation of the three different cases, we set m1 = 0
if ∂M 6= ∅ and v is a Dirichlet eigenfunction. Let u = v − m1. Given a
constant 0 < s < 1, consider the function

w = su = sv −m(2.4)

where 0 ≤ m = sm1 < s < 1. Thus max |w(x)| = s < 1 and lims→1− w = u.

Lemma 2.1. Let h(t) be a smooth positive function defined on the open
interval (−1, 1). Assume that Ric(M) ≥ (n − 1)K and there is a point
p ∈ M such that the smooth function

H = |∇w|2 − 2h(w)(2.5)

satisfies the conditions that

H(p) = maxH(x) = 0 and ∇H(p) = 0.(2.6)

Then, at t = w(p), the function h satisfies the inequality

h′
2 + λ(t + m)h′ + 2h{(n− 1)K − λ− h′′} ≤ 0.(2.7)

Proof. Let t = w(p). Since |w| ≤ s < 1, H(p) = 0, and h is a positive
smooth function on (−1, 1), we have

|∇w(p)|2 = 2h(t) > 0.(2.8)

Choose a normal orthonormal frame e1, e2, . . . , en on a neighborhood of p
such that eiw(p) = 0 for i > 1. For any smooth function f , we shall adopt
the notation that fi = eif(p) and fij = ejeif(p) for i, j = 1, 2, . . . , n. Then
wi = 0 for i > 1 and (2.8) implies that w2

1 = 2h(t) > 0. Since ∇H(p) = 0,
we have

0 = Hj = 2
n∑

i=1

wiwij − 2h′(t)wj = 2(w1w1j − h′(t)wj)(2.9)

for j = 1, 2, . . . , n. In particular,

w11 = h′(t).(2.10)

Since H attains its maximum at p and ∇H(p) = 0, the maximum principle
applies to give

∆H(p) ≤ 0.(2.11)
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It follows from Bochner’s formula

1
2
∆|∇w|2 =

n∑
i,j=1

w2
ij +∇w · ∇(∆w) + Ric(∇w,∇w),(2.12)

(2.8), (2.10), (2.11), and ∆w = s∆v = −λ(w + m) that

0 ≥ 1
2
∆H(p)

=
n∑

ij=1

w2
ij − λ|∇w|2 + Ric(∇w,∇w)− {h′(t)∆w + h′′(t)|∇w|2}

≥ h′
2(t) + λ(t + m)h′(t) + 2h(t){(n− 1)K − λ− h′′(t)}.

If the maximum value of H is attained at an interior point p in M , the
condition that ∇H(p) = 0 in Lemma 2.1 is automatically satisfied. When
∂M 6= ∅ and p ∈ ∂M , the following lemma assures that ∇H(p) = 0 remains
to be true if suitable convexity conditions are imposed on the boundary.
Thus the maximum principle still applies even the maximum value of H is
attained on the boundary.

Lemma 2.2. Let h(t) be a smooth positive function on the open interval
(−1, 1), Assume that ∂M 6= ∅ and the maximum value 0 of the function
(2.5) is attained at a boundary point p ∈ ∂M . Then ∇H(p) = 0 in either of
the following two situations.

(a) v is a Neumann eigenfunction and ∂M is weakly convex in the sense
that the second fundamental form S in the outward normal direction
is nonnegative definite.

(b) v is a Dirichlet eigenfunction, ∂M has nonnegative mean curvature
trS ≥ 0 in the outward normal direction, and h(t) is an even function.

Proof. Let p ∈ ∂M and H(p) = max H(x) = 0. We first consider the case
where v is a Neumann eigenfunction and assume that ∂M is weakly convex.
Let en be the unit outward normal vector field on ∂M . Then enw = 0 on
∂M since w = sv−m and v is a Neumann eigenfunction. Let e1, e2, . . . , en−1

be a local orthonormal frame tangent to ∂M on a neighborhood of p in ∂M
such that wi = eiw(p) = 0 for i > 1. Extend e1, e2, . . . , en to an orthonormal
frame in a neighborhood of p in M by parallel translation along the geodesics
exp∂M (ten). Thus en = d

dt exp∂M (ten) and Denei = 0 for i = 1, 2, · · · , n,
where D is the covariant differential operator of the Riemannian manifold
M . Moreover

∇w(p) = w1e1(p) 6= 0(2.13)

since |∇w(p)|2 = 2h(w(p)) > 0 and wi = 0 for i > 1. Since ∂M is smooth,
enw(p) = 0, and H has a maximum at p ∈ ∂M , we have Hi = eiH(p) = 0
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for i < n and

0 ≤ Hn = en|∇w(p)|2 = 2w1ene1w(p)(2.14)
= 2w1{e1enw(p) + (Dene1)w(p)− (De1en)w(p)}
= −2w2

1〈De1en, e1〉

where the last equality follows from the facts that enw = 0 on ∂M , e1 is
tangent to ∂M , Dene1 = 0, and wi = 0 for i > 1.

On the other hand, since ∂M is weakly convex, that is, the second fun-
damental form S satisfies S(V, V ) = 〈DV en, V 〉 ≥ 0 for all tangent vector V
to ∂M , we obtain

0 ≤ Hn = −2w2
1S(e1, e1) ≤ 0.(2.15)

Hence Hn = 0 and ∇H(p) =
∑n

i=1 Hiei(p) = 0.

Now let h be an even function and let v be a Dirichlet eigenfunction
on M with nonnegative mean curvature trS ≥ 0. Extend en to a local
orthonormal frame e1, e2, . . . , en on a neighborhood of p in M such that
Denei = 0 for i = 1, 2, . . . , n. Recall that for Dirichlet boundary condition,
we have m1 = 0, thus w = sv and w|∂M = sv∂M = 0. Therefore eiw|∂M = 0
for i < n and ∇h(w)|∂M = 0 since h is an even function. Since H attains
its maximum value at p ∈ ∂M , we have Hi = 0 for i < n and

0 ≤ Hn = en|∇w(p)|2 = 2
n∑

i=1

wieneiw(p) = 2wne2
nw(p).(2.16)

Since w(p) = 0 and Denen = 0, it follows from the definition of the Laplace
operator that

0 = −λw(p) = ∆w(p) =
n∑

i=1

(e2
i −Deiei)w(p)(2.17)

= e2
nw(p) + ∆w(p)− wn

n−1∑
i=1

〈en, Deiei〉

where ∆ is the Laplace operator on ∂M with the induced Riemannian met-
ric. Since w|∂M = 0 and the mean curvature

trS =
n−1∑
i=1

〈Deien, ei〉 = −
n−1∑
i=1

〈en, Deiei〉(2.18)

is nonnegative, we obtain ∆w(p) = 0 and

0 ≤ Hn = 2wne2
nw(p) = −2w2

ntrS(p) ≤ 0.(2.19)

Therefore Hn = 0 and ∇H(p) = 0.
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We shall also need the following lower bound estimate of the first eigen-
value, which is due to A. Lichnerowicz [6] when M is a compact manifold
without boundary. For completeness sake, a proof is enclosed.

Lemma 2.3. Assume that Ric(M) ≥ (n− 1)K > 0. Let λ be the first posi-
tive eigenvalue on M (with either Dirichlet or Neumann boundary condition
if ∂M 6= ∅). If ∂M 6= ∅, we also assume that ∂M is of nonnegative mean
curvature trS ≥ 0 if λ is a Dirichlet eigenvalue and ∂M is of nonnegative
definite second fundamental form S ≥ 0 if λ is a Neumann eigenvalue. Then

λ ≥ nK.(2.20)

Proof. Let v be an eigenfunction of the eigenvalue λ. The lower bound
(2.20) follows from integrating Bochner’s formula for ∇v

1
2
∆|∇v|2 =

n∑
i,j=1

v2
ij − λ|∇v|2 + Ric(∇v,∇v)(2.21)

on M and applying the boundary conditions. More specifically, using the
Schwarz inequality

n∑
i,j=1

v2
ij ≥

n∑
i=1

v2
ii ≥

1
n

(∆v)2 =
1
n

λ2v2,(2.22)

and the lower bound on the Ricci curvature, integrate (2.21) over M yields

1
2

∫
∂M

en|∇v|2 =
1
2

∫
M

∆|∇v|2 ≥
∫

M

{
1
n

λ2v2 + [(n− 1)− λ]|∇v|2
}

.

(2.23)

Since ∆v = −λv, multiply by v and integrate over M and use the boundary
conditions yield

∫
M |∇v|2 = λ

∫
M v2. Hence

1
2

∫
∂M

en|∇v|2 ≥ n− 1
n

λ(nK − λ)
∫

M
v2.(2.24)

If ∂M = ∅, then (2.20) follows from (2.24) immediately. Otherwise, we show
that en|∇v|2 ≤ 0 pointwisely on ∂M for either of the two boundary condi-
tions. Indeed, for any p ∈ ∂M , choose an orthonormal frame e1, e2, . . . , en

as in the proof of Lemma 2.2. For Neumann boundary condition, similar
computations as in (2.14), (2.15), and the convexity condition S ≥ 0 yield

en|∇v|2 = −2v2
1S(e1, e1) ≤ 0.(2.25)

For Dirichlet boundary condition, similar computations as in (2.17), (2.18),
(2.19), and tr S ≥ 0 yield

en|∇v|2 = −2v2
ntrS ≤ 0.(2.26)
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In any case, we have ∫
∂M

en|∇v|2 ≤ 0.(2.27)

Thus the lower bound estimate (2.20) follows from (2.24) and (2.27).

Notice that if we have a test function h which satisfies the conditions in
Lemma 2.1, then we get a gradient estimate

|∇w|2 ≤ 2h(w).(2.28)

To construct a suitable test function h, the following function z, which was
introduced by H.C. Yang and J.Q. Zhong [11] to estimate the first eigenvalue
for manifolds with nonnegative Ricci curvature, is especially useful.

Lemma 2.4. The function

z(t) =
2
π

(
arcsin t + t

√
1− t2

)
− t(2.29)

is a continuous odd function on [−1, 1]. Furthermore, on the open interval
(−1, 1), z is smooth and satisfies

(1− t2)z′′ + tz′ + t = 0,(2.30)

2
5
t2(1− t2) ≤ |z(t)| < 1

4
(1− t4),(2.31)

z′
2 − 2zz′′ >

1
4
(t− tz′ + 2z)2,(2.32)

2(1− t2)(3 + t2)(z′2 − 2zz′′ + z′) >

{
6tz + (1− t2)

(
6
π

√
1− t2 − 1

)}2

.

(2.33)

Proof. It follows from the definition (2.29) for z(t) that

z′(t) =
4
π

√
1− t2 − 1,(2.34)

z′′(t) = − 4
π

t(1− t2)−1/2.(2.35)

Thus the identity (2.30) is clearly true. Furthermore, we have

t− tz′ + 2z =
4
π

arcsin t,(2.36)

z′
2 − 2zz′′ = (1− t2)−1/2

{
(1− t2)1/2

(
1 +

16
π2

)
− 8

π
+

16
π2

t arcsin t

}
,

(2.37)
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z′
2 − 2zz′′ + z′ = 4(1− t2)−1/2

{
4
π2

[
(1− t2)1/2 + t arcsin t

]
− 1

π
(1 + t2)

}
.

(2.38)

For the inequalities, we first notice that z is an odd function. Hence, all
of the functions involved in the inequalities are even functions. Therefore,
we need only to verify them on the interval [0, 1).

Let

φ(t) = z(t)− 2
5
t2(1− t2),(2.39)

φ1(t) = 1− t4 − 4z(t),(2.40)

φ2(t) = (1− t2)1/2

(
1 +

16
π2

)
− 8

π
+

16
π2

t arcsin t− 4
π2

(1− t2)1/2(arcsin t)2,

(2.41)

φ3(t) = 8(1− t2)1/2(3 + t2)
{

4
π2

[
(1− t2)1/2 + t arcsin t

]
− 1

π
(1 + t2)

}
−
{

12
π

t arcsin t +
6
π

(1− t2)1/2(1 + t2)− 1− 5t2
}2

.(2.42)

Then the inequalities (2.31), (2.32), and (2.33) are equivalent to φ ≥ 0 and
φi > 0 for i = 1, 2, 3 on [0, 1). Since all of the functions are explicit ele-
mentary functions, it is easy to give a rigorous proof of these inequalities.
However, it will take a few pages to do so. Instead, it is a much simpler mat-
ter to combine culculus with a graphing utility to verify these inequalities.
The details will therefore be left to the readers.

3. Gradient Estimates of Eigenfunctions.

In this section, we prove the following gradient estimates.

Theorem 3.1. Let M be a compact n-dimensional Riemannian manifold
without boundary with Ric(M) ≥ (n − 1)K ≥ 0. Let v be a normalized
eigenfunction on M with median m1 of a positive eigenvalue λ. Let u =
v − m1, a = (n−1)K

2λ , and let z be the function defined by (2.29). Then, the
gradient of u satisfies the inequality

|∇u|2 ≤ λ{(1− u2)[1− a(1− u2)] + 2m1z(u)}.(3.1)

Theorem 3.2. Let M be a compact n-dimensional Riemannian manifold
with nonempty boundary and with Ric(M) ≥ (n − 1)K ≥ 0 and let a =
(n−1)K

2λ .
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(a) Assume that the boundary is weakly convex, that is, the second funda-
mental form S in the outward normal direction is nonnegative definite.
Let v be a normalized Neumann eigenfunction on M with median m1

of a positive eigenvalue λ. Then, the gradient of u = v − m1 satisfies
the same inequality (3.1).

(b) Assume that the boundary is of nonnegative mean curvature trS ≥
0 in the outward normal direction. Let v be a normalized Dirichlet
eigenfunction on M of a positive eigenvalue λ. Then the gradient of v
satisfies the inequality

|∇v|2 ≤ λ(1− v2){1− a(1− v2)}.(3.2)

Notice that since lims→1− m = m1 and lims→1− w = v − m1 (m1 = 0 for
Dirichlet eigenfunction), to show the gradient estimates (3.1) and (3.2), it
suffices to show the corresponding estimates for w. We shall use Lemma
2.1 twice. First, we show a gradient estimate for w in Lemma 3.3 which
is a slight variation of the Yang-Zhong [11] estimate for compact manifolds
without boundary (see also [4] and [9]).

Lemma 3.3. Assume that Ric(M) ≥ 0. If ∂M 6= ∅, we also assume that ei-
ther the second fundamental form S is nonnegative definite if v is a Neumann
eigenfunction or the mean curvature trS is nonnegative if v is a Dirichlet
eigenfunction. Let w = sv −m be as in Section 2. Then, for all 0 < s < 1,
the gradient of w satisfies the inequality

|∇w|2 ≤ λ(1− w2 + 2mz(w)).(3.3)

Proof. Since |w| ≤ s < 1 and 0 ≤ m = sm1 < 1, the inequality (2.31)
implies that 1 − w2 + 2mz(w) is a positive smooth function on M . Thus,
there exists a positive constant β such that the smooth function

Q = |∇w|2 − β(1− w2 + 2mz(w))(3.4)

has 0 as its maximum value. Thus, the inequality (3.3) will follow if β ≤ λ.
Let

h(t) =
β

2
(1− t2 + 2mz(t)).(3.5)

Notice that if v is a Dirichlet eigenfunction, then m = sm1 = 0 and h
is an even function. Let p ∈ M be a point where the function Q attains
its maximum value 0. The convexity conditions S ≥ 0 or tr S ≥ 0 and
Lemma 2.2 implies that ∇Q(p) = 0. It follows from Lemma 2.1 that, at
t = w(p) ∈ (−1, 1), the function h defined by (3.5) satisfies the inequality
(2.7) with K = 0, namely,

0 ≥ h′
2 + λ(t + m)h′ − 2h(λ + h′′).(3.6)
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Since h′ = β(mz′ − t), h′′ = β(mz′′ − 1), and β > 0, divide the inequality
(3.6) by β and simplify yield

0 ≥ (β − λ)
{

1 + m(t + 2z − tz′) + m2(z′2 − 2zz′′)
}

+λm2
{

z′
2 − 2zz′′ + z′

}
−mβ{(1− t2)z′′ + tz′ + t}.(3.7)

The last term is 0 because of the identity (2.30). Completing the square in
the first term yields

0 ≥ (β − λ)
{

1 +
m

2
(t + 2z − tz′)

}2
+ λm2{z′2 − 2zz′′ + z′}

+(β − λ)m2

{
z′

2 − 2zz′′ − 1
4
(t + 2z − tz′)2

}
.(3.8)

If β > λ, then, it follows from Lemma 2.4 that all of the three terms on the
right side of the inequality (3.8) is nonnegative. Moreover, the first term is
positive if m = 0 and the last two terms are both positive if m 6= 0. That is
certainly not possible since the left side of the inequality (3.8) is 0. Hence,
we must have β ≤ λ.

The rest of this section will be devoted to the proof of Theorem 3.1 and
3.2. If K = 0, Theorem 3.1 and 3.2 follows from Lemma 3.3. So assume
that Ric(M) ≥ K > 0. As already been noticed, we need only show that
there exists a constant α ≥ a = (n−1)K

2λ such that w satisfies the inequality

|∇w|2 ≤ λ{(1− w2)[1− α(1− w2)] + 2mz(w)}.(3.9)

It follows from Lemma 3.3 that there exists a nonnegative constant α such
that the function

G = |∇w|2 − λ{(1− w2)[1− α(1− w2)] + 2mz(w)}(3.10)

has 0 as its maximum value since G is a strictly increasing linear function
in α and

G = |∇w|2 − λ(1− w2 + 2mz(w)) + λα(1− w2)2 ≤ λα(1− s2)2 < 0
(3.11)

if α < 0.

Suppose, on the contrary, that α < a. By Lemma 2.3, we have λ ≥ nK.
Thus

0 ≤ α < a =
(n− 1)K

2λ
≤ n− 1

2n
<

1
2
.(3.12)

It follows from the inequality (2.31) and (3.12) that the new test function

h(t) =
λ

2
{(1− t2)[1− α(1− t2)] + 2mz(t)}(3.13)

is a positive smooth function on (−1, 1).
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Let p ∈ M be a point where the smooth function G attains its maximum
value 0. As in the proof of Lemma 3.3, the convexity condition S ≥ 0 or
trS ≥ 0 and Lemma 2.2 implies that ∇G(p) = 0. It follows from Lemma
2.1 that, at t = w(p) ∈ (−1, 1), the function defined by (3.13) satisfies the
inequality

h′
2 + λ(t + m)h′ + 2h{(n− 1)K − λ− h′′} ≤ 0.(3.14)

Since

h′(t) = λ{t[2α(1− t2)− 1] + mz′(t)},(3.15)

h′′(t) = λ{2α− 1− 6αt2 + mz′′(t)},(3.16)

and (n− 1)K = 2aλ, divide the inequality (3.14) by λ2 and then simplify it
using the identity (2.30) yield

0 ≥ 2(a− α){(1− t2)[1− α(1− t2)] + 2mz}
+2αt2(1− t2)[2− α(1− t2)](3.17)

+2mαt

{
6tz + (1− t2)

[
6
π

√
1− t2 − 1

]}
+ m2(z′2 − 2zz′′ + z′).

It follows from the inequalities (2.31), (2.33), and (3.12) that the first
term on the right side of the inequality (3.17) is positive while the second
and the fourth terms are nonnegative, thus m > 0 and α > 0. Furthermore,
it follows from 1 > 2a > 2α > 0, (2.31), and (3.17) that

0 > α

{
t2(1− t2)(3 + t2) + 2mt

[
6tz + (1− t2)

(
6
π

√
1− t2 − 1

)]
(3.18)

+ 2m2(z′2 − 2zz′′ + z′)
}

≥ α(1− t2)−1(3 + t2)−1

{
t(1− t2)(3 + t2)

+ m

[
6tz + (1− t2)

(
6
π

√
1− t2 − 1

)]}2

+ m2α

{
2(z′2 − 2zz′′ + z′)

− (1− t2)−1(3 + t2)−1

[
6tz + (1− t2)

(
6
π

√
1− t2 − 1

)]2}
.

Since m > 0 and α > 0, the inequality (3.18) apparently contradicts with
the inequality (2.33) in Lemma 2.4. Therefore, we have proved that there
exists a constant α ≥ a such that w satisfies the gradient estimate (3.9) for
each constant 0 < s < 1. Taking the limit to the inequality (3.9) by letting
s → 1− now yields the inequalities (3.1) and (3.2). This completes the proof
of Theorems 3.1 and 3.2.
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4. Lower Bound Estimates of the First Positive Eigenvalue.

In this section, we apply the gradient estimates obtained in the previous
section to derive some new lower bound estimates of the first positive eigen-
value on compact Riemannian manifolds whose Ricci curvature satisfies
Ric(M) ≥ (n− 1)K ≥ 0.

Theorem 4.1. Let M be a compact n-dimensional Riemannian manifold
without boundary whose Ricci curvature satisfies Ric(M) ≥ (n − 1)K ≥ 0.
Let d be the diameter of M . Let v be the normalized eigenfunction of the
first positive eigenvalue λ so that

inf v(x) = m1 − 1 and max v(x) = m1 + 1(4.1)

where 0 ≤ m1 < 1 is the median of v. Then

λ ≥ min

{
(n− 1)K +

π2

d2
, (n− 1)K/4 +

π2

d2

[
1 + 0.09m2

1

]2 [1(4.2)

+
∞∑

k=1

(4k − 1)!!(2k − 1)!!
(4k)!!(2k)!!

(
(n− 1)Kd2

4π2 + 3(n− 1)Kd2

)2k]2}
.

Proof. Let u = v −m1. It follows from Theorem 3.1 that

|∇u|2 ≤ λ{(1− u2)[1− a(1− u2)] + 2m1z(u)}(4.3)

where a = (n−1)K
2λ . Hence

(4.4)
|∇u|

(1− u2)1/2[1− a(1− u2)]1/2[1 + 2m1z(u)(1− u2)−1[1− a(1− u2)]−1]1/2

≤ λ1/2.

By (4.1), there exist two points p, q ∈ M such that

u(p) = −1 and u(q) = 1.(4.5)

Let γ(t) be a minimal geodesic from p to q in M and let

θ(x) = arcsinu(x) ∈ [−π/2, π/2].(4.6)
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Integrate (4.4) along γ yields

λ1/2d ≥
∫

γ
λ1/2dt ≥

∫ 1

−1
(1− u2)−1/2[1− a(1− u2)]−1/2{1

+ 2m1z(u)(1− u2)−1[1− a(1− u2)]−1}−1/2du(4.7)

=
∫ π/2

−π/2

[
1− a

2
− a

2
cos 2θ

]−1/2
{

1 + 2m1z(sin θ) sec2 θ

[
1

− a

2
− a

2
cos 2θ

]−1}−1/2

dθ.

Let b = a
2−a = (n−1)K

4λ−(n−1)K . Then 0 ≤ b < 1/3 since λ ≥ nK. Thus[
1− a

2
− a

2
cos 2θ

]−1/2
= (1− a/2)−1/2(1− b cos 2θ)−1/2 ≥ 1.(4.8)

The inequality (2.31) in Lemma 2.4 implies that

2m1|z(sin θ)| sec2 θ
[
1− a

2
− a

2
cos 2θ

]−1
≤ m1 < 1(4.9)

since a < 1/2.
So we can apply the binomial series expansion

(1− y)−1/2 = 1 +
∞∑

k=1

(2k − 1)!!
(2k)!!

yk(4.10)

for

y = −2m1z(sin θ) sec2 θ
[
1− a

2
− a

2
cos 2θ

]−1
(4.11)

and notice that (4.11) is an odd function in θ. It follows from (4.7), (4.8),
(4.10), and (4.11) that

λ1/2d ≥ (1− a/2)−1/2

∫ π/2

−π/2
[1− b cos 2θ]−1/2

[
1

+
∞∑

k=1

(2k − 1)!!
(2k)!!

yk

]
dθ

= 2(1− a/2)−1/2

∫ π/2

0
[1− b cos 2θ]−1/2

[
1(4.12)

+
∞∑

k=1

(4k − 1)!!
(4k)!!

y2k

]
dθ

≥ 2(1− a/2)−1/2

∫ π/2

0
[1− b cos 2θ]−1/2

[
1 +

3
8
y2

]
dθ.
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By the inequalities (2.31) and (4.8), we have

y2 ≥
[
4
5
m1 sin2 θ

]2

=
16
25

m2
1 sin4 θ.(4.13)

Now expand (1− b cos 2θ)−1/2 in (4.12) and integrate term by term yield

dλ1/2
(
1− a

2

)1/2

≥ 2
∫ π/2

0

(
1 +

6
25

m2
1 sin4 θ

)
(1− b cos 2θ)−1/2dθ

= 2
∫ π/2

0

(
1 +

6
25

m2
1 sin4 θ

)[
1 +

∞∑
k=1

(2k − 1)!!
(2k)!!

bk cosk 2θ

]
dθ

≥ π(1 + 0.09m2
1)

[
1 +

∞∑
k=1

(4k − 1)!!(2k − 1)!!
(4k)!!(2k)!!

b2k

]
.

(4.14)

Since a = (n−1)K
2λ , we obtain

λ ≥ n− 1
4

K +
π2

d2
(1 + 0.09m2

1)
2

[
1 +

∞∑
k=1

(4k − 1)!!(2k − 1)!!
(4k)!!(2k)!!

b2k

]2

(4.15)

where b = (n−1)K
4λ−(n−1)K .

So either λ ≥ π2

d2 + (n− 1)K or else b ≥ (n−1)Kd2

4π2+3(n−1)Kd2 and

λ ≥ n− 1
4

K +
π2

d2
(1 + 0.09m2

1)
2

·

[
1 +

∞∑
k=1

(4k − 1)!!(2k − 1)!!
(4k)!!(2k)!!

(
(n− 1)Kd2

4π2 + 3(n− 1)Kd2

)2k
]2

.

(4.16)

This completes the proof of Theorem 4.1.

Theorem 4.2. Let M be a compact n-dimensional Riemannian manifold
with nonempty boundary ∂M . Assume that the Ricci curvature satisfies
Ric(M) ≥ (n − 1)K ≥ 0. Let d = diam(M) be the diameter of M and let
r = sup{d(x, ∂M)|x ∈ M} be the inscribed radius of M . Then:

(a) If the second fundamental form of the boundary in the outward nor-
mal direction is nonnegative definite, then the first positive Neumann
eigenvalue for M satisfies the same inequality (4.2).

(b) If the mean curvature of the boundary in the outward normal direc-
tion is nonnegative, then the first positive Dirichlet eigenvalue for M
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satisfies the lower bound

λ ≥ min

{
(n− 1)K +

π2

4r2
,
n− 1

4
K

+
π2

4r2

[
1 +

∞∑
k=1

(4k − 1)!!(2k − 1)!!
(4k)!!(2k)!!

(
(n− 1)Kr2

π2 + 3(n− 1)Kr2

)2k
]2}

.

(4.17)

Proof. Since the Neumann eigenfunction satisfies the same gradient esti-
mate (3.1), the proof of the lower bound (4.2) for the first positive Neumann
eigenvalue is identical with the proof of Theorem 4.1. The proof of the lower
bound (4.17) for the first Dirichlet eigenvalue is also similar to the proof of
Theorem 4.1.

Let v be the normalized first Dirichlet eigenfunction such that 0 ≤ v ≤
max v(x) = 1. Let q ∈ M and p ∈ ∂M be two points such that v(q) = 1
and d(p, q) = d(q, ∂M). By the definition of the inscribed radius r, we have
d(p, q) ≤ r. It follows from the inequality (3.2) that

|∇v|
(1− v2)1/2[1− a(1− v2)]1/2

≤ λ1/2.(4.18)

Integrate the inequality (4.18) along a minimal geodesic from p to q as in
the proof of Theorem 4.1 yields the desired lower bound (4.17).
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