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Abstract. We show that any scheme to encrypt m blocks of size n bits
each, which assures message integrity, is linear in (GF2)n, uses m + k
invocations of random functions (from n bits to n bits) and vn bits of
randomness, must have k + v at least Ω(log m). This lower bound is
proved in a very general model which rules out many promising linear
modes of operations for encryption with message integrity. This lower
bound is tight as in an earlier paper “Encryption Models with Almost
Free Message Integrity”, Proc. Eurocrypt 2001, we show a linear scheme
to encrypt m blocks while assuring message integrity by using only m +
2 + log m invocations of random permutations.

1 Introduction

Recently, new modes of operation for block ciphers (IAPM, IACBC, XCBC-
XOR) were described in [9] and [5], which in addition to assuring confidentiality
of the plaintext, also assure message integrity. Prior to this, two separate passes
were required; first to compute a cryptographic MAC (e.g. CBC-MAC [2]) and
then to encrypt the plaintext with the MAC appended to the plaintext (e.g.
using CBC [18]). Following up on works of [9], and [5], another authenticated
encryption mode (OCB) was described in [20].

Before the modes in [9] and [5] many unsuccessful attempts were made to do
authenticated encryption in one pass (e.g. [4]). Most of these attempts try to use
a simple checksum instead of a cryptographic MAC, as the tag appended to the
plaintext before encryption. Other attempts try to do additional chaining, on
top of the cipher block chaining in CBC (see figure 2 for one such mode called
MPCBC [11] [12] - modified plaintext ciphertext block chaining). In essence, all
these proposed modes try to do authenticated encryption by using only exclusive-
or operations (i.e. operations linear in (GF2)n, where n is the block cipher size),
and without generating any extra randomness using the block cipher or some
pseudo-random function. A successful mode for authenticated encryption was
described in [10], however it increased the length of the ciphertext by a constant
factor.

One of the modes in [9] is proven to be secure for both encryption and authen-
tication even though it only uses operations linear in (GF2)n (apart from block
cipher invocations), but it actually generates log m extra blocks of randomness
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Fig. 1. Authenticated Encryption Mode IAPM

(where m is the number of blocks to be encrypted) by log m extra block cipher
invocations.

In this paper we show a matching lower bound to the construction in [9]
(see Figure 1). In other words, we show that the log m additional cryptographic
operations in IAPM/IACBC scheme are essentially the least one has to do to
assure message integrity along with message secrecy in any scheme linear in
(GF2)n.

We prove our lower bound in a very general model. We assume that the
block cipher is modeled as a length preserving random function on n bits. Any
invocation of such a random function constitutes one application of a crypto-
graphic function. The only other operations allowed are linear operations over
(GF2)n (i.e. n-bit exclusive-or), or testing an n bit quantity for zero. There is
no other restriction on the scheme, apart from it being one to one (i.e. no two
plaintexts generate the same ciphertext). There is no assumption about whether
the scheme is actually invertible (which is the surprising part). The scheme is
also allowed to be probabilistic with v blocks of randomness. For example, the v
blocks of randomness could be v blocks of shared keys.

As our main result, we prove that any such linear scheme which encrypts m
blocks of plaintext while assuring message integrity, using v blocks of random-
ness, and only m+k cryptographic operations, must have k+v at least Ω(log m).

We use a well known theorem from linear algebra, and other techniques from
linear algebra to prove our lower bound. Specifically we analyze the ranks of
matrices and solution spaces of linear system of equations to prove the lower
bound. Linear algebra techniques like analysis of rank of matrices have been
used previously by [14] to show attacks on a whole class of schemes (double
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Fig. 2. Encryption Mode MPCBC

block length hash functions), although the matrices involved in [14] were of
constant ranks (three or four).

We again emphasize that our lower bound is a very general result, as it rules
out many potential schemes for authenticated encryption by just an inspection
of the number of cryptographic operations, and the mixing operations used (i.e.
regardless of the structure of the scheme). Figures 3 and 4 (in addition to Figure
2) describe some other modes which by this lower bound turn out to be insecure
for authenticated encryption. The mode in Figure 3 tries to use the structure of
both the counter mode[17], and the CBC mode. All mixing operations in Figures
1 to 4 are n-bit exclusive-or operations.

Note that there are versions of IAPM/IACBC in [9], and modes for authen-
ticated encryption in [5],[20] which are proven secure while using only one or
two extra cryptographic operations. This does not contradict our lower bound
as these schemes are not linear in (GF2)n. In fact, the main theorem in [9]
shows that authenticated encryption can be achieved by generating and using
(linearly) a sequence of random numbers which are only pairwise -differentially
uniform (or XOR-universal, a property slightly weaker than pairwise indepen-
dence). Such a sequence can be generated by only one additional cryptographic
operation if operations in GFp or GF (2n) are allowed, but such a sequence does
indeed require log m extra cryptographic operations, if only linear in (GF2)n

operations are allowed.
It is worth noting that schemes which use GF (2n) to generate the XOR-

universal whitening sequence are linear in GF2, and hence by the discussion in
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the previous paragraph, there cannot be a similar lower bound for schemes linear
in GF2.

The rest of the paper is organized as follows. In section 2 we state some lemma
from linear algebra which are used in proving the main theorem. In section 3 we
describe the model of authenticated encryption. In section 4 we prove the main
lower bound theorem.

2 Linear Algebra Basics

The first lemma is basic, and the second is a key theorem in linear algebra [13].

Lemma 2.1: Let
[X1...Xq] ·A = [Y1...Ym]

where A is a q × m binary matrix of rank m, and all the variables represent
elements of (GF2)n. If for some subset B of rows of A, rank(B) < m, then there
is a non-trivial linear (over GF2) relation between the variables Y1...Ym, and
variables {Xi|i ∈ [1..q], and i not index of some row in B}.
Proof: Since B has rank less than m, there exists a non-zero vector x such
that B·x = 0. In fact, the set of such vectors are of dimension m−rank(B) (see
the next lemma). The following equation then yields the required linear relation:

[X1...Xq] ·A · x = [Y1...Ym] · x

�
Lemma 2.2: Let

[X1...Xq] ·A = [Y1...Ym]
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where A is a q × m binary matrix of rank m′ ≤ m, and m ≤ q, and all the
variables represent elements from (GF2)n . Then for a fixed Y = [Y1...Ym],
which allows for at least one solution in [X1...Xq] of the above equations, the
solution space of [X1...Xq] is a q − m′ dimensional affine space, namely

[X1...Xq] = [< f(Y ) >] + α1 · V1 + ... + αq−m′ · Vq−m′

where < f(Y ) > is a row of q linear functions determined by A, each of
α1...αq−m′ is a scalar ranging over all elements in (GF2)n, and V1...Vq−m′ are
q − m′ linearly independent binary row vectors determined by A.

The vectors V1...Vq−m′ constitute a basis of the null space of A.

3 Linear in (GF2)n Authenticated Encryption Model

We consider the following model. We assume a fixed block size n for a block
cipher (or random permutations or length preserving random functions). Any
application of one of these will constitute one application of a cryptographic
operation. From now on we will assume that the block cipher is modeled as a
length preserving n bit random function. The only other operations allowed are
linear operations over (GF2)n, i.e. bit-wise exclusive-or. Of course, operations
of testing whether an n bit quantity is zero is also allowed. Since, the scheme
could be probabilistic, as IACBC/IAPM [9] is, we also allow v blocks of ran-
domness, r1, ..., rv. These blocks of randomness could be shared beforehand as
keys.

Let the message P to be encrypted be of size m blocks, i.e. mn bits (as we
will see later, we only need to model a single message encryption). Call the input
blocks P1, ..., Pm. Let there be m + k invocations of random functions, and let
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the inputs to these functions be M1, M2, ..., Mm+k. Similarly, let the outputs
of these random functions be N1, N2, ..., Nm+k. Let, C = C1, C2, ...Cm+t be
linear functions of P ’s, r’s, and N ’s. Here, t ≥ 0. Similarly, each Mi is a linear
combination of P, r and N .

Thus let,

[P1...Pmr1...rvN1...Nm+k 1] ·B = [C1...Cm+t]

[P1...Pmr1...rvN1...Nm+k 1] · E = [M1...Mm+k]

where each of B and E is a binary matrix except for the last row in which each
entry can have arbitrary elements in (GF2)n.

We have not addressed the question of invertibility of this scheme. It will
turn out, that for the purpose of proving our lower bound, it is not important
whether the scheme is invertible or not. However, we do require the scheme to be
one-to-one. More precisely, a scheme is one-to-one if it is not the case that there
are two different plaintext messages P 1 and P 2, and a random string r, such
that 〈r, P 1〉 generates ciphertext C, and 〈r, P 2〉 generates the same ciphertext C
( as r could be part of the shared key, two different r’s on different plaintexts
are allowed to generate the same ciphertext).

Our aim is to show that either the scheme is not secrecy secure, or it is not
message integrity secure, or it is not one to one (not just not invertible), or
k + v= Ω(log m). We now define each of these terms formally.

The scheme is not secrecy secure if an adversary can correctly predict a non-
trivial linear combination of the plaintext blocks, given the corresponding cipher-
text, with probability more than 1 − O(2−n), in time polynomial in m and n.
Note that we do not need an epsilon-delta definition of security, as we will al-
ways be able to demonstrate attacks which work with high probability. Also our
attacks will not need to see many ciphertexts before predicting the plaintext.
Thus, we have a weak adversarial model.

For message integrity, let there be u > 0 MDC (manipulation detection code)
functions µ1, ..., µu, each a linear function of P ’s, M ’s, N ’s, and r’s. Without
loss of generality assume that they are linearly independent. During encryption
of plaintext P , using randomness r, each µi is computed as a linear combination
of P ’s, M ’s, N ’s, and r’s. During decryption of the corresponding ciphertext C,
another set of functions µ′

1, ..., µ
′
u is computed as a function of C’s, M ’s, and N ’s.

The decryption process passes the message integrity test if for all i, µi = µ′
i. For

example in IAPM (fig 1), µ1 = Σ P , and µ′
1 = Mz ⊕ Sz, where Sz is some

linear combination of N−1...N−t. Now, define Di = µi ⊕ µ′
i, a linear function

of P ,M ,N ,r, and C. Since C can be written as a linear combination of P , N ,
and r, each Di is a linear function of P ,M ,N , and r. On a valid decryption all
the Di should evaluate to zero.

A scheme is not message integrity secure, if for a fixed r, and given P and cor-
responding C, an adversary can produce a C′ �= C in time polynomial in m and n,
such that on inversion, all the functions Di evaluate to zero. Once again, our
attacks do not require many plaintext, ciphertext combinations before a forged
ciphertext is demonstrated. Note that the notion of message integrity here is that
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of ciphertext forgery in the known plaintext, known ciphertext model. Clearly,
the lower bound holds as well for the chosen plaintext attacks.

Let
[M1...Mm+kP1...Pmr1...rvN1...Nm+k 1] · F = [D1...Du]

We combine these three systems of equations to write a big system as follows:

[M1...Mm+kP1...Pmr1...rvN1...Nm+k 1] · G = [C1...Cm+tD1...Du 0...0]

where there are m+k 0’s in the R.H.S vector corresponding to the matrix E (i.e.
second system of equations). More precisely,

G =
[

0
B F

I
E

]

︸︷︷︸
m+t

︸︷︷︸
u

︸︷︷︸
m+k

}m + k
}m + v + m + k + 1

We will refer to a given authenticated encryption scheme by the matrix G.

4 Lower Bound

Theorem 1: If the scheme G is secrecy secure, message integrity secure, and
one-to-one, then k + v is at least Ω(log m).

We first give an informal description of the proof technique, followed by lem-
mas and their formal proof, finally followed by the formal proof of this theorem.

We first prove that the number of extra encryptions (including the random-
ness used) is at least the number of extra ciphertexts and the number of checksum
blocks minus one, or else the secrecy is compromised. This is far from obvious,
and is proven formally in lemma 1 below. Informally, it is reasonable to assume
that each extra ciphertext requires an extra encryption. However, the fact that
each checksum block requires an extra encryption is a bit tricky. The main idea
is that the checksum blocks in a valid decryption evaluate to zero, and being
linearly independent of each other, they must not be just linear combinations of
ciphertexts and plaintexts.

The scheme G maybe generating some or all of its ciphertext blocks in a man-
ner similar to the counter mode. In other words, some ciphertext block Ci may
just be the plaintext block Pi xor’ed with the encryption of a counter. We next
prove that each such block of ciphertext which is generated using the “counter
mode”, requires its own checksum (MDC) block. This is proven formally in
lemma 2.

We say that Ni and Nj resolve if Ni⊕Nj can be written as a linear combina-
tion of only the C’s and P ’s. Similarly, we say that Mi and Mj resolve if Mi⊕Mj

can be written as a linear combination of only the C’s and P ’s.
Informally, if Ni and Nj resolve, an adversary can calculate the change re-

quired in the given ciphertext so that all the checksums come out correct. Thus,
in lemma 3 we prove that if there exists a pair i, j, i �= j, such that Ni and Nj

resolve, Mi and Mj resolve, and Ni and Nj (similarly Mi and Mj) contribute
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identically to each MDC D, then that leads to the scheme being compromised
for message integrity.

We show in lemma 4 that if the scheme is secrecy secure, and if the total
number of extra encryptions (taking into account the bounds of lemma 1 and
2) is not at least log m, then the conditions in the previous paragraph (i.e. the
antecedent in lemma 3) are met.

Informally, that proves theorem 1. Now, to the formal proofs of the four
lemmas.

Lemma 1: Either the scheme G is not secrecy secure or k + v ≥ t + u − 1

Proof: Use the identity matrix in the top right corner of G to zero out the first
m + k rows of the the first m + t + u columns. We call this new matrix G′. We
now write the columns corresponding to D as [0 F′�]�. Thus,

G′ =
[

0
B

0
F′

I
E

]

︸︷︷︸
m+t

︸︷︷︸
u

︸︷︷︸
m+k

}m + k
}m + v + m + k + 1

We first show that w.l.o.g. we can assume that the rank of the matrix G′ is
at least m + t + u. Suppose the rank of the matrix G′ is m′ < m + t + u.
Clearly the columns corresponding to D are linearly independent, as we assumed
earlier. Thus, there are m + t + u − m′ columns corresponding to C which are
linear combinations of the other columns corresponding to C, and the columns
corresponding to D. However, on a valid encryption all the Di are zero. This
means, that these m + t + u −m′ Ci’s corresponding to the columns mentioned
can be computed as a linear combination of the other m + t− (m + t + u −m′)
= m′ − u Ci’s. Thus, there need only be m′ − u Cis, in the big equation above.
Thus, we can assume w.l.o.g that the rank of the matrix G′ is at least m+ t+u.

In fact by the above argument, the rank of the sub-matrix of G′ consisting
of the first m + t + u columns is m + t + u.

Now, let’s focus on the matrix G′′ comprising of only the first m + t + u
columns of G′ and the rows of G′ excluding the rows corresponding to P . If
the rank of the sub-matrix G′′ is less than m + t + u, then there is a non-
trivial linear relationship between C’s, D’s, and P . Once again, since on a valid
encryption D’s are zero, we would get a non-trivial linear relation between P ’s
and C’s, contradicting that the scheme is secrecy-secure. Since the m+k rows of
the first m+t+u columns of G′′ are zero, we have that (v+(m+k)+1) ≥ m+t+u,
or k + v ≥ t + u − 1. �

Going back to G, it is useful to reduce the rows corresponding to P in B and
F to zero, if possible. In other words, we would like to express P in terms of M , N ,
and r, if possible (else such blocks are encrypted as in “counter mode”). So, by
doing column operations, let the rows in [IE�]� corresponding to P be reduced
to (

0 X
0 I

)
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where the identity matrix is of size w, 0 ≤ w ≤ m, resulting in the new equation

[M1...Mm+kP1...Pmr1...rvN1...Nm+k 1] ·
[

0
B F E′

]
= [C1...Cm+tD1...Du 0...0]

Consequently we can assume, w.l.o.g., that the bottom w rows corresponding
to P in F are zero. Let the resulting big matrix be H.

We now have the system of equations

[M1...Mm+kP1...Pmr1...rvN1...Nm+k 1] ·H = [C1...Cm+tD1...Du 0...0]

where in H the bottom w rows corresponding to P are zero in the columns
corresponding to D.

Lemma 2: Either the scheme G is not message integrity secure or not one-to-
one, or u ≥ (m − w)

Proof: Let c be a ciphertext which is computed based on a given p and r. Consider
the sub-matrix of H which consists of the first m − w rows corresponding to
the P ’s and the u columns corresponding to D. If this sub-matrix has rank less
than m − w, then there is a p′ �= p (with p′ different from p only in the first
m − w indices (blocks)), such that D’s remain same, i.e. zero. Because, of the
identity matrix in E′ we can arrive at a p′′, which is identical to p′ in the first
m − w blocks, but possibly different in the remaining w blocks, so that none
of the M ’s and N ’s are affected (i.e. p′′ is consistent with same Ms and Ns as
computed from p). The new p′′ still keeps all the Ds zero (as the bottom w rows
corresponding to P were zeroed out in F). This new p′′ results in a new c′′ which
is different from c (as the scheme is 1-1). Thus, we have a different c′′. Note that,
p′′ ⊕ p, does not depend on p; and similarly, c′′ ⊕ c does not depend on p (and
not even c). Thus, an adversary with access to a valid c, can come up with a c′′

which on decryption leads to all the D’s being zero. Thus, u ≥ m − w. �
We will need yet another combination of equations to prove the next lemma.

This time, using the identity matrix in E′ corresponding to the P rows, we now
also zero out the corresponding entries in B and let the new matrix be H′. Thus,
H′ is different from H in only the columns corresponding to C.

Using H′ (or H) let’s rewrite the equations for D more conveniently:
For i = 1..u, let

Di =
m+k∑
j=1

(ai
j · Mj) ⊕

m+k∑
j=1

(bi
j · Nj) ⊕

v∑
j=1

(ci
j · rj) ⊕

m−w∑
j=1

(di
j · Pj)

In the matrix E′, the first (m − w) columns have the rows corresponding
to P equal to zero. In a way these columns also work as hidden integrity checks,
though not always. So, for i = u+1..u+m−w define D′

i similar to above, using
the (m − w) columns of E′ or H.

D′
i =

m+k∑
j=1

(ai
j · Mj) ⊕

m+k∑
j=1

(bi
j · Nj) ⊕

v∑
j=1

(ci
j · rj)
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We say that Ni and Nj resolve if Ni⊕Nj can be written as a linear combina-
tion of only the C’s and P ’s. Similarly, we say that Mi and Mj resolve if Mi⊕Mj

can be written as a linear combination of only the C’s and P ’s.
We will later show that there exists a pair i, j, i �= j, i, j ∈ [1..m + k] such

that

1. Ni and Nj resolve
2. Mi and Mj resolve
3. For all x ∈ [1..u + m − w], ax

i ⊕ ax
j = 0, and bx

i ⊕ bx
j = 0

4. There exists y ∈ [1..m + t], H′
2m+k+v+i,y ⊕ H′

2m+k+v+j,y = 1

In item (4), H′
2m+k+v+i,y is the entry in H′ in row corresponding to Ni and

in column corresponding to Cy. Essentially, it says that the rows corresponding
to Ni and Nj are not identical (for the first m + t columns).

In the next lemma we show that if such a pair exists with the above four
conditions holding then the scheme G is not message integrity secure.

Lemma 3: If there exists a pair i, j, i �= j, i, j ∈ [1..m + k] such that the above
four conditions hold, then the scheme G is not message integrity secure.

Proof: We will show that with probability greater then 1 − O(2−n) there exists
a c′ (different from a given c) which can easily be computed (given c and the
corresponding p) such that

– N ′
i = Nj

– N ′
j = Ni

– for z different from i, j, N ′
z = Nz

– the first m − w blocks of P remain same

We have a similar set of relations for M , and hence given (3), all the D functions
would evaluate to zero, leading to G being insecure for message integrity.

To demonstrate such a c′, using H′, we evaluate ∆c, for ∆N and ∆M , where

– ∆Nj = ∆Ni = Ni ⊕ Nj

– ∆Mj = ∆Mi = Mi ⊕ Mj

Because of (3) all the D′ remain zero, which means there is no change in
any other N or M . Moreover the changes above in M and N do not cause any
change in the first m − w plaintext blocks (all the changes can be incorporated
in the lower w blocks because of the identity matrix in E′). Since the rows
corresponding to the bottom w rows of P in B were zeroed out, these changes
in the plaintext do not affect ∆c.

Now, ∆Nj is non-zero with probability 1 − 2−n (at least). Since Mi is re-
lated to Ni by a random function, the probability that ∆M cancels out ∆N in
computing ∆c is at most 2−n. This leads to a non-zero ∆c because of (4) above
with probability at least 1 − O(2−n).

Since conditions (1) and (2) hold as well, an adversary can compute such a c′

from c and p. �
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Lemma 4: Either k+v+u+m−w is Ω(log m), or the scheme G is not secrecy
secure, or there exists a pair i, j satisfying (1),(2), (3) and (4)

Proof: Recall that,

[P1...Pmr1...rvN1...Nm+k 1] ·B = [C1...Cm+t]

The rank of the matrix B is at least m, say m′. Now, we call a pair of rows from
the rows corresponding to N in B dependent if one row can be expressed linearly
in terms of other using the bottom w rows corresponding to P . This is clearly an
equivalence relation. From each such pairwise dependent set (including sets with
only one row), pick only one row, and push the remaining rows to the bottom.
Let q be the number of rows so picked. The rank of the top m + v + q rows is
still at least m′.

Now if we also ignore the top m rows (corresponding to P ), the rank of
the remaining v + q rows is still m′, for otherwise we have a non-trivial linear
relationship between C and P , and hence the scheme is not secrecy secure.

This implies (by lemma 2.2) that

[r1...rvN1...Nq] = [< f(C, P ) >] + (GF2)n · V1 + ... + (GF2)n · Vq+v−m′

where < f(C, P ) > is a set of linear functions of C and P , and Vi are linearly-
independent binary row-vectors. For a subset of N ’s with indices a set J ⊆ [1..q]
to be pair-wise “non-resolving” thus requires q + v − m′ ≥ log |J |. In other
words, there exists i, j ∈ J, i �= j, Ni and Nj resolve if q + v − m′ < log |J |.
Stated differently, there is a set J1 of size |J1| = (q)/2q+v−m′

in which all pairs
of N ’s resolve with each other.

Now each Mi can be written as a linear combination of r, N and P (using
matrix E). Once again (using lemma 2.2) we have

[r1...rvN1...Nm+k] = [< f ′(C, P ) >] + (GF2)n · V ′
1 + ... + (GF2)n · V ′

m+k+v−m′

where V ′
1 ...V ′

m+k+v−m′ are linearly-independent binary row vectors. Thus, for
any set of indices J ′ ⊆ [1..m + k], there is a a set J ′′ ⊆ J ′ of size |J ′′| at least
|J ′|/2m+k+v−m′

, such that all pairs of Ms in this set J ′′ resolve with each other.
Using J1 for J ′, thus there is a set J2 of size q/2q+v−m′+m+k+v−m′

such that
for all i, j ∈ J2, Mi and Mj resolve, and so do Ni and Nj .

Similarly, there is a set J3 of size |J3| = |J2|/2u+m−w such that

∀k ∈ [1..u + m − w], ∀i, j ∈ J3 : ak
i ⊕ ak

j = 0

Thus, there exists a pair satisfying (1), (2) ,(3) and (4)
if 2m+k+q+2v−2m′+u+m−w < q. Now, q +v ≥ m′ ≥ m. Thus, either v is Ω(log m)
in which case we are done, or q is at least Ω(m). Thus, there exists a pair
satisfying (1..4) if m+k+q+2v−2m′+u+m−w < O(log m). Since, q−m < k,
the previous inequality is implied by 2(k+v)+u+m−w < O(log m)+2(m′−m),
which in turn is implied by 2(k + v) + 2(u + m − w) < O(log m). Thus, either
there exists a pair with (1..4) holding or, k + v + u + m − w is Ω(log m). �
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Finally, we are ready to prove the main theorem.

Proof (Theorem 1): By Lemma 3, since the scheme G is message integrity
secure, there does not exist a pair with conditions (1..4) holding. Thus, by lemma
4, and the fact that G is secrecy secure, we have k + v + u + m−w > Ω(log m).
By lemma 1 and 2 it follows that k + v is at least Ω(log m). �

4.1 Block Ciphers as Random Permutation Generators

In section 3, and the corresponding theorem in section 4, the block cipher was
modeled as a random permutation (or random function). However, it is plau-
sible that the block cipher may be keyed differently to encrypt different blocks
(particularly, since we allow v blocks of randomness which could be used as key
materials).

It can be shown that the previous theorem generalizes to block ciphers mod-
eled as functions from 2n bits to n bits (which is even more general than random
function generators [8]) with only a factor of two cut in the lower bound. Es-
sentially, the only change occurs in lemma 4, where we estimate the size of the
set J2.
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