
Lower Bound Technique for Length-reducing
Automata?

Tomasz Jurdziński?? and Krzysztof Loryś

Institute of Computer Science, Wrocław University,
Przesmyckiego 20, PL-51-151 Wrocław, Poland

{tju,lorys}@ii.uni.wroc.pl

Abstract. The class of growing context-sensitive languages (GCSL) was pro-
posed as a naturally defined subclass of context-sensitive languages whose mem-
bership problem is solvable in polynomial time [9]. GCSL and its deterministic
counterpart called Church-Rosser Languages (CRL) complement the Chomsky
hierarchy in a natural way [18], as the classes filling the gap between CFL and
CSL. Interestingly, they possess characterizations by a natural machine model,
length-reducing two-pushdown automata (lrTPDA). We present a lower bound
technique applicable for lrTPDA. Using this method, we prove the conjecture
that the set of palindromes is not in CRL [19]. This implies that CFL∩coCFL
as well as UCFL∩coUCFLare not included in CRL, where UCFL denotes the
class of unambiguous context-free languages (what solves an open problem from
[1]). The another consequence of our result is that CRL is a strict subset of
GCSL∩coGCSL.

1 Introduction and related work

Formalisms defining language classes located between context-free languages (CFL)
and context-sensitive languages (CSL) have been intensively studies for many years.
One of the motivations was to find families which possess both an acceptable computa-
tional complexity and sufficient expressibility, having simultaneously natural character-
izations by grammars and a machine model. Neither CSL nor CFL fulfil these demands.
For the first class the membership problem is PSPACE-complete what makes it in its
full generality too powerful for practical applications. On the other hand context-free
grammars are e.g. not powerful enough to express all syntactical aspects of program-
ming languages.

One of the approaches was to restrict linearly lengths of context-sensitive deriva-
tions [2]. Another directions exploited extensions of machine model characterizations
of context free languages (e.g. LOGCFL; flip-stack pushdown automata [13, 27]), or
extensions of context free grammars (e.g., parallel communicating grammars [8], con-
junctive and boolean grammars [25, 26]). Further, restrictions of linear space classes
? Partially supported by DFG grant GO 493/1-1 and Komitet Badań Naukowych, grant

8 T11C 04419. Part of this research has been done while the first author was at Institute of
Computer Science, Chemnitz University of Technology, Germany. An extended abstract of
this paper appeared in the ICALP02 Proceedings [15].

?? Corresponding author.

(characterizing CSL) were considered [12]. Very few of these models posses natural
characterizations, both by machine models and grammars like structures, having simul-
taneously acceptable complexity.

One of the most interesting proposals was presented by Dahlhaus and Warmuth
[9]. They consider grammars with strictly growing rules, i.e., such that the righthand
side of the production is longer than the lefthand one. The resulting class of growing
context-sensitive languages (GCSL) complements the Chomsky hierarchy in a natural
way [18], it possesses several good properties justifying exploration of this class [29].
A linear bound on the length of derivations follows immediately from the definition.
So, GCSL is contained in NSPACE(n). Dahlhaus and Warmuth showed a rather aston-
ishing result that each languages generated by a grammar from GCSL can be recog-
nized in deterministic polynomial time (and it is even included in LOGCFL). Buntrock
and Loryś [4, 5] showed that this class is closed under many operations and forms an
abstract family of languages. They also proved that it may be characterized by less re-
stricted grammars. As shown by Niemann and Woinowski [24], GCSL may be also
characterized by acyclic context sensitive grammars.

Buntrock and Otto [6, 3] give a characterization of GCSL by nondeterministic ma-
chine model, shrinking two-pushdown automata (sTPDA). Unexpectedly, it turned out
that the class of languages recognized by deterministic sTPDA is equal to the class of
Church-Rosser languages (CRL), that was introduced by McNaughton et al. [19] as lan-
guages defined by finite, length-reducing and confluent string-rewriting systems [6, 22,
20]. Moreover, an equivalence of shrinking and more restricted length-reducing two-
pushdown automata has been shown by Niemann and Otto [22, 20]. Recently, Holzer
and Otto considered generalizations of these models, they related these generalizations
to other complexity of formal language classes [14].

The membership problem for CRL has linear time complexity and it contains many
important languages that are not context-free. It is a strict superset of DCFL, but its
definition is more intuitive than that of DCFL (as CRL has both machine model and the
characterization by string rewriting systems). Recently, some new properties of CRL
have been shown. They justify the applications of CRL in parsers construction [28].
Moreover, each language in CRL can be defined by a rewriting system in an elegant
“normal form” [29]. However, weakness of CRL seems to be evident. Already Mc-
Naughton et al. [19] conjectured that CRL does not include all context-free languages.
They stated also the conjecture that even a very simple context-free language, namely
the set of palindromes of even length, is not in CRL. The incomparability of CRL and
CFL was finally proved as a consequence of the fact that CRL is closed under comple-
ment (whereas CFL is not) and there are context-free languages whose complements
are not even in GCSL [6]. The question about palindromes was restated in [22] and
in a more general form by Beaudry et al. [1] who posed the question whether the set
of unambiguous context-free languages, UCFL is included in CRL. Observe that the
complement of palindromes is in CFL too, so the techniques used hitherto seem to be
insufficient for proving the conjecture that palindromes are not in CRL.

2

2 Our Result

Lower bound techniques designed for other formal language classes fail in the case
of language classes defined by length-reducing two-pushdown automata. Most of the
known lower bounds for CRL were obtained by the fact that some fixed languages are
not included in a larger class. We propose a direct lower bound technique designed par-
ticularly for length-reducing two-pushdown automata. It exploits a notion of so called
computation graphs, cut and paste technique and a method of determining relationships
between the current configuration and the input word. Finally, our method makes use
of the incompressibility method (Kolmogorov complexity arguments) [16].

Specifically, we show that the set of palindromes of even lengths is not a Church-
Rosser language, answering the open question stated in [19]. By wR we denote the
reversal of the word w, i.e. if w = w1w2 . . .wm, then wR = wmwm−1 . . .w2w1, where
wi ∈ Σ for i ∈ {1, . . . ,m} and Σ is an alphabet of constant size.

Theorem 1. The language PAL= {wwR : w ∈ {0,1}∗} does not belong to CRL.

We show that such a length-reducing two-pushdown automata (lrDTPDAs) working on
words from a certain set of palindromes has to fulfil two contradictory conditions. On
one hand it has to move the contents of one pushdown to the other very often. On the
other hand it must not lose too much information about any part of the input, if we
ensure that these palindromes are build out of blocks of high Kolmogorov complexity.
This is impossible as the automaton is length reducing. As a technical tool designed
particularly for this proof, we use a kind of pumping lemma. Note that even CRL lan-
guages over one-letter alphabet need not to be semilinear (e.g. {a2n |n ∈ N} ∈ CRL,
[19]), so a pumping technique has to be used in a rather sophisticated way.

Observe that co-PAL, the complement of PAL, is also context-free. Moreover, PAL
(as well as co-PAL) is an unambiguous context-free language (UCFL), i.e., there exists
a context-free grammar for PAL such that every word from PAL has only one derivation
tree (see [11]). Therefore, as a conclusion from Theorem 1, we obtain the following
result solving the open problem from [1].

Corollary 1. The classes CFL∩co-CFL and UCFL∩co-UCFL are not included in CRL.

Note that this is quite a tight separation. Indeed, there exists a strict hierarchy of context
free languages with respect to the degree of ambiguity ([11]) and the unambiguous
languages define its last but one level (see Theorem 7.3.1 in [11]). The lowest level
of this hierarchy is equal to the class of deterministic context-free languages, which is
strictly included in CRL.

The remaining part of the paper describes the proof of Theorem 1 and techniques
developed to this aim. In Section 3 we introduce some basic notions and definitions.
Next, in Section 4, we present high level description of the strategy of the proof. Sec-
tions 5, 6, 7 and 8 introduce formal methodology used in our proof. Section 9 describes
the proof of Theorem 1. Finally, in Section 10, we summarize our results and state some
open problems.

3

3 Preliminaries

Throughout the paper ε denotes the empty word, N, N+ denote the set of non-negative
and positive integers. For a word x, let |x|, x[i] and x[i, j] denote the length of x, the ith
symbol of x and the factor x[i] . . .x[j] respectively, for 0 < i ≤ j ≤ |x|. Let [i, j] = {l ∈
N | i≤ l ≤ j}. Let xR denote the reverse of the word x, that is xR = x[n]x[n−1] . . .x[2]x[1]
for |x| = n. Let |x| be the length of x if x is a path in a graph (i.e., the number of
edges in the path), and the number of its elements if x is a set. For any function f :
X → Y and any sequence x = x1 . . .xn of elements of X , by f (x) we denote a sequence
f (x1) f (x2) . . . f (xn).

In the following, lower case letters a,b, . . . , p and r,s denote natural numbers. The
letter q usually denotes states of automata. Lower case letters u,v,w,x,y,z denote words
over finite alphabets. Upper case letter C is used to denote configurations, letters G,H,J
denote so called computation graphs. Vertices of graphs are denoted by π,ρ,µ, paths by
σ.

Growing context-sensitive languages are basically defined by growing grammars [9]
and Church-Rosser languages (CRL) are defined by finite, length-reducing and conflu-
ent string-rewriting systems [19]. We do not make use of these characterizations, so we
omit the formal definitions. We describe characterizations of these classes by length-
reducing two-pushdown automata.

Definition 1 (Two-pushdown automaton. Length reducing automaton).
A two-pushdown automaton (TPDA) M = (Q,Σ,Γ,q0,⊥,F,δ) with a window of length
k = 2 j is a nondeterministic automaton with two pushdown stores (and no input tape).
It is defined by the set of states Q, the input alphabet Σ, the tape alphabet Γ (Σ ⊆ Γ),
the initial state q0 ∈ Q, the bottom marker of the pushdown stores ⊥∈ Γ\Σ, the set of
accepting states F ⊆ Q and the transition relation

δ : Q×Γ⊥, j×Γ j,⊥→ P (Q×Γ∗×Γ∗),

where Γ⊥, j = Γ j ∪{⊥ v : |v| ≤ j− 1,v ∈ Γ∗}, Γ j,⊥ = Γ j ∪{v ⊥: |v| ≤ j− 1,v ∈ Γ∗},
P (Q× Γ∗ × Γ∗) denotes the set of finite subsets of Q× Γ∗ × Γ∗. The automaton M
is a deterministic two-pushdown automaton (DTPDA) if δ is a (partial) function from
Q×Γ⊥, j×Γ j,⊥ into Q×Γ∗×Γ∗. A (D)TPDA is called length-reducing (lr(D)TPDA) if
(p,u′,v′) ∈ δ(q,u,v) implies |u′v′|< |uv|, for all q ∈ Q, u ∈ Γ⊥, j, and v ∈ Γ j,⊥,

A configuration of a (D)TPDA M is described by a word uqivR, where qi is the
current state, u∈ Γ∗ is the contents of the first pushdown store and v∈ Γ∗ is the contents
of the second pushdown store. Both u and v have the bottom of the pusdown store at
the first position and the top at the end, so the bottom marker ⊥ occurs on both ends of
the word uqivR. As we denote configurations as strings, we can also describe transitions
defined by the function δ in this way. A transition δ(q,u,v) = (q′,u,v′) is described
equivalently as uqvR → u′q′(v′)R. We define a single step computation relation `M on
configurations in a natural way, i.e. uzqxv `M uz′q′x′v if zqx → z′q′x′. Observe that
the window of M in a configuration uqv (q ∈ Q) contains at most k symbols from the
neighborhood of q. Further, `∗M is a computation relation, defined as a transitive closure
of `M .

4

For an input word x ∈ Σ∗, the corresponding initial configuration is ⊥ q0x ⊥, i.e.,
the input word is given as the contents of the second pushdown store. Recall that the
automaton does not contain a read only input tape. The automaton M finishes its compu-
tation by empty pushdown stores. In particular, L(M) = {x∈ Σ∗ : ∃q∈F ⊥ q0x⊥ `∗M q},
where L(M) is the language accepted by M.

We also require that the special symbol ⊥ can only occur on bottoms of the push-
downs and no other symbol can occur on the bottom. In particular it can be removed
from the pushdown only in the last step of the computation. Further, we assume that
each transition uqv→ u′qv′ reduces the length by exactly one, i.e. |uv|= |u′v′|+1. One
can show by standard techniques that this assumption does not make the model weaker.

The classes GCSL and CRL may be characterized by two-pushdown length-reducing
automata.

Theorem 2 ([20, 22]). A language is accepted by a length-reducing TPDA if and only
if it is a growing context-sensitive language.

Theorem 3 ([20, 22]). A language is accepted by a length-reducing DTPDA if and only
if it is a Church-Rosser language.

If not stated otherwise, in the following n will denote the length of an input word and k
will denote the size of the window of the analyzed TPDA.

4 High level description of the proof strategy

A main intuition justifying the conjecture that palindromes are not in CRL is based on
the following observation. Assume that we check if w is a palindrome by comparing
consecutive “symmetric” positions starting from w[1] and w[n], w[2] and w[n−1], and
so on. Then each comparison forces the length-reducing DTPDA to move its window
through the whole word. As each step reduces the length of the configurations, so when
moving through the whole word, we shorten the configuration by a linear multiplicative
factor. Thus, we lose all information about the input word after logarithmic number
of comparisons. Another strategy would be to check consecutive symmetric positions
starting from the “center” of the input word. But, as the automaton is deterministic, it
is not able to detect a “center” of the input word without destroying its content. The
particular position is the good candidate for being a center (when an input is in fact a
palindrome) if the symmetric positions of the input around this “candidate” are equal.
However, in order to verify such a candidate, one has to remove consecutive symbols
(as each step reduces the length), losing information about the neighborhood of such a
candidate. Then, if the candidate is wrong (i.e. it is not a center), we will be unable to
check other candidates.

On base of these observations we analyze computations of lrDTPDAs on inputs
from a family (wwR)∗, where the shortest description of w (i.e. its Kolmogorov com-
plexity) is much larger then the size of the automaton. By analysis of computations on
these inputs we also construct computations on other inputs using cut and paste tech-
nique and pumping. Note that each input from this family is a palindrome. However,
the size of w makes unable to detect a periodic structure. On the other hand, the input

5

word contains many positions that are candidates for centers (positions on “borders”
between w and wR or wR and w). When we compare symmetric positions starting from
such a “candidate center”, we do not realize quickly that our candidate is wrong, losing
information about contents of the subword checked during this process.

Our formal analysis proceeds by partitioning computations into stages. One stage
starts when one of pushdowns is (almost) empty and finishes when the opposite push-
down is (almost) empty. Note that the length of a configuration at the end of such stage
is shorther than the length of a configuration at the beginning of the stage by a linear
multiplicative factor. The automaton is not allowed to remove any information about
the input during the first stage, because it does not even “know” the length of the input
word. Recall that the choice of the length of w makes also unable to detect the periodic
structure of the input. These restriction forces the automaton to leave the structure of
pushdowns almost as it was in the initial configuration. In this way, the configuration
at the end of the first stage is also (almost) periodic. The periodicity makes unable to
“detect” a center of the input word in the second stage and forces the automaton to
work “similarly” as in the first stage. Applying this strategy to consecutive stages (that
shorten the configuration linearly) we get a short configuration which does not store
information about an original contents of the input. Simultaneously, no progress in the
process of checking if the input word is a palindrom is done during these stages.

A formal proof following this strategy is presented in Section 9. It uses methodology
introduced in Sections 5, 6, 7 and 8. In these sections we formulate conditions which
allow to use a cut and paste technique and pumping for computations of lrTPDA’s.
We expect that these techniques, combined with the incompressibility method [16], are
applicable for broader class of problems concerning language classes related to this
machine model.

5 Computation Graphs and their Properties

We introduce the notion of a computation graph, similar to derivation graphs from [9]
and [17]. Each computation of a length-reducing TPDA M = (Q,Σ,Γ,q0,⊥,F,δ) corre-
sponds to a planar directed acyclic graph defined in the following way. Vertices in such
a graph will be labeled with the corresponding symbols, transitions and states used dur-
ing the computation. Let ω(π) denote the label of the vertex π, where ω is a function
from the set of vertices of the graph to Γ∪Q∪ δ. Vertices labeled with symbols are
called symbol vertices, similarly vertices labeled with states and transitions are called
state vertices and transition vertices, respectively.
A computation graph G(j) = (Vj,E j) corresponding to the computation C0 `C1 ` . . . `
C j where C0 denotes an initial configuration is defined inductively (see Figure 1 and
Example 1):

j = 0 : Let C0 =⊥ q0x1x2 . . .xn ⊥ be an initial configuration, where xi ∈ Σ∪Q for i =
1, . . . ,n. Then G(0) = (V0,E0) has the vertices ρ−2, . . . ,ρn+2 such that ω(ρi) = xi
for 1 ≤ i ≤ n, ω(ρi) =⊥ for i ∈ {−2,−1,n + 1,n + 2} and ω(ρ0) = q0. The graph
G(0) has no edges, i.e. E0 = /0.

j > 0 : Assume that the computation C0 `C1 `M . . . `M C j−1 corresponds to the graph
G(j−1), and a transition z → z′ is executed in C j−1 for z,z′ ∈ Γ∗QΓ∗, i.e. C j−1 =

6

y1zy2 `M y1z′y2 = C j. Let z = z1 . . .zp and z′ = z′1 . . .z′p′ where zi,z′i ∈Q∪Γ for each
i. The graph G(j) is constructed from G(j−1) by adding:

– vertices π′1, . . . ,π
′
p′ which correspond to the word z′, labeled by z′[1], . . . ,z′[p′];

– a vertex D j which corresponds to the transition z→ z′ and labeled by z→ z′;
– edges (π1,D j), . . . ,(πp,D j), where the vertices π1, . . . ,πp are labeled by

z[1], . . . ,z[p] and they correspond to the rewritten word z;
– edges (D j,π′1), . . . ,(D j,π′p′).

Computation graphs are planar, what follows from the fact that only sinks are connected
to the new transition vertex in each step. There is a natural left to right order among
the sources of the computation graph, induced by left to right order of positions of
symbols into the initial configuration. For two vertices π1 and π2, π1 ≺ π2 denotes that
π1 precedes π2 according to this ordering. In a similar way, there is a natural left to right
ordering among the parents and children of each transition vertex. Further, this ordering
induces a natural left to right order among the sinks of the computation graph (adequate
to the ordering in the associated configuration).

Note that sources (vertices with no incoming edges) of G(j) correspond to the initial
configuration C0, the sequence of their labels will be denoted as Src(G(j)). Similarly,
sinks (vertices with no outcoming edges) of G(j) correspond to the last configuration
described by G(j) (i.e. C j) and the sequence of their labels is denoted as Snk(G). How-
ever, ρ−2 and ρn+2 are artificial vertices introduced for technical reasons. They do not
correspond to any symbol nor state of configurations and hence remain as sources and
sinks in all graphs G(j). Thus ⊥C0 ⊥= Src(G(j)), ⊥C j ⊥= Snk(G(j)). For a configu-
ration C j described by the sinks of G(j) we say that it is the configuration associated
with G(j) (note that a particular configuration may be associated with many graphs,
describing different computations with the same last configuration).

Let π1,π2 be vertices such that (π1,π2) is and edge in a graph. Then π1 is called the
parent of π2 and π2 is called the child of π1.

We extend the single step transition relation `M to computation graphs: G `M G′
if there exist configurations C,C′ and C0 such that G corresponds to the computation
C0 `∗M C, and G′ corresponds to the computation C0 `∗ C `C′.

Let init(u) for u ∈ Σ∗ denote the computation graph corresponding to the initial
configuration on the input word u.

In this paper we apply the term path exclusively to paths that start in a source vertex
and finish in a sink of the graph. In case the first vertex is not a source or the last vertex
is not a sink, we say about a subpath. Let σ be a path in G with a sink π. We say that
σ is short if there is no path with sink π that is shorter than σ. The relation ≺ among
vertices of the graph induces a left-to-right partial ordering of paths. A path σ1 is to the
left of a path σ2 iff none of vertices of σ1 is to the right of any vertex of σ2. Note that σ1
and σ2 may have common vertices, however it is not allowed that σ1 contains a child of
a common vertex π that is to the right of a child of π that belongs to σ2. A path σ is the
leftmost (rightmost) in a set of paths S if it is to the left (right) of every path σ′ ∈ S.

Let us fix a length-reducing (D)TPDA M = (Q,Σ,Γ,q0,⊥,F,δ) with the window
of length k > 2. (One can simulate an automaton with the window of length 2 by an
automaton with longer window.) The remaining part of this section concerns properties
of computation graphs corresponding to computations of the automaton M.

7

Definition 2. The height of a vertex π is the number of transition vertices in any short
path with the sink in π. We say that a sink π is i-successor if one of short paths with the
sink in π starts in ρi, the source vertex associated to the ith symbol of the input word.

Example 1 A graph G(4) presented at Figure 1 describes the following computation of
an automaton M = (Q,Σ,Γ,q0,⊥,F,δ) on an input word abcda f ahia:

(C0) ⊥ q0ab cda f ahia⊥ `M
(C1) ⊥ Aq1cd a f ahia⊥ `M
(C2) ⊥ Acq2a f ahia⊥ `M
(C3) ⊥CAFq2ah ia⊥ `M
(C4) ⊥CIq3hH ia⊥ `M

D2

D3

D4

0q

1q

2q

2q

3q

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�

�
�
�

D1

a b c d a f a h ai

A

A c

C FA

h H

1 3 42 5 7 86 9 100−1−2 11 12

I

Fig. 1. A computation graph corresponding to the computation C0 `∗M C4

As follows from the figure, k = 4, where k denotes the size of the window of M.
Further, {a,b,c,d, f ,h, i} ⊆ Σ, {A,C,F,H} ⊆ Γ. Underlined symbols describe here the
contents of the window of M in consecutive configurations. Note that Src(G(4)) =⊥
C0 ⊥ and Snk(G(4)) =⊥ C4 ⊥, that is Src(G(4)) is equal to the initial configuration
and Snk(G(4)) is equal to the final configuration of the computation described by G(4).

8

Transition vertices are denoted by squares and they have following labels describing
consecutive transitions of the automaton M:

ω(D1) = 〈⊥ q0ab→⊥ Aq1〉,
ω(D2) = 〈⊥ Aq1cd →⊥ Acq2〉,
ω(D3) = 〈Acq2a f →CAFq2〉,
ω(D4) = 〈AFq2ah→ Iq3hH〉.

State vertices and symbol vertices are denoted by filled and not filled circles respec-
tively, and their labels are given in the figure.

Observe, for example, that a path σ that starts in the eighth symbol of the input
word (ρ8) and consists of vertices with labels (h,ω(D4), I) is short in G(4). A path
σ′ that starts in the 6th symbol of the input word and consists of vertices with labels
(f ,ω(D3),F,ω(D4), I) is not short because it is longer than the path σ which has the
same sink as σ′. ut
Below, we enumerate some basic properties of computation graphs.

Proposition 1. Let G be a computation graph, let ρ1, . . . ,ρn be sources of G corre-
sponding to the input word.

(a) Let π be a sink vertex in G. Then, there exists −2 ≤ i ≤ n + 2 such that π is i-
successor.

(b) Let D be a transition vertex in G and let π be a child of D. If π is i-successor then
there exists π′, a parent of D such that the shortest subpath that starts in a source
of the graph and finishes in π′ has ρi as a starting point.

(c) Let σ1, σ2 be short paths in G and let π1, . . . ,πp be all common vertices of σ1 and σ2

written in top-down order. Let σ j
i be a subpath of σi that starts in π j−1 and finishes

in π j for i = 1,2 and j ∈ [1, p+1] (with two exceptions: σ1
i starts in a source of σi

and σp+1
i finishes in a sink of σi). Then, for every sequence a1, . . . ,ap ∈ {1,2}p, a

path σ1
a1

σ2
a2

. . .σp+1
ap+1 is also a short path in G.

(d) Let π,π′ be vertices of G such that π ≺ π′. Then, there exist j1 ≤ j2 such that π is
j1-successor and π′ is j2-successor.

(e) Let σ be a short path in G, G `M G′ and let a sink of σ be also the sink of G′. Then
σ is the short path in G′.

Proof. (a) There exists (at least one) path from a source vertex to π, for every vertex π.
Let σ be a path with the minimum length among them, ρi ∈ σ for some −2≤ i≤ n+2.
Thus, π is an i-successor.
(b) Observe that D is the only parent of π, by definition of the computation graph. So,
D belongs to σ, the shortest path from ρi to π. Thus, there is π′, a parent of D, that also
belongs to σ. Thus, a subpath of σ that starts in a source of σ and finishes in π′ is the
shortest path from a source vertex to π′ (otherwise σ would not be the shortest path with
the sink in π).
(c) It is enough to show that |σ j

1|= |σ j
2| for every 1≤ j≤ p. For the sake of contradiction

assume that it is not the case. W.l.o.g. assume |σ j
1|< |σ j

2| for some 1≤ j ≤ p. Let π be
a sink of σ2. If we replace σ j

2 by σ j
1 in σ2 then we obtain a path that finishes in π and

it is shorter than σ2. Thus, σ2 is not the shortest path with the endpoint in π. A similar
argument works for the case j = p+1. Contradiction.

9

σ
1

σ
1

σ
2

σ
2
jj

πj−1

πj

π

Fig. 2. Intersecting short paths.

(d) Let j1 be a minimal value such that π is j1-successor. For the sake of contradiction
assume that the statement is false. Then, for each j2, if π′ is j2-successor then j2 < j1.
Let σ be a shortest path from ρ j1 to π and σ′ be the shortest path from ρ j2 to π′. The
paths σ and σ′ cross, since π ≺ π′ and ρ j2 ≺ ρ j1 . Because of planarity, crossing points
are vertices of the graph. Let µ be the first common vertex of σ and σ′. If we replace the
subpath of σ′ that starts at ρ j2 and finishes at µ by the appropriate subpath of σ then, by
item (c) above, we obtain a short path with a source in ρ j1 and the sink in π′. Thus, π′
is j1-successor – contradiction.
(e) Obvious. ut
Let us note here that a sink of a graph may be i-successor for many i’s (and at least one).
On the other hand, it is possible that no sink is j-successor for some j (for example,
there is no 2-successor in the graph G(4) in Example 1).

Proposition 1(c) has an important consequence which will be implicitely used in the
paper.

Corollary 2. Let G be a computation graph, let Vsr and Vsn be subsets of the set of
sources of G and the set of sinks of G, respectively. Then, a set P of short paths with
sources in Vsr and sinks in Vsn contains a path which is located to the right/left of all
other paths in P.

The following lemma shows the dependency between the maximal number of sinks of
some height and the number of sources (i.e. the length of the input word) in a computa-
tion graph.

Lemma 1 (Heights Lemma). Let G be a computation graph corresponding to the com-
putation on an input word of length n > 0. Let ph be the number of sinks of G with height
greater or equal to h. Then ph ≤ 6n

(k
k+1

)h
, where k is the window length of M.

Proof. Let us assign a weight to each non-transition vertex π of the graph G, denoted
weight(π). Weights of source vertices are equal to 1. The weight of any other non-
transition vertex π is equal to sum(Dπ)/out(Dπ) where

sum(Dπ) = Σ{µ:(µ,Dπ)∈G}weight(µ), out(Dπ) = |{µ : (Dπ,µ) ∈ G}|

10

and Dπ is a parent of π. In other words, the sum of weight of parents of Dπ is uniformly
distributed among the children of Dπ. It can be shown by induction that if height(π)≥ i
then weight(π)≥ ((k +1)/k)i. One can easily check that this is true for i = 0. Assume
that the inequality is satisfied for all j < i. Let height(π) = i. Then, for every µ such that
(µ,Dπ) ∈ G, height(µ) ≥ i− 1, so weight(µ) ≥ (k+1

k)i−1 by induction hypothesis. Let
in(Dπ) be equal to the in-degree of Dπ, i.e., in(Dπ) = |{µ : (µ,Dπ) ∈ G}|. Then

weight(π)≥ in(Dπ)((k +1)/k)i−1

out(Dπ)
≥

(
k +1

k

)i

,

since in(Dπ)
out(Dπ) ≥ k+1

k (what follows from the inequality 1≤ out(Dπ) < in(Dπ)≤ k +1, a
consequence of the fact that M is length-reducing and its window length is equal to k).
Moreover, the sum of weights of all sinks is equal to n + 5, because this sum does not
change after any step of the computation and there are n+5 sources in G . Let Ph be a
set of sinks with height greater or equal to h and let |Ph|= ph. Then,

ph

(
k +1

k

)h

≤ ∑
v∈Ph

weight(v)≤ n+5,

so ph ≤ (k
k+1)h(n+5)≤ 6n(k

k+1)h for n≥ 1. ut
As a simple consequence of the above lemma, we can bound the maximal height of any
vertex in a computation graph.

Corollary 3. Let G be a computation graph corresponding to a configuration of M
during the computation on an input word of length n. Then, there are no vertices with
height greater than log(6n)

log((k+1)/k) = O(logn).

By Corollary 3, the length of each short path is O(logn) where n is the length of the
input word.

6 Cut and Paste Technique and Pumping

One of crucial properties of context free derivations is the independence of any sub-
derivation starting in a particular nonterminal from the remaining part of the derivation.
It allows to replace such subderivation by another subderivation starting from the same
nonterminal, what gives another correct derivation of (possibly) another terminal word.
Using this fact, one can cut and paste subderivations, obtaining different correct deriva-
tions. This property makes also possible to formulate very powerful pumping lemmata.

These conditions are not satisfied in case of growing grammars nor in case of TPDA.
However, dependencies between subcomputations can be described by paths partition-
ing computation graphs into subgraphs. In consequence, cut and paste and pumping are
possible under some conditions.

Definition 3 (Description of a path). Let σ = π1,π2 . . . ,π2l+1 be a path in a com-
putation graph G = (V,E). A description of the path σ, desc(σ), consists of the se-
quence ω(π1), . . . ,ω(π2l+1) of labels of consecutive vertices on the path and the se-
quence p1, p2, . . . , p2l of numbers, such that for each even j, π j−1 is the (p j−1)st parent

11

of π j and π j+1 is the (p j)th child of π j, where the numbering is according to the left to
right order ≺ (see the figure and Example 2). We say that a path σ ∈ G is a γ-path if
desc(σ) = γ.

σ

Labels:

Positions: 2, 2, 1, 2

l1

l3

l5

l4

l2

u

v

l1, l2, l3, l4, l5

Fig. 3. Description of a path.

Let us recall that each path starts at a source and finishes at a sink, so it induces a natural
partition of a computation graph into two subgraphs.

Definition 4 (Decomposition). Descriptions γ1, . . . ,γl−1 (for l > 1) decompose a com-
putation graph G into subgraphs G1, . . . ,Gl if the following conditions are satisfied:

1. There exist paths σ1, . . . ,σl−1 in G such that desc(σi) = γi for i ∈ [1, l− 1] and σi
is located to the left of σi+1 for i ∈ [1, l−1]

2. G1 is the subgraph of G induced by all vertices located to the left of σ1 or inside σ1,
Gl is the subgraph of G induced by all vertices located to the right of σl or inside
σl , and Gi for 1 < i < l is the subgraph of G induced by all vertices which are to
the right of σi−1 and to the left of σi or inside σi−1 or inside σi (i.e., vertices from
σi belong to Gi−1 and to Gi).

x1 x2 x3

1x’ 2x’ 3x’

σσ1
2G G2 31G

Sources

Sinks

Fig. 4. Decomposition of a computation graph.

12

A computation graph G can be denoted as G = G1 . . .Gl if there exist descriptions
γ1, . . . ,γl−1 which decompose G into subgraphs G1, . . . ,Gl .

We extend notions Src and Snk into subgraphs of computations graphs. For a subgraph
H, Src(H) (Snk(H), respectively) is the sequence of labels of all (but the rightmost one,
when H is not the rightmost subgraph) sources (sinks, respectively) in H. Obviously, if
G = G1, . . . ,Gl then Src(G) = Src(G1) . . .Src(Gl) and Snk(G) = Snk(G1) . . .Snk(Gl).

Example 2: A description of a path σ from Figure 1 that starts in the eighth symbol of
the input word and consists of vertices with labels (h,ω(D4), I) consists of this sequence
and a sequence (5,1), because h is the 5th parent of D4 and I is the first child of D4.

A description of a path σ′ that starts in the 6th symbol of the input word and consists
of vertices with labels (f ,ω(D3),F,ω(D4), I) is equal to this sequence of labels and a
sequence (5,3,2,1). The values 3 and 2 say that the vertex with the label F is the 3rd
child of D3 and the 2nd parent of D4. This path decomposes G(4) into two subgraphs
J,J′ such that Src(J) =⊥⊥ q0abcda, Src(J′) = f ahia ⊥⊥, Snk(J) =⊥⊥C, Snk(J′) =
Iq3hHa⊥⊥

ut
Let G1G2G3 be a computation graph which corresponds to the computation of a

length-reducing (D)TPDA M with the window of length k. We say that the window
touches a subgraph G2 of G1G2G3 if and only if G1G2G3 ` G′ and at least one sink
vertex of G2 becomes non-sink vertex in G′ (i.e., it is rewritten in the step). In other
words, at least one sink of G2 is inside the window of the automaton in the configuration
described by (sinks of) G1G2G3.

Now we show that, under some conditions, one can cut and paste some subgraphs,
obtaining in this way new computation graphs. Moreover, we provide conditions under
which “pumping” is possible. In the following we shall write 〈τ〉 j as an abbreviation for
τ, . . . ,τ, where τ is taken j times.

Lemma 2 (Cut and Paste Lemma). Assume that descriptions γ1,γ2 decompose a graph
G into G1,G2,G3 and they decompose a graph H into H1,H2,H3. Let xi = Src(Gi),
yi = Src(Hi), x′i = Snk(Gi), y′i = Snk(Hi) for i = 1,2,3. Then, a graph J = G1H2G3 is
a computation graph corresponding to the computation x1y2x3 `∗M x′1y′2x′3. Moreover,
γ1,γ2 decompose J into G1,H2,G3.

Lemma 3 (Pumping Lemma). Assume that descriptions 〈γ〉2 decompose a compu-
tation graph G into G1,G2,G3 and x j = Src(G j), x′j = Snk(G j) for j = 1,2,3. Then
J = G1Gi

2G3 for each i > 0 is a computation graph associated with a computation
x1xi

2x3 `∗M x′1(x
′
2)

ix′3. Moreover, 〈γ〉i+1 decompose J into G1,〈G2〉i,G3.

To avoid a tedious analysis while checking whether the resulting graphs still cor-
respond to some computations, we introduce the notion of a correct graph. Let M =
(Q,Σ,Γ,q0,⊥,F,δ) be a (D)TPDA. Let G(V,E) be a graph with a partial order relation
≺ in the set V and let ω : V → Γ∪Q∪δ be a labelling of V . As in computation graph,
vertices are called symbol, state and transition vertices. The graph G is correct with
respect to M if it possesses the following properties:

(a) A set S of vertices with no incoming edges has at least five elements and is linearly
ordered: ρ−2 ≺ . . .≺ ρn+2, where S = {ρi}i∈[−2,n+2]. Moreover, ω(ρi) ∈ Σ for 1≤

13

i≤ n, ω(ρi) =⊥ for i ∈ {−2,−1,n+1,n+2} and ω(ρ0) = q0. In other words, the
sources describe an initial configuration of M for the input word ω(ρ1) . . .ω(ρn).

(b) Let D be a transition vertex in G, labeled by z → z′, z = z1 . . .zp, z′ = z′1 . . .z′p and
zi,z′i ∈ Q∪Γ for each i. Then G contains consecutive (with respect to the order-
ing ≺) vertices π1, . . .πp labeled by z1, . . . ,zp and consecutive vertices π′1, . . . ,π

′
p′

labeled by z′1, . . . ,z
′
p′ and the set of all edges incident to D is equal to

{(D,π′1), . . . ,(D,π′p′)}∪{(π1,D), . . . ,(πp,D)}.

Moreover, for every vertex π ∈ V such that π ≺ π1 (πp ≺ π respectively) it holds
π≺ π′1 (π′r ≺ π respectively).

(c) The fan-in and fan-out of every symbol vertex and every state vertex is at most one.
No edges are incident to ρ−2 nor ρn+2.

(d) There are no other edges and vertices aside from the specified above.
(e) There are no cycles in G.

By simple induction we can show the following proposition.

Proposition 2. Let G be a correct graph with respect to (D)TPDA M = (Q,Σ,Γ,q0,⊥
,F,δ). Then, G is a computation graph.

Proof. We show this fact by induction with respect to the number of transition vertices
in a graph. The base step for graphs with no transition vertices is obvious. Assume that
every correct graph with i transition vertices is a computation graph. Let G be a correct
graph that contains i+1 transition vertices. Observe that there exists a transition vertex
D∈G such that there is no path from D to any other transition vertex. Indeed, otherwise
there exists a cycle in G what contradicts correctness of G. Let D be a transition vertex
such that there is no path from D to any other transition vertex. Then all children of
D are sinks in G, since every non-sink state or symbol vertex has a child that is a
transition vertex. Let G′ be a graph obtained from G by deleting D, children of D and
all edges incident to D. The graph G′ contains i transition vertices and is correct, since
we do not delete any vertices or edges that have influence on “local correctness” ((b)–
(d) in the definition of correctness) of particular vertices, we do not delete any source
vertices and we do not add any edges (making a cycle). So G′ is a computation graph,
by induction hypothesis. Then, by adding to G′ the vertex D, its children and edges
adjacent to D, we form a computation graph G, where G′ `M G, according to the rules
defining computation graphs. ut
Proposition 2 substantially simplifies proofs of Cut and Paste Lemma and Pumping
Lemma.

Proof of Lemma 2. First, we show that if G and H are correct graphs then J = G1H2G3
is a correct graph as well, where G1H2G3 is formed by identifying vertices on borders
of H2 with appropriate vertices of G1 and G3. The “local correctness” ((b)–(d) in the
definition of correctness) is obviously satisfied for all internal vertices of G1,H2 and
G3. The equality of descriptions of paths on borders of decompositions of G and H
guarantees that it is also satisfied for all vertices on borders of the subgraphs of J. One
can easily check that the set of sources of J satisfies the item (a) of the definition of

14

correctness. (Note that a path description determines whether the source state vertex
is to the left or to the right of the path.) Finally, there is no cycle in J, since such a
cycle would imply that there is also a cycle in G1 or H2, or G3 what cannot happen by
correctness of G and H (see Figure 6).

G1 GH2 3

Sources

Sinks

Fig. 5. The cycle in G1H2G3 (solid lines) induces cycles in G1 or H2 or G3 (dashed lines).

We showed that J = G1H2G3 is the correct graph. So, by Proposition 2, J is the
computation graph corresponding to the computation x1y2x3 `∗M x′1y′2x′3. ut
Proof of Lemma 3. Observe that G1Gi

2G3 is a correct graph for each i what follows
from the fact that the paths on both “borders” of G2 have equal descriptions. Thus, the
resulting graph is correct, so it is a computation graph by Proposition 2. ut

7 How much information is stored on the pushdowns

In this section we define a notion of an image that allows to extract information about
subwords of the input word that is accessible to the automaton in a configuration de-
scribed by sinks of the graph.

We would like to treat subwords of configurations as representatives of subwords
of the given input word. Such representatives, or “images”, should satisfy some natural
properties. In particular, images of disjoint subwords should be (almost) disjoint. The
order of images into configurations should agree with the order of appropriate subwords
in the input word. Moreover, we expect that one step of computation changes only
images which are “involved” in this step.

Although such a partition of a configuration into independent parts describing ap-
propriate subwords of the input word is natural in an initial configuration, we lose this
condition during the computation when some parts of configurations become dependent
of long subwords of the input word. As we have seen in the previous section, one can
“extract” these dependencies using the notion of paths. Moreover, as each sink is also
the endpoint of a short path (i.e., the path of logarithmic length, see Corollary 3), these
paths do not add large overhead to information stored in the configuration.

It might seem that a good candidate for an image of a given subword of the input
word could be a word stored between sinks of short paths starting from the left and right
ends of this subword, respectively, together with appropriate short paths. However, we

15

should care about two additional circumstances. First, we would like to avoid a situa-
tion that images of two disjoint words overlap too much. Second, note that although for
each sink, there exist short paths that have an endpoint in this vertex, there might exist
source vertices which are not starting points of any short path (for example, the vertex
ρ2 in Figure 1). Thus, in order to obtain unique images and guarantee that images of
disjoing subwords are (almost) disjoint, we define an image by deriving a smallest sub-
graph cutted by short paths and containing the whole considered subword (i.e., sources
describing it). Then, an image is defined by these short paths and a sequence of sinks
between them (these sinks describe some subword of the current configuration).

Definition 5. Let G be a computation graph corresponding to a computation of (D)TPDA
on an input word of length n. Then, RLG(i) for i ∈ [0,n+1] denotes a rightmost symbol
sink vertex in the set {π | ∃ j≤i π is j-successor}. Similarly LRG(i) denotes a leftmost
symbol sink symbol vertex in the set {π | ∃ j≥i π is j-successor}.

Definition 6 (Image). Let G be a computation graph corresponding to a computation
on an input word of length n, let 0 ≤ l < r ≤ n + 1 and πl = RLG(l), πr = LRG(r). If
there is no symbol sink vertex π such that πl ≺ π≺ πr then an (l,r)-image is undefined
in G. Otherwise, an (l,r)-image is defined in G and it is equal to (σl ,σr,τ), where:

– σl is a rightmost short path with a sink in πl and a source at the vertex correspond-
ing to the lth symbol of the input word or to the left of it,

– σr is a leftmost short path with a sink in πr and a source at the vertex corresponding
to the rth symbol of the input word or to the right of it,

– τ = τ1τ2 . . .τp is a sequence of all sink vertices between πl and πr (i.e., πl = τ1 ≺
τ2 . . .≺ τp = πr).

Let length of an image (σl ,σr,τ) be equal to the number of its sinks, i.e. |τ|.
We say that an (l,r) image in a graph G and an (l′,r′) image in a graph G′ are equiv-
alent if both these images are undefined or they are equal to (σl ,σr,τ) and (σ′l ,σ

′
r,τ′)

respectively such that descriptions of the paths σl , σr are equal to descriptions of σ′l
and σ′r resp., as well as ω(τ) = ω(τ′).

σ
l

...

τ

σ
r

(l,r)− image

l r

Sources

RL (l) LR (r)GG

short paths
short paths

Fig. 6. Image

16

Example 3: Let ρ−2, . . . ,ρ12 denote the sources of the graph G(4) presented in Figure 1.
We have in particular the following images:

(l,r) desc(σl) desc(σr) ω(τ) source(σl) source(σr) image exists?
(3,8) (C,ω(D2),⊥) (h,ω(D4),H) ⊥⊥CHq3hH ρ3 ρ8 Y
(2,6) (⊥) (f ,ω(D3),C) ⊥⊥C ρ−2 ρ6 Y
(3,5) (C,ω(D2),⊥) (a,ω(D3),C) ⊥C ρ3 ρ5 N
(7,8) (a,ω(D4),H) (h,ω(D4), I) /0 ρ7 ρ8 N
(1,9) (⊥) (i) ⊥⊥CIq3hHi ρ−2 ρ9 Y
(9,11) (i) (⊥) ia⊥ ρ9 ρ11 Y

Notice that the (3,5) image is undefined (because there is no sink vertex between sinks
of the paths σ3,σ5). Further, the (7,8) image is undefined (because the sink of σ7 is to
the right of the sink of σ8).

ut
The length of paths on “borders” of images do not influence significantly the size

of the descriptions of images of long words, because short paths have only logarithmic
lengths.

Now we can explain the technical reason for which two special artificial vertices
ρ−2 and ρn+2 are added to each computation graph (see the definition, Section 5). As
these vertices have no incident edges in each computation graph, they form two short
paths at the left and the right end of the graph. This ensures that the values RLG(i) and
LRG(i) are defined for each i ∈ [0,n+1] where n is the length of the input word.

Now, we have got the notion which satisfies natural properties stated below. Al-
though these properties are intuitively clear, formal (and a bit tedious) proofs are pre-
sented for completeness. For the sake of the following propositions, observe that each
state vertex (except the vertex denoting the final accepting/rejecting configuration) has
a sibling symbol vertex such that the heights, in-neighbors and out-neighbors of both
vertices are equal. So, we can assume that short paths do not contain internal state ver-
tices.

Proposition 3. Let G,G′ be computation graphs corresponding to a computation on an
input word of length n, G `M G′, and 0≤ l < r ≤ n+1. Assume that an (l,r)-image is
defined in G and it is equal to (σl ,σr,τ). Then,

(a) For every 1 < i < |τ|, if τ[i] is j-successor then l < j < r.
(b) If the window does not contain any vertex from τ in G then the (l,r)-image in G

and the (l,r)-image in G′ are equal.
(c) If |τ|> 2k then an (l,r)-image is defined in G′.
(d) If the (l,r)-image is defined in G′ then its length is not smaller than |τ|− k and not

larger than |τ|+ k.
(e) Assume that the (l′,r′)-image is defined in G for r < l′ < r′ ≤ n+1 and it is equal

to (σ′l′ ,σ
′
r′ ,τ

′). Then, |τ∩ τ′| ≤ 2, i.e., the (l,r) image and the (l′,r′) image overlap
by at most two sinks.

(f) The paths σl and σr are disjoint.

17

Proof. (a) For the sake of contradiction assume that the statement does not hold. Then,
a vertex τ[i] for some 1 < i < |τ| is j-successor for j ≤ l or j ≥ r. But this implies that
τ[i]¹ RLG(l) = τ[1] or τ[i]º LRG(r) = τ[|τ|] (i.e., τ[1] is not the rightmost j-successor
for j ≤ i or τ[|τ|] is not the leftmost j-successor for j ≥ r) – contradiction.

(b) Indeed, all vertices of τ remain alive in G′, so also τ[1] = RLG′(l) and τ[|τ|] =
LRG′(r) and the image does not change.

(c) and (d).
First we show that if the window does not contain τ[1] or it does not contain τ[|τ|] then
the sequence τ′ between RLG′(l) and LRG′(r) is not shorter than max(0, |τ|−k) and not
longer than |τ|+ k. By (b) above, if the window does contain any vertex of τ in G then
the (l,r)-image remains unchanged. Similarly, if the window is included in τ[2, |τ|−1],
the image is shortened by one symbol. Now, assume that the window contains exactly
one element from τ[1], τ[|τ|]. W.l.o.g. assume that the window contains τ[1] in G and
it does not contain τ[|τ|]. Let D ∈ G′\G be the transition vertex “added” in the step
G `M G′. Thus τ[1] is a parent of D. Let us consider the following cases:

– The minimum of heights of parents of D is achieved by a parent of D located to the
left of τ[1] or by τ[1].
Then, the rightmost child of D is equal to RLG′(l). Indeed, all children of D are
j-successors for some j ≤ l.

– The minimum of heights of parents of D is achieved only by a parent(s) of D located
to the right of τ[1].
Then, RLG′(l) is equal to a vertex directly preceding the leftmost child of D.

In both cases the length of the sequence between RLG′(l) and LRG′(r) differs by at
most k from |τ|. Note that if |τ| ≥ 2k then it is impossible that the window (of length
k) touches both τ[1] and τ[|τ|]. So, if |τ| ≥ 2k then an (l,r)-image is defined in G′ and
satisfies inequalities stated in (d).

Finally, consider the case that the window includes τ[1] as well as τ[|τ|] in G, what
may happen only for |τ| ≤ k + 1. Let h be the minimum of heights of parents of a
transition vertex D ∈ G′\G (i.e. vertices in the window in G). Let µ1,µ2 be sinks of G
located directly to the left and directly to the right of the window in G, respectively.
Then, either µ1, µ2 become endpoints of the paths of the (l,r) image in G′ (when the
minimum of heights of parents of D is achieved only by vertices π such that τ[1] ≺
π ≺ τ[|τ|] (so the length of the image is at most k + 2) or the new image is undefined
otherwise. More precisely, we have two cases (see figure):

Case 1. There exists π, a parent of D such that height(π) = h and π¹ τ[1] or πº τ[|τ|].
W.l.o.g assume that π ¹ τ[1]. Then a rightmost symbol child of D, say µ, satisfies µ ¹
RLG′(l), while µ2 that is directly to the right of µ satisfies µ2 º LRG′(r). Thus there are
no symbol vertices “between” RLG′(l) and LRG′(r), the image is undefined.

18

µ1

µ1

µ2

µ2

window
π

D

. . .

window
πµ1 µ2

D

. . .
µ

. . τ τ . .

new image

Case 2Case 1

Case 2. Every parent π of D such that height(π) = h satisfies τ[1] ≺ π ≺ τ[|τ|]. Then
all children of D are ”inside” the (l,r)-image in G′. Indeed, they are not j-successors
for j ≤ l nor j ≥ r (see Proposition 1(b) and the definition of the image). Moreover,
µ1,µ2 are vertices on borders of the (l,r)-image in G′. Thus the length of the image is
not larger than k +2 < |τ|+ k.

(e) Assume that τ and τ′ overlap by more than two symbols. Then, there exists a symbol
vertex µ which is internal (neither first nor last) for both τ and τ′. So, by item (a) of this
lemma, µ is j1-successor and j2-successor for some l < j1 < r and l′ < j2 < r′. But the
fact that µ is j1-successor for j1 < r implies that the rightmost vertex that is j-successor
for any j≤ l′ is equal to µ or some vertex to the right of µ (because r < l′). So, there are
no vertices in the (l′,r′)-image to the left of µ. Contradiction.

(f) For the sake of contradiction assume that σl and σr are not disjoint. By definition of
the image they are short. Let π be a first common vertex of σl and σr. If we replace a
subpath of σl starting in the source of σl and finishes at π by an appropriate subpath of
σr then we obtain a short path (by Proposition 1(c)) with a source in ρ j for some j ≥ r
and a sink in τ[1]. Thus τ[|τ|] is not the leftmost vertex being j-successor for j ≥ r. ut
Proposition 4. Let G,G′ be computation graphs corresponding to a computation on an
input word of length n, G ` G′, and 0 ≤ l < r ≤ n + 1. Assume that an (l,r)-image is
undefined in G. Then, the (l,r)-image is undefined in G′ as well.

Proof. Let πl = RLG(l), πr = LRG(r). The (l,r)-image is undefined in G, so there is no
symbol sink vertex π ∈ G such that πl ≺ π≺ πr. If the window does not contain πl nor
πr in G then RLG′(l) = RLG(l) = πl and LRG′(r) = LRG(r) = πr and there is no symbol
sink vertex in G′ between πl and πr either. Now, assume that the window contains
exactly one vertex from {πl ,πr}. W.l.o.g. we can assume that the window contains only
πl . Let D ∈ G′\G be a new transition vertex. We consider two cases:

Case 1. πr ¹ πl .
Note that the vertex πr is the sink of G′. By Definition 5, πr is j1-successor for some
j1 ≥ r, so πr º LRG′(r). The vertex πl is j2-successor for some j2 ≤ l, so πr is j′2-
successor for some j′2 ≤ j2 (by Proposition 1(d)) what implies that πr ¹ RLG′(r) So,
LRG′(r)¹ πr ¹ RLG′(), i.e. there is no symbol sink vertex between RLG′(l) and LRG′(r)
in G′.

Case 2. πl ≺ πr.
There is no sink symbol vertex π ∈ G such that πl ≺ π ≺ πr, because the (l,r)-image

19

is undefined in G. Thus, πl is the rightmost parent of D among symbol vertices. All
other parents of D are to the left of πl , so each parent of D is j-successor for some j≤ l
(Proposition 1(d)). So, by Proposition 1(b), each child of D is j-successor for some
j≤ l. Thus, the rightmost symbol child of D is equal to RLG′(l) and LRG′(r) = LRG′(r)
– there is no symbol sink vertex in G′ between RLG′(l) and LRG′(r).

Finally, assume that the window contains both πl and πr in G. As there are no
symbol vertices between πl and πr in this case, the (l,r)-image is undefined what has
been shown in Proposition 3(c,d), Case 1 (we can adapt that proof by assuming that
τ[1] = πl and τ[|τ|] = πr). ut
The following lemma says that if we cut and paste subgraphs using short paths then
images of subwords of the input word that were contained in appropriate subgraphs
remain unchanged.

Lemma 4. Assume that descriptions γ1,γ2 decompose computation graphs G and H
into G1,G2,G3 and H1,G2,H3, respectively. Moreover, assume that paths on the borders
of G2 are short in G as well as in H. Let g = |Src(G1)|, h = |Src(H1)|. Then an (g +
l,g + r)-image in G and an (h + l,h + r)-image in H are equivalent for every 0 ≤ l <
r ≤ |Src(G2)|.

In other words, an image of any subword of the input word included in G2 is also
included in G2 and independent of the remaining part of the graph.

Proof. Let σ1,σ2 be paths on borders of G2 in G. Let (σ′1,σ
′
2,τ) be an (g + l,g + r)-

image in G = G1G2G3. We show that it is contained in the subgraph G2 and does not
depend on G1 and G3, what finishes our proof. First, observe that σ′1 is to the right of
σ1. Indeed, a source of σ′1 is to the right of a source of σ1, moreover σ1 and σ′1 do not
cross, because σ′1 is the rightmost short path with appropriate sink (see Proposition 1(c)
and the definition of the image). By the same arguments one can show that, σ′2 is to the
left of σ2. Thus, also τ is contained in G2. So, the (g+ l,g+r)-image is determined only
by the subgraph G2. Similar arguments can be applied when the (g+ l,g+ r)-image is
undefined in G. ut

8 Periodic Computation Graphs and Computations on Periodic
Inputs

Let M = (Q,Σ,Γ,q0,⊥,F,δ) be a deterministic lrTPDA. All considerations in this sec-
tion concern computations of such automaton.

As our proof strategy is based on analysis of computations on periodic inputs (see
Section 4), we introduce and analyze some notions and properties concerning such com-
putations. More precisely, we analyze computations on inputs of the form w∗ for w∈Σ∗,
where consecutive (non-overlapping) occurences of w are called blocks. The ith copy
of w is called the ith block of the input word. Let G be a computation graph associated
with a computation on an input word of the form w∗. We say that paths σ1,σ2 are par-
allel in G iff descriptions of σ1 and σ2 are equal and the distance between their sources
is divisible by |w|. In other words, sources of σ1 and σ2 start at the same positions in
appropriate blocks.

20

First, we define a technical notion of periodicity property that specifies conditions
under which we treat a computation graph as periodic. Let shift(u, l) denote a left cyclic
shift of the word u by l positions, i.e. if u∈Σn then shift(u, l)= u[l+1] . . .u[n]u[1] . . .u[l].

Definition 7 (Periodicity property). A word w∈ Σm satisfies periodicity property with
with respect to a tuple (G1,G2,G3, α,r, j), where G1G2G3 is a computation graph and
α,r, j ∈ N+ iff

∀i>0 init(wα+ir) `∗M G1Gi
2G3, and

(a) mα≤ r ≤ m j, α is odd, r is even.
(b) Src(G2) = (shift(w,a))r for some a ∈ N.
(c) There exists a description γ such that 〈γ〉i+1 decompose G1Gi

2G3 into G1,〈G2〉i,G3
for every i > 0. The description γ is associated with the parameter (G1,G2,G3,α,r, j)
and the word w.

(d) A γ-path on the right border of G1Gl
2 is short in G1Gi

2G3 for every 0 ≤ l ≤ i and
i > 0.

G1 G2 G2 G2

. . .

. . .

. . .

γ γ γ γ G3

Fig. 7. Periodicity property.

Let us shortly discuss an intuitive meaning of the above technical definition. The pa-
rameter α bounds the size of the subgraphs G1 and G3 that possibly lost a periodic
structure. The item (a) ensures that these nonperiodic parts are much “smaller” than
the periodic pumped subgraph G2. Further, r describes a “level” at which periodicity
is still satisfied (r blocks of the input are mapped onto one current block of sinks of
G2). Finally, the parameters α and r should be bounded polynomially with respect to
the size of the block, and j specifies the degree of this polynomial. Observe that if
the number of blocks is polynomial with respect to m then short paths of the compu-
tation graph have logarithmic length with respect to the length of the block, because
O(logn) = O(log(poly(m)) = O(logm) (where n is the length of the input word).

By adding a requirement that each block should have a long image, we define strong
periodicity property.

Definition 8 (Strong periodicity property). The word w ∈ Σm satisfies strong period-
icity property with respect to (G1,G2,G3, α,r, j) if it satisfies periodicity property with
respect to (G1,G2,G3, α,r, j) and the image of each block is defined in G1Gi

2G3 for
each i > 0, and its length is greater than c′m in G1Gi

2G3, where c′ is a fixed constant
that depends only on the automaton M equal to 1/(8dlog(|Γ|+ |Q|e)).

21

Now, we show a technical and intuitively clear result saying that if one applies Pumping
Lemma for a decomposition of a graph based on short paths then paths defining an
appropriate decomposition into “pumped” graphs are short as well. This fact strongly
helps to show some properties of computations on periodic inputs.

Proposition 5. Assume that 〈γ〉2 decompose a computation graph G into G1,G2,G3
and γ-paths on the borders of G2 are short in G. Then, for every j > 0 and i≤ j, a path
on the right border of G1Gi

2 is short in the computation graph G1G j
2G3.

Proof. (Sketch) Pumping Lemma implies that 〈γ〉 j+1 decompose G1G j
2G3 into G1,

〈G2〉 j,G3 for every j ∈ N. For the sake of contradiction assume that there exist j > 0
and i ≤ j such that the γ-path σ on the right border of G1Gi

2 is not short in the graph
G = G1G j

2G3, i.e., there exists a path σ′ in G that finishes in the leftmost sink of the
suffix G j−i

2 G3 of G and the length of σ′ is smaller than the length of γ-paths. Let s be
the length of the shortest path in G which satisfies these conditions. We split σ′ into
minimal number of subpaths σ′1, . . . ,σ

′
p such that σ′i is included in one subgraph of the

partition G1,〈G2〉 j,G3, the last vertex of σ′i is equal to the first vertex of σ′i+1 (recall
that paths on borders between two subgraphs belong to both incident subgraphs). Now,
let σ′ be a path of length s satisfying above conditions, with minimal number of such
subpaths. Then, σ′1 starts in a source vertex and is included in Gh for h ∈ {1,2,3}. Let
σ′′ be a γ-path on a border of Gh at which σ′ has its last vertex (see figure). Let σnew be
a subpath of σ′′ that starts in a source and finishes in a last common vertex of σ′1 and
σ′′. Note that the lengths of σnew and σ′1 are equal. Indeed, if σnew is shorter than σ′1
then one may replace σ′1 into σnew obtaining a path shorter than σ′, so σ′ is not short.
On the other hand, if σ′1 is shorter than σnew then σ′′ is not short in G1G2G3. Thus, after
replacing σ′1 into σ′′, we obtain a path with the same sink and length as σ′. However,
this new path has a partition into smaller number of subpaths (contained in subgraphs
Gl for l = 1,2,3) than a minimal partition of σ′, because σnew may be joined with the
second subpath (σ′2) included in the subgraph that is a neighbor of the subgraph Gh
containing σ′1.

1

σnew

σ’’

’

σ’1 − bold lines

− dotted line

− dashed lines

σ

G

σγ−path ’’

σ
new

h

ut
By combining conditions stated in the definition of periodicity property with properties
of images, we show that periodicity of the graph implies periodicity of images of blocks
of the input word.

22

Proposition 6. Assume that w satisfies periodicity property with respect to (G1,G2,G3,
α,r, j), |w|= m > 4. Then:

(a) The number of sinks of Ga, |Snk(Ga)|, is not larger than m j+2 for a = 1,3.
(b) The lth block of the input wα+ir is contained in the infix subgraph Gi

2 of the compu-
tation graph G1Gi

2G3 for every i > 0 and d(α + r)/2e ≤ l ≤ α + ir−b(α + r)/2c.
In particular, the middle block is included in the infix Gi

2 for each i > 0.
(c) Assume that the bth block and the (b + 2r)th block of wα+ir are contained in the

infix subgraph Gi
2 of the graph G1Gi

2G3 for i > 1. Then images of blocks b and
b+2r in G1Gi

2G3 are equivalent.
(d) If there exists a > 1 such that an image of every block of wα+ar is (defined and)

longer than c′m in G1Ga
2G3 then w satisfies strong periodicity property with respect

to (G1,G2,G3, α,r, j).

Proof. Let γ be a description (of a path) associated with (G1,G2,G3, α,r, j).
(a) Let |w|= m. Observe that

|Snk(G1)| ≤ |Snk(G1G2G3)| ≤ (α+ r)|w|+5≤ 2m j ·m+5≤ m j+2.

The second inequality follows from the fact that M is length reducing and the number of
sources, |Src(G1)|, is equal to the length of the input word plus 5; in the third inequality
we use the fact that α≤ r ≤ m j by the item (a) of Definition 7.

(b) We show that the lth block is located to the right of the prefix G1 (and one can show
in analogous way that the lth block is to the left of G3). Observe that

|Src(G1)| ≤ |Src(G1)|+ |Src(G3)| = (α+ ir)|w|− i|Src(G2)|+5
= m(α+ ir)−mir +5 = mα+5.

And the number of sources to the left of the lth block is

(l−1)m+3≥ ((α+ r)/2−1)m+3≥ ((α+mα)/2−1) ·m+3≥ mα+5

for each l ≥ d(α+ r)/2e (and m > 4).

(c) Note that |Src(G2)| = r|w|, so each block that is contained in the infix Gi
2 is also

contained in at most two consecutive instances of G2. Let the block b be contained in
b′th and (b′+1)th instances of G2. Then the block b+2r is contained in the (b′+2)th
and the (b′ + 3)th instances of G2, moreover positions of the blocks b and b + 2r in
appropriate subgraphs G2G2 are equal. Thus, as all paths partitioning the graph are
short by periodicity property, we can apply Lemma 4 to obtain equivalence of images.

(d) We have to show that the size of the image of each block w is greater than c′m for
each b ≥ 0. Note that each block w in the graph of the form G1Gb

2G3 is included in
the appropriate subgraph G1G2, G2G2 or G2G3. Indeed, it follows from the fact that
G2 contains at least 2m sources by conditions (a) and (b) of periodicity property. As
all paths on borders of each copy of G2 are short (by periodicity property), the image
of each block w is determined only by G1G2, G2G2 or G2G3 (Lemma 4). As all such
images occur in G1Ga

2G3 (because of the above item (c) and the fact that a > 1), they
are longer than c′m by the assumption. Thus, all images of all blocks are longer than
c′m in G1Gb

2G3. ut

23

Now we concentrate on the analysis of (sub)computations that start in the periodic
graphs from the family G1G∗

2G3 and finish after the window moves through the whole
periodic infix G∗

2 .

Definition 9 (Opposite border graph). Assume that w satisfies periodicity property
with respect to (G1,G2,G3, α,r, j), the window in G1Gi

2G3 is located in (sinks of)
the subgraph G1 (G3 resp.) for each i > 0. An opposite border graph with respect to
G1Gi

2G3 for i > 0 is equal to H ′ such that G1Gi
2G3 `∗M G′G3 `M H ′ and at least one

sink of G3 (G1) becomes an internal vertex in H ′. In other words, H ′ is a first graph
following G1Gi

2G3 in which the window touches G3 (G1 respectively).

The condition (a) of the definition of periodicity property guarantees that the periodic
part of the graph is large with respect to a “non-periodic” parts (G1 and G3). Especially,
if the strong periodicity property is satisfied then the computation that “moves” through
the whole periodic infix G∗

2 shortens the lengths of the configuration by at least a linear
factor of the length of the input word.

Proposition 7. Assume that w satisfies strong periodicity property with respect to (G1,
G2, G3, α,r, j). Let H(i) be an opposite border graph with respect to G1Gi

2G3 for i > 0.
Then, the computation

G1Gi
2G3 `∗M H ′

shortens the length of the configuration by at least n ·c′/(8k), where n is the length of the
input word and c′ is the constant which appears in the definition of strong periodicity
property. In other words, the configuration associated with H ′ is shorter by at least
n · c′/(8k) from the configuration asscociated with G1Gi

2G3.

Proof. Note that the subgraph Gi
2 contains at least ir−2 > ir/2 blocks of the input word

(see the item (b) in Definition 7). Thus, by Lemma 4, it contains also images of these
blocks. So, the number of its sinks is not smaller than (ir/2) · (c′m−2) > ir ·c′m/4, be-
cause images of two consecutive blocks overlap by at most two sinks (Proposition 3(b))
and the image of each block is not shorter than c′m (strong periodicity property). Next,
ir > α by the condition (a) of the definition of periodicity property. In this way the
number of sinks of Gi

2 is not smaller than

ir · c′m/4 > (α+ ir)/2 · c′m/4 = n · c′/8,

where n = (α + ir)m is the length of the input word. As the size of the window of M
is equal to k, M has to make at least n · c′/8 · 1/k steps in order to move its window
through the whole subgraph Gi

2. Each step of the computation reduces the length by at
least one, so the whole process shortens the configuration by at least n · c′/(8k). ut

9 Proof of Theorem 1

Our proof exploits the notion of Kolmogorov complexity (cf. [16]). Recall that Kol-
mogorov complexity of a binary word x (denoted by K(x)), is the length of the shortest
program (written binary) that prints x. We use the fact that there exist binary words of

24

length n with Kolmogorov complexity greater than n− 1 for every natural number n.
Such words are called incompressible.

For the sake of contradiction assume that the length-reducing DTPDA M = (Q, Σ,
Γ, q0,⊥, F , δ) with the window of size k recognizes the language PAL. We will analyse
computations of M on inputs which consists of many repetitions of a block that is a
palindrome. However, in order to guarantee that short paths of computation graphs are
also short with respect to the length of the block, we assume that the number of blocks
is polynomially bounded with respect to the length of the block. Let

Wd = {(wwR)2 j−1 | 2 j−1≤ md ,K(w) > m/2−1 for |wwR|= m}.

Note that elements of (wwR)∗ are palindromes for every w ∈ {0,1}∗. As in the previous
section, consecutive copies of wwR are called blocks. Let an image of the i-th block of
(wwR) j in a graph G be the (m(i−1)+1,mi)-image in G for m = |wwR|.

As we mentioned in Section 4, the proof of Theorem 1 goes by partitioning com-
putations into stages. Each stage starts in a periodic graph (satisfying strong periodic-
ity property) and finishes in an opposite border graph, i.e., after moving the window
through the whole periodic part. A crucial step of the proof is that, under some con-
ditions, the opposite border graph has to satisfy strong periodicity property as well
(Periodicity Preserving Lemma). On one hand we shorten substantially the length of
the configurations in each stage (as we make many length-reducing steps). On the other
hand, the configuration at the end of each stage should be “long”, in order to store long
images of all blocks. This gives a contradiction.

First, we provide a useful lemma saying that, for inputs from Wd , M should store
“unique” description (i.e. long image) of every block, as long as the image of the middle
block is defined.

Lemma 5 (Middle Block Lemma). For every d > 0, there exists md ∈N+ such that the
following condition is satisfied for each x ∈Wd , where x = (wwR)2 j−1, |w|= m > md ,
and 2 j− 1 ≤ md . If G is a computation graph corresponding to a computation of M
on x and an image of a middle block is defined in G then images of all other blocks
are also defined in G and the length of an image of each block (but the middle one,
possibly) is greater than c′m, where c′ = 1/(8dlog(|Γ|+ |Q|)e) (i.e., the constant c′
from the definition of strong periodicity property).

Proof. (Sketch) Recall that the polynomial bound (with respect to the length of a block)
on the number of blocks guarantees that all short paths in the computation graph have
only logarithmic length with respect to m. Using the fact that the image of the middle
block is defined, we know that the image of each other block (if exists) cut out a sub-
graph which does not contain any vertex of the block symmetric to it (see properties of
images, Proposition 3(e)). For the sake of contradiction assume that an image of the ith
block is short in a graph describing a computation on (wwR)2 j−1, i 6= j. Then, there ex-
ists another word, say y, of the length equal to the part of the input included in the image
of the ith block that allows to construct a subgraph with the same sinks and paths on its
border as in the image of the ith block. Indeed, otherwise the image would give a short
description of w, what contradicts the assumption that w is incompressible. So, using
Cut and Paste Lemma, we fool the automaton by replacing the subgraph corresponding

25

to the image of the ith block into appropriate subgraph containing y as the input (i.e.
labels of consecutive source vertices). As we do not change the length of the input and
positions symmetric to the ith block, the new input is not a palindrome. However, M
accepts this input because we obtain the same configuration as on the palindrome from
Wd . The full formal proof is given in Subsection 9.1. ut

By combining properties of periodic computation graphs described in Section 8
(in particular “parallelity” of images, Proposition 6(c)) with Middle Block Lemma, we
show that strong periodicity property of a graph implies strong periodicity property in
the opposite border graph (i.e. after moving the window through the whole periodic
part), although the “level” of monotonicity is dropped down (see the growth of the last
parameter, j in Lemma 6).

Lemma 6 (Periodicity Preserving Lemma). For every j ≥ 1, there exists m′
j ∈ N

which satisfies the following conditions. Let w ∈ Σ∗ be an incompressible word such
that 2|w| = m > m′

j. Then, if the word wwR satisfies strong periodicity property with
respect to (G1,G2,G3, α,r, j) for some graphs G1,G2,G3 and numbers α,r, j then wwR

satisfies strong periodicity property with respect to (H1,H2,H3, α′,r′,20 j) such that:

– α′ = α+gr, r′ = f r for some g, f ∈ N,
– init((wwR)α′+ir′) `∗M G1Gg+i f

2 G3 `∗M H1(H2)iH3 for every i > 0 and H1H i
2H3 is

the opposite border graph with respect to G1Gg+i f
2 G3.

Proof. (Sketch) We show that the lemma is satisfied for each m′
j > m80 j (and m larger

that the constant that depends only on M), where ml denotes the constant from Middle
Block Lemma. So, the choice of m guarantees that Middle Block Lemma is applicable
as long as α + ir ≤ m80 j. Let w, G1,G2,G3, α,r, j and m satisfy the conditions stated
in the lemma. W.l.o.g assume that the window in the configuration associated with
G1Gi

2G3 is located in G1. Let H(i) denote an opposite border graph with respect to
G1Gi

2G3. The outline of the proof is following:

1. We show that the image of the middle block of (wwR)α+ir is defined in H(i) for
every i > 0 such that α + ir ≤ m40 j. The proof is based on Middle Block Lemma,
the strong periodicity of the configuration G1Gi

2G3, and Proposition 6 (see Claim 1
in Section 9.2 for the full proof).

2. By the item 1 stated above, the image of each block (but the middle one, possibly)
in H(i) is longer than c′m by Middle Block Lemma, if α + ir ≤ m40 j. Thus, the
configurations associated with H(i) are long (contains long images of blocks), we
show by counting arguments that there exist two parallel short paths in H(i) for
some i > 1 such that α+ ir ≤ m5 j (see Claim 2 in Section 9.2).

3. Using Pumping Lemma and the existence of parallel paths in H(i), we define sub-
graphs H1,H2,H3 and numbers α′,r′,g, f such that wwR satisfies periodicity prop-
erty with respect to (H1,H2,H3, α′,r′,20 j) where H1H i

2H3 is an opposite border
graph with respect to G1Gg+i f

2 G3 (for every i > 0), where α′ = α+gr, r′ = f r (see
Claim 3).

4. Finally, using item 1. above and Proposition 6 (in particular the facts (c)-(d) say-
ing about “parallelity” of images of blocks), we show that wwR satisfies strong
periodicity property with respect to (H1,H2,H3, α′,r′,20 j).

26

More details of the proof following this scenario are presented in Subsection 9.2. ut
If we choose a long incompressible block w and appropriate parameters α,r, j, then
strong periodicity property is satisfied for subgraphs G1,G2,G3 which are subgraphs of
the graph corresponding to the initial configuration. Then we apply Periodicity Preserv-
ing Lemma many times, obtaining consecutive “border” graphs (i.e. graphs describing
configurations in which one pushdown is relatively short; interchangeably the left and
the right one) where such periodic structure is preserved, and an image of each block
is longer than c′m in these graphs. On the other hand, M reduces the length of config-
urations in each step, what in consequence makes unable to preserve “long” images of
blocks (required by Periodicity Preserving Lemma) and gives contradiction. Below, we
present details of this idea.

Let l ∈ N be a constant, let w ∈ Σ∗ be an incompressible word such that |wwR| =
m > m′

20l+1 , where m′
j denotes the constant from Periodicity Preserving Lemma. The

choice of m > m′
20l+1 is done in order to apply Periodicity Preserving Lemma l times.

Let α0 = 3, r0 = 6m, j0 = 20. Let G be a computation graph corresponding to an ini-
tial configuration on an input word (wwR)r0+3. Let G1,0, G2,0, G3,0 be subgraphs of G
corresponding respectively to the first block wwR, the next r0 blocks and the last two
blocks. One can easily verify that wwR satisfies strong periodicity property with respect
to (G1,0,G2,0,G3,0, α0,r0, j0). Now, we apply Periodicity Preserving Lemma l times ob-
taining G1,i,G2,i,G3,i, αi, ri for i ∈ {1, . . . , l} such that wwR satisfies strong periodicity
property with respect to (G1,i,G2,i,G3,i, αi,ri,20i+1), i.e.:

(A) for any natural number pl ,

G1,0Gp0
2,0G3,0 `∗M G1,1Gp1

2,1G3,1 `∗M · · · `∗M G1,lG
pl
2,lG3,l

where G1,0Gp0
2,0G3,0 is a computation graph associated with an initial configuration

on an input word (wwR)αl+plrl , p1 ≥ . . . pl−1 ≥ pl are some natural numbers (more
precisely, pi = pi+1 · ri+1

ri
+ αi+1−αi

ri
for i < l by Periodicity Preserving Lemma).

(B) an image of each block is longer than c′m in the graphs {G1,iG
pi
2,iG3,i}i=0,...,l

(C) G1,i+1Gpi+1
2,i+1G3,i+1 is an opposite border graph with respect to G1,iG

pi
2,iG3,i for i =

0, . . . , l−1; i.e. the window moves through the whole periodic infix Gpi
2,i during the

subcomputation G1,iG
pi
2,iG3,i `∗M G1,i+1Gpi+1

2,i+1G3,i+1.

The condition (B) implies that the length of the configuration associated with the graph
G1,iG

pi
2,iG3,i for i = 0, . . . , l is not smaller than (αl + plrl)(c′m/2− 2), because images

of two consecutive blocks overlap by at most two symbols (Proposition 3(e)). So, the
length of this configuration is larger than

(αl + prl)(c′m/2−2) > (αl + prl) · c′m/4 = n · c′/4

where n = (αl + plrl)m is the length of the input word. On the other hand, a computation
G1,iG

pi
2,iG3,i `∗M G1,i+1Gpi+1

2,i+1G3,i+1 makes the configuration shorter by at least n ·c′/(8k)
symbols (Proposition 7) for each i = 0, . . . , l − 1. As an initial configuration has the
length n+5 < 2n, the length of the configuration associated with the graph G1,lG

pl
2,lG3,l

is not larger than 2n− l · nc′/(8k). Thus, n · c′/4 < 2n− l · n · c′/(8k). However, this
inequality is false for l ≥ 2 · 8k/c′. We get a contradiction, what finishes the proof of
Theorem 1.

27

9.1 Proof of Middle Block Lemma

For the sake of contradiction assume that the lemma is not true. That is, for each md ∈N,
there exists an incompressible word w and a number j ∈ N such that

– |wwR|= m > md ,
– 2 j−1≤ md ,
– there exists a graph G that describes a computation on (wwR)2 j−1 such that an

image of the middle block of (wwR)2 j−1 (i.e. the jth block) is defined in G, and an
image of the ith block is undefined or shorter than c′m for some i 6= j.

W.l.o.g. assume that i < j. Let G be a first graph (with respect to the order induced by
the computation relation `M) during the computation on (wwR)2 j−1 that satisfies the
above conditions for some i. Then, the image of the ith block is not shorter than c′m−k
in G, since an image of each block has length m in the graph corresponding to the initial
configuration, it may be shortened by at most k in one step and cannot become undefined
in one step if it is longer than 2k (Proposition 3(c,d)). Simultaneously, if the image of
the middle block is defined in G, it has been defined during the whole computation
described by G (Proposition 4).

Let (σ1,σ2,τ) be an image of the ith block in G, γ1 = desc(σ1), γ2 = desc(σ2), The
path σ1 is to the left of σ2 (Proposition 3(e)), so γ1, γ2 decompose G into G1,G2,G3
for some subgraphs G1,G2,G3. Let p1, p2 be positions of sources of σ1,σ2 in the input
word (see figure below). By definition of the image, p1 ≤m(i−1)+1 and p2 ≥mi. We
show that p2 < m j (i.e. p2 is the position inside the middle block or to the left of it).
Indeed, the image of the middle block is defined, so the rightmost vertex of τ is to the
left of the rightmost vertex of the image of the middle block (otherwise images of the ith
and the jth block overlap by more than two symbols, contradicting Proposition 3(d)).
And there is no p-successor for each p ≥ m j to the left of the rightmost vertex of the
image of the jth block, by definition of the image (see Proposition 3(a)). So, p2 < 2m j
and G2 does not contain any source vertex to the right of the middle block.

We claim that γ1,γ2, ω(τ), p1, p2, j and M describe w. We provide an algorithm that
determines w on base of these parameters. For every v ∈ Σm/2 we inspect all computa-
tion graphs that desribe computation of M on x = (vvR)2 j−1 until we find such v and a
computation graph G′ describing a computation on x such that:

– γ1,γ2 decompose G′ into G′
1,G

′
2,G

′
3,

– Snk(G′
2) = ω(τ),

– the position of a source of a path on the border between G′
1 and G′

2 is equal to p1
and the position of a source of a path on the border between G′

2 and G′
3 is equal to

p2.

Then G′′ = G1G′
2G3 is a computation graph and γ1,γ2 decompose G′′ into G1G′

2G3
(see Cut and Paste Lemma and figure below). Observe that the last configurations de-
scribed by G and G′′, i.e. Snk(G) and Snk(G′′), are equal. The automaton M accepts
starting from the configuration Snk(G), since G describes the computation on a palin-
drome (wwR)2 j−1. So, M accepts also an input word z of the graph G′′, obtained from
(wwR)2 j−1 by replacing its subword (wwR)2 j−1[p1, p2] by the appropriate subword of
(vvR)2 j−1. Thus, z is a palindrome. But p2 ≤ 2m j, so all blocks to the right of the middle

28

block remain unchanged, i.e. equal wwR. On the other hand p1 ≤ 2m(i−1)+1, so the
ith block wwR is replaced by vvR in z. Thus v = w, since z is the palindrome.

Now, we get a contradiction with incompressibility of w. We need only O(logn)
bits in order to store γ1,γ2, p1, p2, j and M, where n is the length of the input word
(wwR)2 j−1 (since γ1,γ2 describe short paths – see Corollary 3). The value n = |wwR|(2 j−
1) = m(2 j− 1) ≤ md+1, since (wwR)2 j−1 ∈ Wd . So, all these data require O(logn) =
O(logmd+1) = O(logm) bits. Additionally, |ω(τ)| < c′m and ω(τ) is a word over al-
phabet Γ∪Q. In order to store it binary we need at most c′mdlog(|Γ∪Q|)e ≤ m/8 bits.
Together, we need m/8+O(logm) < m/4 bits for m large enough. This contradicts the
assumption that w is incompressible (i.e., K(w) > m/2−1).

G1

p
2

p1

G3

σσ1
2

y

block i

Here cut & paste

τ

G2

middle block

short path

block symmetric to i

Fig. 8. Middle Block Lemma.

9.2 Proof of Periodicity Preserving Lemma

We show that the lemma is satisfied for each m′
j > m80 j (and m is larger that the

constant that depends only on M), where ml denotes the constant from Middle Block
Lemma. Assume that a word wwR satisfies strong periodicity property with respect to
(G1,G2,G3,α,r, j), where w is an incompressible word of length m/2 such that m > m′

j.
Let H(i) denote an opposite border graph with respect to G1Gi

2G3 (see Definition 9).

Claim 1 For every i > 1 such that α + ir ≤ m40 j, the image of the middle block of
(wwR)α+ir is defined in H(i).

Proof: For the sake of contradiction, assume that the image of the middle block of
(wwR)α+ir is undefined in H(i) for some i > 1 such that α + ir ≤ m40 j. Then there
exists G′ such that

init(wwR)α+ir `∗M G1Gi
2G3 `∗M G′G3 `∗M H(i)

where the image of the middle block (i.e. d(α + ir)/2e-th block) is defined but shorter
than c′m− k in G′G3 (see Proposition 3(c,d)). Let i′ be a natural number such that
α+ i′r ≤ m80 j and (α+ i′r)/2 > m40 j+2. Then

(wwR)α+i′r `∗M G1Gi
2Gi′−i

2 G3 `∗M G′Gi′−i
2 G3,

where the first subcomputation is obtained by strong periodicity property and the second
subcomputation is obtained by Cut and Paste Lemma (see figure). Moreover,

29

(a) The middle block of (wwR)α+i′r is included in the subgraph Gi′−i
2 G3 of the graph

G1Gi′
2G3.

Indeed,
(α+ i′r)/2−1 > m40 j+2 ·m > (α+ ir)m,

so the number of sources of G1Gi
2G3 is smaller than the number of sources preced-

ing the middle block of (wwR)α+i′r (recall that the automaton is length-reducing).
(b) The image of the middle block of (wwR)α+i′r is defined and longer than c′m in

G′Gi′−i
2 G3.

Indeed, it is longer than c′m in G1Gi′
2G3 by strong periodicity property and it re-

mains unchanged during the subcomputation G1Gi′
2G3 `∗M G′Gi′−i

2 G3 by (a) above
and Proposition 3(b).

(c) The image of the block d(α+ir)/2e in G′G3 and the image of this block in G′Gi′−i
2 G3

are shorter thatn c′m− k.
Indeed, this block is included in the prefix G1Gi

2 of the graph G1Gi
2G3 (as well as

G1Gi′
2G3) by Proposition 6(b). And, as the path on the border between G1Gi

2 and G3

(or Gi′−i
2 G3) is short, it remains short as the path on the right border of G′. Thus, the

image of the block d(α + ir)/2e in G′G3 and the image of this block in G′Gi′−i
2 G3

are equivalent by Lemma 4. So, they are shorter than c′m− k by the assumption.

The conditions (b) and (c) contradict Middle Block Lemma for the graph G′Gi′−i
2 G3.

1G 2G 2G 2G 3G

1G 3G

2i copies of G

2i copies of G 2i’−i copies of G 2i’−i copies of G

3G

2G 2G 3G. . . 2G . . .

middle block

. . .

middle block

2 2GG G’

middle block

middle block

. . .G’

ut
With help of the above claim, we show that the graphs H(i) are really periodic. Our ar-
gument is based on the fact that, by Middle Block Lemma, the above claim and Propo-
sition 3(e), the lengths of the configuration corresponding to H(i), i.e. Snk(H(i)), is
large (since it contains long and “almost disjoint” images of all blocks). This allows us
to prove (by Heights Lemma and counting arguments) that there are two parallel short
paths in H(i) for some i. Then, we apply Pumping Lemma for decomposition of H(i)
induced by these paths.

Claim 2 There exists i > 1 such that α + ir ≤ m5 j and there are two parallel short
paths σ1,σ2 in the computation graph H(i) with sinks located to the left of the window
in H(i). The distance (number of sinks) between sinks of σ1,σ2 is not smaller than k.

30

Proof: Take i such that α+ir≤m5 j and α+ir > m j+2 (note that, |Src(G1)|+|Src(G2)| ≤
m j+2 by Proposition 6(a)). Let n = m(α+ ir) denote the length of the input word in the
computation described by H(i). The image of the middle block is in H(i) longer than
two, by Claim 1. Moreover, we took m > m80 j, so Middle Block Lemma may be ap-
plied here. Thus, |Snk(H(i))| > (α + ir)c′m/4 = c′n/4, because images of all blocks
(but the middle one, possibly) are longer than c′m and images of disjoint blocks may
overlap by at most two (Proposition 3(e)). As H(i) is a graph which corresponds to the
first configuration in which the window touches G3, there are at most

|Snk(G3)|+ k < 2m j+2 < 2(α+ ir) = 2n/m

sinks to the right of the window in H(i) (Proposition 6(a)). For m large enough, this
number is smaller than n · c′/32. Let h = dlog(c′/96)/ log(k/(k + 1))e. By Heights
Lemma, the number of sinks of height greater or equal to h is in H(i) less than 6n(k/(k+
1))h ≤ nc′/16. So, at least

|Snk(H(i))|− c′

16
n− c′

32
n≥ c′

32
n

sinks located to the left of the window have height less or equal to h. Let S be a set
of these sinks. Let us choose the leftmost short path with the sink in s for each s ∈ S.
Partition these paths into m groups such that the pth group contains paths that start at
the pth position of any block (i.e., at the position equal to p mod m). The largest group
contains at least

1
m
· c′

32
n =

c′

32
(α+ ir)m

m
>

c′

32
m j+2

paths, where the last inequality follows from the assumption α + ir > m j+2. As the
length of each path in the group is bounded by a constant independent of m, the number
of possible descriptions is constant as well. So, there exist at least k paths with the
same description in the group of c′m j+2/32 paths for m large enough (i.e., m such that
c′m j+2/32 is at least 2k times larger than the number of possible descriptions of paths
with the height ≤ h). And, by the choice of the group, these paths are parallel. ut
Now, we are ready to show that

Claim 3 There exist subgraphs H1,H2,H3 such that the word wwR satisfies periodicity
property with respect to (H1,H2,H3,α′,r′,20 j), where α′ = α + gr, r′ = f r for some
g, f ∈ N. Moreover, H1H l

2H3 is the opposite border graph with respect to G1Gg+l f
2 G3

for every l > 0,.

Proof. By Claim 2, there exists i such that α+ ir ≤ m5 j and there are two parallel short
paths σ1,σ2 in H(i) such that desc(σ1) = desc(σ2) = γ. And, the paths σ1,σ2 are located
to the left of the position of the window. So, γ,γ decompose H(i) into G′

1G′
2G′

3, where
G′

1,G
′
2,G

′
3 are subgraphs of H(i) bordered by short paths σ1 and σ2. Thus, by Pumping

Lemma, 〈γ〉 j+1 decompose a computation graph G′
1G′

2
jG′

3 into G′
1,〈G′

2〉 j,G′
3. Recall

that σ1,σ2 on borders of G′
2 are short in G′

1G′
2G′

3 (Claim 2). So, by Proposition 5, paths
on borders of the decomposition G′

1,〈G′
2〉 j,G′

3 are short in G′
1G′

2
jG′

3 as well. Moreover,
the parallelity of the paths σ1,σ2 implies that Src(G′

2) = (shift(wwR, p))a for some

31

p < m and a≤ α+ ir≤m5 j. So, the initial configuration of G′
1G′l

2G′
3 corresponds to an

input (wwR)(α+ir)+a(l−1) (because Src(G′
1G′

2G′
3) = Src(H(i)) corresponds to the input

word (wwR)α+ir and the subgraph G′
2 “adds” a cyclic shifts of a copies of wwR). We

can show periodicity property on the basis of these facts, but we should care about
requirements of the claim. In particular, r′ and (α′−α) should be divisible by r. So, let
α′ = α+ ir, r′ = mraα′, H1 = G′

1G′
2, H2 = (G′

2)
r′/a, H3 = G′

3. Then:

– 〈γ〉l+1 decompose H1H l
2H3 into H1,〈H2〉l ,H3, and paths on borders of this decom-

position are short, (since paths on borders of decompositions G′
1,〈G′

2〉∗,G′
3 are

short, as showed above),
– H1H l

2H3 = G′
1G′

2
r′l/a+1G′

3 and the initial configuration of the graph H1H l
2H3 corre-

sponds to the input word (wwR)α+ir+r′l = (wwR)α′+lr′ .
– Src(H2) = (Src(G′

2))
r′/a = shift((wwR, p))r′

– α′ = α+ ir≤m5 j ≤m20 j; moreover r′ = mraα′≥mα′ and r′ = mraα′≤m ·m j(α+
ir)2 ≤ m1+ j+10 j ≤ m20 j.

– init((wwR)α′+lr′) `∗M H1H l
2H3 for every l > 0.

These conditions certify that wwR satisfies periodicity property with respect to (H1,H2,H3,
α′,r′,20 j), where α′ = α+gr, r′ = f r for g = i and f = ma(α+ ir).

It remains to verify that H1H l
2H3 is in fact an opposite border graph with respect

to G1Gg+l f
2 G3 for each l > 0. It means that all sinks of G3 should remain as sinks in a

graph preceding H1H l
2H3 by one derivation step, and at least one of them should be an

internal vertex of H1H l
2H3 (see Definition 9). Recall that H1H l

2H3 = G′
1(G

′
2)

r′l/a+1G′
3.

Moreover, as G′
1G′

2G′
3 is the opposite border graph with respect to G1Gi

2G3, there exists
a subgraph J such that

G1Gi
2G3 `∗M G′

1J `M G′
1G′

2G′
3,

all sinks of G3 remain the sinks of G′
1J and they belong to the subgraph J. Moreover,

at least one of them is the internal vertex of G′
1G′

2G′
3. Indeed, the subgraph G′

1 appears
already in the graph directly preceding G′

1G′
2G′

3, because G′
2 contains at least k sinks,

while the window length is equal to k and the window is located in G′
3 (see Claim 2). On

the other hand, one step of the computation changes only the status of vertices included
in the window.

Thus, by Cut and Paste Lemma, we obtain a computation

G′
1(G

′
2)

r′l/aJ `M G′
1(G

′
2)

r′l/a+1G′
3 = H1H l

2H3,

because the description of the path on the right border of G′
1 and the path on the right

border of G′
1(G

′
2)

r′l/a are equal. And, all sinks of G3 remain the sinks in J and at least
one of them is internal in H1H l

2H3. ut
Finally, we show that wwR satisfies strong periodicity property with respect to

(H1,H2,H3,α′,r′,20 j) where H1,H2, H3,α′,r′ are chosen according to Claim 3. By
Claim 3 we know that H1H l

2H3 = H(g + l f) for every l > 0. Let us choose l > 2 such
that α′+ lr′ = α +(g + l f)r ≤ m40 j. (Such l exists by the fact that α′,r′ ≤ m20 j – see
Definition 7.) Then, the image of the middle block is defined in H1H l

2H3, by Claim 1,
and images of all blocks (except the middle block, possibly) are defined and longer then

32

c′m by Middle Block Lemma (as the choice of m > m80 j and l such that α′+ lr′ ≤m40 j

guarantee that Middle Block Lemma is applicable). It remains to show that the image
of the middle block is longer than c′m as well. Then, by Proposition 6(b), the block
d(α′+ lr′/2)e (the middle block) is included in the infix H l

2. So, by Proposition 6(c),
it is equivalent to the image of the block d(α′ + lr′)/2e+ 2r′ or d(α′ + lr′)/2e− 2r′,
which is longer than c′m. Thus, images of all blocks are longer than c′m in H1H l

2H3 and
the lemma holds by Proposition 6(d).

10 Conclusions and Open Problems

We introduced a direct lower bound technique designed particularly for length-reducing
two-pushdown automata. Next, we applied this method to the proof of the fact that the
set of palindromes is not a Church-Rosser Language, what solves the open problem
from [19]. This fact implies that CRL is incomparable with the set of unambiguous
context-free languages.

We expect that our proof technique might be applicable for broader class of prob-
lems concerning language classes related to or defined by length-reducing two-pushdown
automata. In particular, one can obtain a short and direct proof that the language {ww |w∈
Σ∗} is not growing-context sensitive. A generalization of this proof might for example
help to answer the question whether there exists a strict intersection hierarchy for GCSL
[5].

Acknowledgements. The authors thank Friedrich Otto and Gundula Niemann for help-
ful comments on the draft of this paper.

References

1. M. Beaudry, M. Holzer, G. Niemann, F. Otto, McNaughton families of languages, Theoreti-
cal Computer Science 290(3): 1581-1628 (2003).

2. R.V. Book, Grammars with Time Functions, Dissert., Harvard University, Cambridge, MA.
3. G. Buntrock, Wachsende Kontextsensitive Sprachen, Habilitationsschrift, Würzburg, 1995.
4. G. Buntrock, K. Loryś, On growing context-sensitive languages, Proc. of International Col-

loquium on Automata, Languages and Programming (ICALP), 1992, LNCS 623, 77–88.
5. G. Buntrock, K. Loryś, The variable membership problem: Succintness versus complexity,

Proc. of STACS, 1994, LNCS 775, 595–606.
6. G. Buntrock, F. Otto, Growing Context-Sensitive Languages and Church-Rosser Languages,

Information and Computation 141(1), 1998, 1–36.
7. N. Chomsky, On certain formal properties of grammars, Information and Control 2(2), 1959,

137–167.
8. E. Csuhaj-Varju, J. Dassow, J. Kelemen, G. Paun, A Grammatical Approach to Distribution

and Cooperation, Gordon and Breach, London, 1994.
9. E. Dahlhaus, M.K. Warmuth, Membership for growing context-sensitive grammars is poly-

nomial, Journal of Computer Systems Sciences , 33(3), 1986, 456–472.
10. A. Gladkij, On the complexity of derivations for context-sensitive grammars, Algebri i

Logika 3, 1964, 29–44. [In Russian]
11. M. A. Harrison, Introduction to Formal Language Theory, Addison-Wesley, 1978.

33

12. Lane A. Hemaspaandra, Proshanto Mukherji, Till Tantau, Computation with Absolutely No
Space Overhead, In: Zoltan Esik, Zoltan Fulop (Eds.): Developments in Language Theory,
7th International Conference (DLT 2003), Szeged, Hungary, July 7-11, 2003, Proceedings.
Lecture Notes in Computer Science 2710, 325–336.

13. Markus Holzer, Martin Kutrib, Flip-Pushdown Automata: k+1 Pushdown Reversals Are Bet-
ter than k, In Proc. Jos C. M. Baeten, Jan Karel Lenstra, Joachim Parrow, Gerhard J. Woeg-
inger (Eds.): Automata, Languages and Programming (ICALP 2003), Eindhoven. Lecture
Notes in Computer Science 2719, 490–501.

14. Markus Holzer, Friedrich Otto, Shrinking Multi-pushdown Automata, Proc. of Fundamentals
of Computation Theory, International Symposium (FCT), 2005, LNCS 3623, 305–316.

15. T. Jurdzinski, K. Lorys, Church-Rosser Languages vs. UCFL, in Proc. of International Col-
loquium on Automata, Languages and Programming (ICALP), 2002, LNCS 2380, 147–158.

16. M. Li, P. Vitanyi, An Introduction to Kolmogorov Complexity and its Applications, Springer-
Verlag 1993.

17. J. Loecks, The parsing of general phase-structure grammars, Information and Control 16
(1970), 443–464.

18. R. McNaughton, An insertion into the Chomsky hierarchy?, In: J. Karhumaki, H. A. Maurer,
G. Paun, G. Rozenberg (Eds.), Jewels are Forever, Contributions on Theoretical Computer
Science in Honour of Arto Salomaa, Springer-Verlag, Berlin, 1999, 204–212.

19. R. McNaughton, P. Narendran, F. Otto, Church-Rosser Thue systems and formal languages,
Journal of the Association Computing Machinery, 35 (1988), 324–344.

20. G. Niemann, Church-Rosser Languages and Related Classes, PhD Thesis, Universitaet Kas-
sel, 2002.

21. G. Niemann, F. Otto, Restarting automata, Church-Rosser languages, and confluent internal
contextual languages, Developments in Language Theory (DLT), Preproceedings, Aachener
Informatik-Berichte 99-5, RWTH Aachen, 1999; 49–62.

22. G. Niemann, F. Otto, The Church-Rosser languages are the deterministic variants of the
growing context-sensitive languages, Information and Computation, 197(1-2), 2005, 1-21.

23. G. Niemann, F. Otto, Restarting Automata and Prefix-rewriting Systems, Mathematische
Schriften Kassel 18/99, Universitt-GH Kassel, Dezember 1999.

24. G. Niemann, Jens R. Woinowski, The growing context-sensitive languages are the acyclic
context-sensitive languages, in Proc. Developments in Language Theory, 5th International
Conference (DLT 2001), Vienna, Austria, July 16-21, 2001. LNCS 2295, 197–205.

25. Alexander Okhotin, An overview of conjunctive grammars, Formal Language Theory Col-
umn. Bulletin of the EATCS 79, 145-163 (2003).

26. Alexander Okhotin, Boolean grammars, Information and Computation 194(1): 19-48 (2004)
27. Palash Sarkar, Pushdown Automaton with the Ability to Flip its Stack, Electronic Colloquium

on Computational Complexity (ECCC)(081): (2001).
28. Jens R. Woinowski, Prefix Languages of Church-Rosser Languages, Foundations of Soft-

ware Technology and Theoretical Computer Science, 20th Conference (FSTTCS), 2000,
LNCS 1974, 516–530.

29. Jens R. Woinowski, The context-splittable normal form for Church-Rosser language systems,
Information and Computation, 183(2), 2003, 245–274.

34

