
JOURNAL OF SCHEDULING
J. Sched. 2000; 3:51–69

Lower bounds and algorithms for
owtime minimization
on a single machine with set-up times

Simon Dunstall1;†, Andrew Wirth1;∗;‡ and Kenneth Baker2;§

1Department of Mechanical and Manufacturing Engineering; University of Melbourne; Parkville 3052; Australia
2 Tuck School; Dartmouth College; Hanover; NH 03755; U.S.A.

SUMMARY

We consider the scheduling of N jobs divided into G families for processing on a single machine. No set-up
is necessary between jobs belonging to the same family. A set-up must be scheduled when switching from
the processing of family i jobs to those of another family j, i 6= j, the duration of this set-up being the
sequence-independent set-up time sj for family j. We propose lower bounds for the problem of minimizing
the weighted
owtime on a single machine with family set-up times and static job availability. These lower
bounds are incorporated into a branch-and-bound algorithm which can e�ciently solve instances with up to
70 jobs. Copyright ? 2000 John Wiley & Sons, Ltd.

KEY WORDS: single-machine scheduling; family set-up times; branch and bound

1. INTRODUCTION

A recent trend in the analysis of scheduling models integrates batching decisions with sequencing
decisions. The interplay between batching and sequencing re
ects the realities of the small-volume,
high-variety manufacturing environment and adds a new feature to traditional scheduling problems.
Practical interest in this topic has given rise to new research e�orts, and there has been a series
of articles in the research literature surveying the rapidly developing state of knowledge. Exam-
ples include Ghosh [1], Liaee and Emmons [2], Potts and Van Wassenhove [3], and Webster and
Baker [4].
This paper deals with an important theoretical and practical problem in this area. We examine

the single-machine model with family (or group) set-up times and a criterion of minimizing
total weighted job completion time (weighted
owtime). We propose new lower bounds for this
problem, and then turn our attention to re�nement of a previously proposed branch-and-bound
algorithm. The bene�ts of our re�nements are illustrated by computational experiments.

∗Correspodence to: Andrew Wirth, Department of Mechanical and Manufacturing Engineering, Univeristy of Melbourne,
Parkville, Victoria 3052, Australia
† E-mail: simondun@mame.mu.oz.au
‡ E-mail: wirth@mame.mu.oz.au
§ E-mail: ken.baker@dartmouth.edu

CCC 1094-6136/2000/010051–19$17.50
Copyright ? 2000 John Wiley & Sons, Ltd.

52 S. DUNSTALL, A. WIRTH AND K. BAKER

2. PROBLEM STATEMENT AND LITERATURE REVIEW

It is commonly proposed in the literature that the set of jobs to be scheduled can be success-
fully partitioned, according to processing requirements, into mutually exclusive and exhaustive
families. It is assumed that the jobs have the property that a set-up need only be scheduled
when switching from a job of one family to a job belonging to a di�erent family. This property
enables us to take advantage of the ‘group nature’ of the jobs and avoid set-up time penal-
ties by sequencing jobs of the same family successively, in batches. We assume in this paper
that the set-up times are sequence independent, that is, the set-up time between batches depends
only upon the family being switched to. We also assume that an initial set-up for the machine
is required, the duration of this initial set-up being equal to the set-up time for the relevant
family.
We denote by G the number of families in an instance and N the total number of jobs in an

instance. The number of jobs belonging to family i (16i6G) is Ni, with
∑G

i=1 Ni=N . The set-up
time for family i is represented by the symbol si, this being a non-negative integer. The jth job
of family i, ai[j] (16j6Ni), is assigned a non-negative integer processing time pi[j] and positive
integer weight wi[j]. All jobs are considered to be indivisible and to be available from time zero.
With a schedule determined, the completion time of ai[j] is denoted by Ci[j].
Jobs of the same family may appear in one or more batches in a ‘good’ schedule for an

instance of our problem. The number of batches in a schedule is denoted by b, with the kth batch
represented by the symbol Bk . The �rst job of a batch is immediately preceded by a set-up. The
set-up time for a batch Bk is given by �k , the number of jobs in Bk is given by �k , and the jth
job of Bk , job �k[j], has processing time and weight denoted by �k[j] and $k[j], respectively. The
total time required to process a batch is Tk , where Tk = �k +

∑�k
j=1 �k[j], while the total weight of

a batch is given by Wk =
∑�k

j=1 $k[j]. The weighted mean processing time WMPT(Bk) of a batch
Bk is de�ned as Tk=Wk .
In this paper we adopt the classi�cation scheme described by Lawler et al. [5]. In this scheme

a problem is represented by �|�|
, where � describes the machine environment, � identi�es job
properties which vary from those commonly assumed and
 indicates the objective function. Within
this paper we extend the � �eld of this scheme to cater for problems with set-up times, using the
symbol sij to indicate sequence-dependent set-up times and si to indicate sequence-independent
set-up times. For example, our problem is denoted by 1|si|

∑
wC in this classi�cation scheme.

The 1|si|
∑
wC problem and related problems have been studied by a number of researchers.

Analysis of problem structure has been provided by Mason and Anderson [6] and Monma and
Potts [7]. The optimality conditions developed by these authors are reviewed in Section 3. The
1|sij|

∑
wC problem is optimally solvable in O(G2NG) time using the dynamic programming

approach of Ghosh [1], this time being polynomial in N for a �xed number of families. The
computational complexity of the 1|si|

∑
C problem with an arbitrary number of families remains

an important open question, yet the 1|sij|
∑
C problem is known to be NP-hard [8]. The dynamic

1|rj; si|
∑
C problem is clearly NP-hard, as the corresponding problem without set-up times is

(again, see Reference [8]). This result is true even when each job has the same ready time as
every other job of its family.
Monma and Potts developed a dynamic program for 1|sij|

∑
wC running in O(G2NG

2+G) time,
and Potts [9] adapted this algorithm to provide an O(N 3) algorithm for the problem with two
families only. Ghosh [1] proposed a more e�cient O(G2NG) dynamic program for the same

Copyright ? 2000 John Wiley & Sons, Ltd. J. Sched. 2000; 3:51–69

LOWER BOUNDS AND ALGORITHMS FOR FLOWTIME MINIMIZATION 53

problem, closely resembling the earlier dynamic programs developed by Psaraftis [10] (identical
jobs within each family), Ahn and Hyun [11] (1|sij|

∑
C) and Bruno and Sethi [12] (1|si|

∑
wC).

The branch-and-bound algorithms developed by Mason and Anderson and by Crauwels et al.
[13] for the 1|si|

∑
wC problem utilized a strong set of dominance conditions derived from the

known optimality conditions for the problem. The most successful algorithm of Crauwels et al.
is similar in structure to the Mason and Anderson algorithm, but utilizes additional dominance
rules and a strong lower bound based upon a Lagrangian relaxation of the problem. Computational
testing of the Crauwels et al. algorithm [13; 14] established that, in comparison to Mason and
Anderson’s original procedure, it has the ability to successfully solve instances with much greater
numbers of jobs.
The Lagrangian lower bound is hampered by a time-complexity function which depends not only

upon the number of jobs in an instance but also upon the duration, in time units, of a schedule
for the instance. As a result, its use can only be recommended when the maximum set-up and
processing times in the instance are restricted to values such as 10 as utilized by Crauwels et al. It
is therefore clear that development and substitution of a strong lower bound whose running time is
independent of the duration of a schedule will allow problems of increased practical signi�cance,
i.e. those with greater maximum set-up and processing times, to be optimally solved in reasonable
time. This is the main goal of our paper.
Heuristics applicable to single-machine
owtime problems with family set-up times have been

developed by a number of workers. Ahn and Hyun [11] and Gupta [15] have proposed heuristics
for the 1|sij|

∑
C problem, and Crauwels et al. [16] devised a range of local search heuristics

for the 1|si|
∑
wC problem. Crauwels et al. presented an extensive computational study which

compared the performance of their heuristics, the Ahn and Hyun heuristic (modi�ed to address
the 1|si|

∑
wC problem), and a genetic algorithm proposed by Mason [17] for the same problem.

Their testing suggested that a tabu search heuristic was most e�ective on average, although Mason’s
algorithm was shown to outperform the tabu search procedure for instances with larger numbers of
families.
Crauwels [14] subsequently investigated a series of heuristics with a binary-based representation

of sequences. This representation is similar but not identical to that utilized within Mason’s genetic
algorithm. The most successful of these binary-based heuristics was a multi-start descent heuristic.
Computational experience reported by Crauwels shows that, for many instances with up to 100
jobs, the binary-based descent heuristic delivered superior performance compared to alternative
algorithms, including the tabu search heuristic of Reference [16].
Local search heuristics for the 1|si|

∑
wC problem have also been devised by Baker [18] and

Dunstall [19], while Williams and Wirth [20] have developed a heuristic for the 1|si|
∑
C problem.

It can be noted that the heuristic reported by Williams and Wirth cannot, in fact, be guaranteed
to provide schedules satisfying all three major optimality conditions for the 1|si|

∑
C problem,

contrary to a claim made in their paper (see Reference [19]). Nowicki and Zdrzalka [21] have
proposed a tabu-search heuristic which can be applied to minimize any regular objective function
on a single machine with major sequence-independent set-up times and minor set-up times (between
sub-families) which take a constant value for all sub-families. Nowicki and Zdrzalka evaluated
their heuristic computationally for the objectives of minimizing maximum weighted lateness and
total weighted tardiness. Finally, Liao and Liao [22] have addressed the mean
owtime problem
with major and minor sequence-independent set-up times. Their heuristic approach, based on a
dynamic programming solution of sub-problems, can be computationally expensive yet has the
ability to solve well many instances of this practically signi�cant problem.

Copyright ? 2000 John Wiley & Sons, Ltd. J. Sched. 2000; 3:51–69

54 S. DUNSTALL, A. WIRTH AND K. BAKER

The process of forming families is typically not addressed by scheduling research. However,
we note that in applications of group technology (GT), the tooling analysis sub-technique of
production
ow analysis can be used to form families (i.e. tooling families) by grouping jobs
with similar processing features [23]. This observation highlights a link between the scheduling
problems discussed in this paper and the scheduling of facilities where the GT concepts have been
applied.
The sequence-independent set-up times model is restrictive in comparison to the more general

sequence-dependent set-up times model, but has the bene�t, from a scheduling point of view, of
yielding problems which are signi�cantly easier to solve. Within the scheduling literature practical
examples of production systems involving sequence-independent set-up times are not common (but
see References [3; 6]). This state of a�airs may re
ect a general trend for this model to be unduly
restrictive for in-practice application.
The additive changeovers model, proposed by Sule [24], may in a number of cases represent

an e�ective compromise between the simple sequence-independent set-up times model and the
complex sequence-dependent set-up times model. In this enhanced model both set-up times and
teardown (set-down) times are allowed for each family, each of these times being sequence-
independent. Fortuitously, many single-machine problems with additive changeovers can be solved
as equivalent problems with sequence-independent set-up times only [25]. The problem addressed
in this paper is one such example, as shown by Mason and Anderson.

3. OPTIMALITY CONDITIONS AND DOMINANCE RELATIONSHIPS

Three necessary, but not su�cient, optimality conditions have been identi�ed for the 1|si|
∑
wC

problem. The �rst of these optimality conditions was developed by Monma and Potts [7].

Theorem 1. There exists an optimal sequence for the 1|sij|
∑
wC problem (where set-ups sat-

isfy the triangle inequality) within which jobs of the same family appear in SWPT order; i.e.
if

pi[j]
wi[j]

6
pi[k]
wi[k]

then there exists an optimal sequence within which ai[j] precedes ai[k].

Theorem 1 can be conveniently referred to as the ‘SWPT-within-families rule’ for jobs. Through-
out this paper we will assume, without loss of generality, that jobs are indexed within their families
in SWPT-order (i.e. indexed in accordance with the SWPT-within-families rule).
The next optimality condition (Theorem 2), attributable to Mason and Anderson [6], we term

the ‘SWMPT rule’ for batches.

Theorem 2. There exists an optimal sequence for the 1|si|
∑
wC problem within which batches

appear in shortest weighted mean processing time order; i.e.

WMPT(Bk)=
Tk
Wk
6
Tk+1
Wk+1

=WMPT(Bk+1)

for 16k¡b.

Copyright ? 2000 John Wiley & Sons, Ltd. J. Sched. 2000; 3:51–69

LOWER BOUNDS AND ALGORITHMS FOR FLOWTIME MINIMIZATION 55

The work sequenced between any two batches Bu and Bv of the same family can be viewed
as a composite job with processing time �v +

∑v−1
k=u+1 Tk and weight

∑v−1
k=u+1Wk . Theorem 3

(Mason and Anderson) represents an ‘extended SWPT rule’: the jobs belonging to a family and
the composite jobs between the batches of this family follow SWPT order in an optimal sequence.

Theorem 3. There exists an optimal sequence for the 1|si|
∑
wC problem within which jobs

belonging to di�erent batches of the same family satisfy

�u[�u]
$u[�u]

6
�v +

∑v−1
k=u+1 Tk∑v−1

k=u+1Wk
6
�v[1]
$v[1]

where 16u¡v6b.

Using the above optimality conditions, Mason and Anderson formed a set of strong domi-
nance rules applicable to the solution of the 1|si|

∑
wC problem using branch-and-bound methods.

Crauwels et al. added a further rule to this set (Rule 5 below). The �ve dominance rules utilized
by Crauwels et al. are given as Rules 1–5. A new rule, Rule 6, is also included in this list.

(1) In an optimal sequence for the 1|si|
∑
wC problem, where Bu and Bv are batches of the

same family (u¡v)

WMPT(Bu)6
�v[1]
$v[1]

Thus if extending a partial sequence with the addition of a new batch of some family i,
we should add jobs to this batch at least until we use up all family i jobs (i.e. ai[Ni] is
scheduled) or the next unscheduled job of this family has a weighted processing time greater
than the current weighted mean processing time of the batch.

(2) Consider a partial sequence S within which the last batch is Bv, the last scheduled job is
ai[j], and WMPT(Bv−1)¿WMPT(Bv). If j¡Ni, job ai[j+1] should be added to the end of
Bv. If j=Ni the partial sequence S cannot satisfy Theorem 2 and is suboptimal.

(3) In an optimal sequence for the 1|si|
∑
wC problem, where Bu and Bv are batches of the

same family (u¡v)

�u+1[1]
$u+1[1]

6
�v[1]
$v[1]

Thus if we are extending a partial sequence S by adding a new batch Bu+1, and S currently
terminates with a batch Bu of some family i, the weighted processing time �u+1[1]=$u+1[1]
of the �rst job �u+1[1] of Bu+1 can be no greater than the weighted processing time of the
next unscheduled job of family i.

(4) If we wish to extend a partial sequence S by starting a new batch Bv of family i, we must
ensure that the two inequalities of Theorem 3 will be satis�ed between Bv and the latest
scheduled batch Bu of the same family in S (if Bu exists).

(5) Consider a partial sequence S, and let the last batch in S be Bv, this batch containing jobs
of some family i. Let nk be the number of jobs of family k which appear in S; 06nk6Nk ,
and assume without loss of generality that these are the �rst nk jobs of family k. Let a
family k 6= i belong to set U if nk¡Nk , this being the set of families which currently contain

Copyright ? 2000 John Wiley & Sons, Ltd. J. Sched. 2000; 3:51–69

56 S. DUNSTALL, A. WIRTH AND K. BAKER

unscheduled jobs. If partial sequence S is such that

Tv
Wv
¿min

k∈U

{
sk +

∑Nk
j=nk+1 pk[j]∑Nk

j=nk+1 wk[j]

}

then if ni¡Ni, job ai[ni+1] must be appended next to S. If ni=Ni, partial sequence S cannot
be optimal.

(6) Consider a partial sequence S within which the last batch of some family i is batch Bu. Let
family i be such that at least one family i job remains unscheduled; let this be ai[j]. Let
the last batch in the partial sequence be batch Bb, this batch constructed according to Rules
1 and 2. From Theorems 1–3, if the partial sequence is to be part of an optimal sequence,
the following inequality must hold:

si +
∑b

k=u+1 Tk∑b
k=u+1Wk

6
pi[j]
wi[j]

(1)

otherwise it is not possible for ai[j] to be sequenced at any position after Bb and satisfy
Theorem 3. This is because the value of the left-hand side of (1) cannot decrease through
addition (to the end of S) of unscheduled jobs from any family.

Rule 6 has its basis in the ‘extended SWPT rule’. It is best applied within a branch-and-
bound algorithm after a complete set of child-nodes has been generated in the branching stage of
the algorithm. For every child-node’s partial sequence, each family is ‘tested’, and a node will be
eliminated if one or more families fail to satisfy (1). It can be observed that application of this rule
allows the early detection of sequences that would later be eliminated by Rule 4. Computational
studies shows the rule to be e�ective; its tree-pruning advantages clearly outweigh the O(G)
computational expense per node (see Reference [19]). The reader is referred to References [6; 13]
for discussion of the previously proposed dominance rules.
The dynamic programming dominance rule (DPDR) proposed by Crauwels et al. can be

implemented in the same manner. In our implementation it is deployed after Rule 6, in order
to minimize the number of nodes investigated; the DPDR is demanding both of CPU time and
memory resources. The e�ect of the DPDR on the computation time of our branch-and-bound
algorithm is studied in Section 8.

4. A DISTRIBUTIVE LOWER BOUND

In this and the following section we introduce new lower bounds for the 1|si|
∑
wC problem

which are suitable for use with instances with non-negative integer processing and set-up times
distributed over an unrestricted range. The running time properties of the lower bounds are such
that they can be calculated in O(N) time at the nodes of a branch-and-bound algorithm. In practice,
they can be computed more e�ciently than the Lagrangian lower bound of Crauwels et al., and
compared to the lower bound of Mason and Anderson they achieve signi�cantly greater proximity
to the optimal
owtime.
The �rst of the new lower bounds distributes the set-up time for each family to the jobs of this

family, and then considers all family set-up times to be zero. This transforms the original instance

Copyright ? 2000 John Wiley & Sons, Ltd. J. Sched. 2000; 3:51–69

LOWER BOUNDS AND ALGORITHMS FOR FLOWTIME MINIMIZATION 57

I of the 1|si|
∑
wC problem to an instance I ′ of the 1‖∑wC problem. It is well known that the

latter problem can be solved optimally (in polynomial time) by arranging jobs in SWPT order [26].
The transformation from I to I ′ modi�es the processing time of each job ai[j] (16i6G; 16j6Ni)
according to

p′
i[j] =pi[j] + �i[j]si (2)

where 06�i[j]61 and
∑Ni

j=1 �i[j]61. All other data is identical for both instances, except for the
family set-up times which are removed from I ′.
The validity of such a lower bound is simple to establish. Consider a sequence S of the jobs in

instance I . Distribution of set-up times to create instance I ′, and application of the same sequence
S, cannot lead to an increase in the contribution of (distributed) set-up time to the completion
time of any job. Thus Ci[j](I)¿Ci[j](I ′) for all jobs ai[j], and the
owtime of S given instance
I ′ is no greater than the
owtime of S given instance I . From this it follows that by optimally
solving instance I ′ of the 1‖∑wC problem we obtain a lower bound for the original instance I
with family set-up times. It is also obvious that a more e�ective lower bound will result when∑Ni

j=1 �i[j] = 1.
To specify a distributive lower bound it is necessary to de�ne a distribution scheme governing

the values of �. Although a family set-up time may, in fact, be distributed in any fashion amongst
the jobs of that family, some distribution schemes will be more e�ective than others. For the
1|si|

∑
wC problem, there exists a particular scheme which dominates all alternatives. In this

dominant distribution scheme, the set-up time for each and every family is distributed with the
aim of providing equal weighted processing times for all jobs belonging to the family. If insu�cient
set-up time is available for some family i, the k jobs receiving distributed set-up time (k¡Ni)
are those with the least weighted processing time in I , and the set-up time si is distributed such
that the weighted processing times of these ‘�rst’ k jobs are identical in the modi�ed instance I ′.
Proof of this result can be found in Reference [19].
Distribution of set-up times according to the above distribution scheme provides job ai[j] with a

‘delay’ due to distributed set-up time to its family. This delay is equal to si time units if �i[j] = 0,
or
∑j

j′=1 �i[j′]si6si if �i[j]¿0. In any feasible sequence for the 1|si|
∑
wC problem every job

ai[j] is ‘delayed’ by at least si time units due to scheduled set-ups for its own family.
A correction constant may be added to the value of any distributive lower bound, in order to

compensate for the fact that some jobs are not delayed by a full si time units due to distributed
set-up times for their family. This correction constant takes a value as given by (3)

G∑
i=1

Ni∑
j=1

wi[j]si

(
1−

j∑
j′=1

�i[j′]

)
(3)

It can be observed that there is a term for each job ai[j] in an expansion of (3). Each term ensures
that the respective job has a total delay due to set-ups for its own family i equal to si time units.
Taking any job ai[j] in an arbitrary sequence S, the di�erence between the completion times of

this job in instances I and I ′ cannot be less than the value of the relevant term in (3). Thus, a
distributive lower bound with a correction constant will be a valid lower bound for 1|si|

∑
wC.

The value of (3) may be calculated in O(N) time, and from this point onwards we will assume
that a distributive lower bound includes the correction constant.
We note that the distributive lower bound idea is widely applicable in the development of lower

bounds for scheduling problems with sequence-independent set-up times. Crauwels [14] investigates

Copyright ? 2000 John Wiley & Sons, Ltd. J. Sched. 2000; 3:51–69

58 S. DUNSTALL, A. WIRTH AND K. BAKER

such a bound for the 1|si|
∑
U problem, this bound being developed independently from our own

work. The lower bound for 1|si|Lmax devised by Hariri and Potts [27] is also similar in some
ways to a distributive lower bound. Two further examples will be considered here, one involving
parallel machines and the other dynamic job arrivals.
In the R|si|

∑
C problem the allocation of jobs to machines in an optimal schedule is generally

not known in advance. Thus, a maximum of si time units may be distributed to family i jobs
(16i6G), regardless of the number of machines. After distribution of set-up times, the resulting
R‖∑C problem may be solved in O(N 3) time using the optimal algorithms proposed by Horn
[28] or Bruno et al. [29]. If the parallel machines are identical the problem without set-up times
can be solved in O(N logN) time [30; 31].
For the 1|rj; si|

∑
C problem, construction of an alternative instance solvable in polynomial time

as a 1|rj; pmtn|
∑
C problem (see Reference [30]) follows expression (2) as well as r′i[j] = ri[j]−si,

where r′i[j] is the ready time of job ai[j] in the transformed instance I
′. Note that this ready time

applies to the entire p′
i[j] processing time units of ai[j] in I

′. The necessity for the adjustment of
job ready times can be established in a straightforward manner, and mirrors the need for due dates
to be modi�ed in Crauwels’ lower bound for the 1|si|

∑
U problem.

5. A PRECEDENCE-BASED LOWER BOUND

The second of the new bounds is similar to the lower bound devised by Schutten et al. [32]
for solution of the 1|rj; si|Lmax problem. Lawler [33] has shown that the 1|series–parallel|

∑
wC

problem can be solved in polynomial time. In the case of the 1|tree|∑wC problem, Horn’s
algorithm [34] can be used to provide an optimal sequence in O(N logN) time. The ‘SWPT-within-
families’ rule for 1|si|

∑
wC implies that a chain precedence structure can be imposed between

the jobs of each family without increasing the
owtime of an optimal sequence or making such a
sequence infeasible. Furthermore, a set-up must precede the �rst job of a family.
The basis of a lower bound for the 1|si|

∑
wC problem is seen in the above. An instance I of

1|si|
∑
wC may be transformed into an instance I ′ of 1|chain|∑wC, and the optimal
owtime of I ′

used as a lower bound for I . The transformation is straightforward. First, order (and index) the jobs
of I according to the ‘SWPT-within-families’ rule. Then, for each family, impose precedence con-
straints such that job ai[j] becomes a direct predecessor of ai[j+1] for all 16j¡Ni, and introduce for
each family a dummy set-up job ai[0] of weight zero and processing time si. The resulting instance
I ′ can be solved simply. It is convenient to refer to this lower bound as the chain lower bound.
The solution of I ′ will be described here in terms of Horn’s algorithm. At any decision point,

Horn’s algorithm calls for the evaluation of each of the jobs currently available. The job selected
for sequencing will be that with the best family tree of all available jobs. A family tree of some
job (node) k in a precedence graph is de�ned as any tree, contained within this graph, which is
rooted at k. For any family tree S one may calculate the combined weight W (S)=

∑{wj : j∈ S}
and processing time P(S)=

∑{pj : j∈ S} of the jobs in S, where pj is the processing time of
the job at node j. For any node k the family tree with the least value of P=W , i.e. smallest total
weighted processing time, may be identi�ed. Such a family tree is termed the maximal family tree
of node k. The best family tree is the maximal family tree with the smallest value of P=W out of
all maximal family trees rooted at nodes corresponding to currently available jobs.
The properties of I ′ are such that if there were no set-up times, every maximal family tree will

contain the node at its root, plus only those nodes corresponding to jobs with the same weighted

Copyright ? 2000 John Wiley & Sons, Ltd. J. Sched. 2000; 3:51–69

LOWER BOUNDS AND ALGORITHMS FOR FLOWTIME MINIMIZATION 59

processing time. This is because the precedence constraints are agreeable with the weighted
processing times of jobs. When set-up times are included, a maximal family tree from a node
corresponding to some set-up job ai[0] will contain the nodes for the �rst gi jobs of family i,
whereas a maximal family tree from a node corresponding to some job ai[j] (j¿0) will once
again only contain the node at its root and nodes corresponding to jobs (of the same family) with
the same weighted processing time.
Interestingly, for any family i; gi is equal to the minimum number of jobs that must be included

in the �rst batch of family i in order for Rule 1 to be satis�ed, and is given by

gi=




Ni if
si +

∑Ni
j=1 pi[j]∑Ni

j=1 wi[j]
¿
pi[Ni]
wi[Ni]

min
gi′


g′i : si +

∑g′i
j=1 pi[j]∑g′i

j=1 wi[j]
¡
pi[g′i+1]
wi[g′i+1]


 otherwise

It should be clear from the above that Horn’s algorithm will always sequence a set-up job ai[0]
for family i and jobs ai[1] to ai[gi] contiguously.
An e�cient implementation of the chain lower bound calculates gi for each family i and then

combines jobs {ai[0]; : : : ; ai[gi]} into a composite job with processing time si+
∑gi

j=1 pi[j] and weight∑gi
j=1 wi[j]. The G composite jobs and N −∑G

i=1 gi remaining jobs can then be arranged into a
SWPT-ordered sequence. This sequence will be optimal for the modi�ed instance I ′ and a lower
bound for the original instance I of 1|si|

∑
wC.

6. LOWER-BOUND COMPARISON

Consider the construction of a sequence SD, for instance I ′, generated by the distributive lower
bound. Within any family, every job receiving distributed set-up time has the same weighted
processing time. Let the set of family i jobs with distributed set-up time be JD

i . If job ai[j] ∈JD
i

is to be appended next to SD, then this and every other job in JD
i has a weighted processing time

no greater than any other job of family i, and all jobs in JD
i can be appended to SD. Thus, there

is an optimal solution to I ′ which has every job in JD
i scheduled contiguously and in accordance

with their original SWPT order (i.e. ai[j] precedes ai[j+1]), for each family i. Furthermore, the
weighted processing time of the batch composed of JD

i is equal to the weighted processing time
of each job in JD

i (including distributed set-up time).
The jobs in set JD

i can be combined into a composite job that will precede all other family i
jobs in at least one optimal solution for instance I ′. An optimal solution for I ′ can be generated
by sequencing composite jobs and the jobs not receiving distributed set-up time in SWPT order.
The jobs in set JD

i will be the same jobs which are grouped with the dummy set-up job
in the chain lower bound, i.e. JD

i = {ai[1]; : : : ; ai[gi]}. If composite jobs are formed within the
distributive lower bound, the set of jobs sequenced by the chain lower bound will be identical
in all respects to the set of jobs sequenced by the distributive lower bound. Moreover, the two
lower bounds will provide identical sequences. After these sequences are formed, composite jobs
may be disaggregated into their components. Let Ci[j](S) be the completion time of job ai[j] given
sequence S, S containing jobs and either dummy set-up jobs or distributed set-up times.

Copyright ? 2000 John Wiley & Sons, Ltd. J. Sched. 2000; 3:51–69

60 S. DUNSTALL, A. WIRTH AND K. BAKER

Figure 1. A comparison of completion times generated by the chain and distributive lower bounds.

The di�erence between the disaggregated sequences for the chain (SC) and distributive (SD)
lower bounds is highlighted by Figure 1 (in this �gure, jobs ai[1] to ai[3] were initially assigned
to a single composite job). We see that some completion times in SD may be less than the
corresponding completion times in SC. It can also be observed that every job ai[j] which has
Ci[j](SC)¿Ci[j](SD) is a job with distributed set-up time in SD.
The crucial result is that the di�erence in weighted job completion times

wi[j] [Ci[j](SC)− Ci[j](SD)]
for ai[j] takes the same value as the term associated with this job in (3), the correction constant
for the distributive lower bound. Thus, the correction constant accounts exactly and equally for the
sum of di�erences in weighted job completion times. Therefore, although the two lower bounds
are based upon di�erent ideas, the chain and distributive lower bounds are in fact equivalent.
The Mason and Anderson lower bound is dominated by the chain and distributive lower bounds.

This result is established simply. Consider that the
owtime FW of a sequence is comprised of a
component FPW due to job processing times and FSW due to set-up times. When �nding a lower
bound for the
owtime of unscheduled jobs, it is noted by Mason and Anderson that the value of
FPW is minimized when all jobs appear in SWPT order throughout a sequence (regardless of the
number or location of set-up times). De�ne LBPW to be this minimum-possible value of FPW . For
sequence SC generated by the chain lower bound, the value of FPW can be no less than LBPW , and
typically will be greater than it.
The FSW component of SC is equal to the minimum-possible value LBSW credited by the Mason

and Anderson lower bound only when in SC all jobs belonging to either the ‘incumbent’ family or
families with zero set-up times are placed at the beginning of the sequence (in some order), and all
other families appear ‘unsplit’, i.e. as in a ‘GT solution’. The families with non-zero set-up times
will appear in SC in non-decreasing order of s=W . If SC is not of the above form FSW¿LB

S
W . Thus

due to each component of
owtime being no less in value for the chain lower bound, compared
to the Mason and Anderson lower bound, the latter is dominated by the new lower bounds.

7. A BRANCH-AND-BOUND ALGORITHM

Our branch-and-bound algorithm is essentially the same as that of Mason and Anderson, except
that we have substituted the more powerful chain lower bound and all of the available dominance

Copyright ? 2000 John Wiley & Sons, Ltd. J. Sched. 2000; 3:51–69

LOWER BOUNDS AND ALGORITHMS FOR FLOWTIME MINIMIZATION 61

rules. The chain lower bound has been chosen over the distributive lower bound as it is easier to
implement.
As observed by Crauwels et al. [13], pre-processing of an instance can be undertaken in order

to reduce the apparent size of the instance. Pre-processing forms composite jobs, these being
collections of individual jobs which can be shown to be always sequenced together in at least one
optimal sequence for the instance. A composite job has a processing time equal to the sum of the
processing times of its component jobs, and its weight is likewise the sum of the weights of its
component jobs. The formation of composite jobs merely increases the
owtime of a sequence by
a constant, so that the form of an optimal solution to the instance is not altered.
Dominance Rule 1 states that in an optimal solution for a 1|si|

∑
wC problem any batch starting

with a given job ai[j] must contain enough jobs to enable the WPT of the next unscheduled job
of the same family to be greater than the current WMPT of the batch. Let �min(i; j) denote the
minimum number of jobs in a batch beginning with ai[j]. For any job the value of �min(i; j) can
be determined by applying

�min(i; j)=




Ni − j + 1 if
si +

∑Ni
k=j pi[k]∑Ni

k=j wi[k]
¿
pi[Ni]
wi[Ni]

min
�′


�′: si +

∑j+�′−1
k=j pi[k]∑j+�′−1

k=j wi[k]
¡
pi[j+�′]
wi[j+�′]


 otherwise

Crauwels et al. determine �min(i; 1) for the �rst job of each family during pre-processing, and
use this information to form composite jobs. Composite jobs of same-family jobs with identical
values of weighted processing time are also formed.
In the implementation of the branch-and-bound algorithm described in this paper the value of

�min(i; j) is calculated for every job of every family during pre-processing. For the �rst job of
each family, and for multiple jobs with identical WPT values, composite jobs are formed in the
manner of Crauwels et al.
For a job ai[j] not included in these composite jobs, �min(i; j) is recorded along with other

data relating to the ‘minimum size’ of a batch starting with job ai[j]. This data consists of the
following: a ‘reference’ to the last job ai[j′] which must be included in a batch starting with

ai[j]; the total time of this ‘minimum size’ batch starting with ai[j], T = si +
∑j′

k=j pi[k]; the

weight of the ‘minimum size’ batch, W =
∑j′

k=j wi[k]; and the ‘composite job correction constant’,

CJC=
∑j′

k=j+1

(
pi[k]

∑k−1
k′=j wi[k′]

)
.

The storage of this data allows Rule 1 to be satis�ed during a single step in the construction
of a new batch. The current schedule completion time t can be updated by adding T , and the
value of CJC is such that the value of FW (for the partial sequence) can be updated using FW ←
FW + Wt − CJC. Clearly, a number of operations may be saved through use of this approach,
which can be compared to a job-by-job approach to the satisfaction of Rule 1. Furthermore, the
same data is also of use when calculating the lower bound at a node. The data in question is able
to be determined in O(N) time during an initial stage of the branch-and-bound algorithm.
An initial upper bound for the algorithm is obtained from a high-quality heuristic solution. In

our implementation we have used a modi�ed version of the binary-representation-based descent
heuristic developed by Crauwels. The implemented heuristic mimics the operation of the ‘binary-
based’ heuristic, but uses a permutation-based representation in order to reduce the computational

Copyright ? 2000 John Wiley & Sons, Ltd. J. Sched. 2000; 3:51–69

62 S. DUNSTALL, A. WIRTH AND K. BAKER

burden associated with the encoding and decoding of sequences. This re�nement has led to very
signi�cant computation time gains in practice.
The number of starts given to the heuristic was varied depending upon the projected di�culty

of the instance (i.e. based upon the set-up times and number of jobs). Three starts were used for
30 and 40 job instances, while 10 starts were used when solving 60 and 70 job instances. For
instances with 50 jobs, either 3 or 10 starts were used depending on whether the instance was
generated with ‘medium’ or ‘small’ set-up times (respectively).
The decision to vary the number of starts stemmed from our observation that average branch-and-

bound computation time could be reduced by up to a second or more if a high-quality initial upper
bound was used when solving di�cult instances (e.g. those with 60 or more jobs), compared to a
case where the initial upper bound deviates signi�cantly from optimal. This e�ect was observed by
solving a representative set of instances a number of times, on each occasion varying the proximity
of the initial upper bound to the optimal solution. In general, we consider a high-quality upper
bound to be such that we can be con�dent it is within at least 0.1 per cent of the optimal solution.
Such proximity is quite easily achieved by our chosen heuristic.
The procedure for the lower bound is formulated in such a way as to allow its evaluation in

O(N) time at the nodes of a branch-and-bound search tree. This running-time bound is achieved by
careful calculation and storage of key elements of data in the initialization stage of the algorithm.
Some of this data is the minimum batch size information referred to above. In the most important
step two lists are created. In both lists an element is assigned to each job, and the elements are
sorted. Elements in the ‘jobs’ list are ordered according to SWPT for individual jobs without set-up
times. In the ‘batches’ list elements are ordered according to the SWMPT of the ‘minimum size’
batch beginning with the job concerned. Ties are broken by family index and then by job index.
These two lists are merged into one list L which has 2N elements arranged in non-decreasing
time/weight order of their associated jobs or batches. The number of operations required for the
initialization phase is O(N logN).
When calculating the lower-bound value at a node in the search tree, list L is scanned once. This

scan begins with the �rst element in the list, element L1, and then progresses through the elements
L2; : : : ; L2N in turn. Consider the case where the current element Lk belonged to the ‘batches’ list,
is assigned to the next unscheduled job ai[j] of some family i, and a set-up for family i is allowed
but not yet scheduled in the lower-bound sequence. In this case ai[j] will be sequenced, along with
a set-up for family i and any other jobs in the relevant ‘minimum size’ batch. Alternatively, the
job ai[j] to which Lk is assigned will be sequenced if Lk belonged to the ‘jobs’ list, ai[j] is the next
unscheduled job of its family, and no further set-ups for family i are allowed in the lower-bound
sequence.
Element Lk is ignored if neither of these two cases holds. Naturally, information about the next

unscheduled job of a family is updated whenever jobs are added to the lower-bound sequence.
The above procedure allows calculation of the lower bound in O(N) operations.

8. COMPUTATIONAL EXPERIENCE

The performance of the branch-and-bound algorithm has been evaluated using two series of com-
putational experiments. All computational tests have been carried out on an desktop PC equipped
with a 133 MHz processor and 32 megabytes of RAM, and the algorithms have been coded in
Pascal using Delphi 3.

Copyright ? 2000 John Wiley & Sons, Ltd. J. Sched. 2000; 3:51–69

LOWER BOUNDS AND ALGORITHMS FOR FLOWTIME MINIMIZATION 63

The �rst series of tests involved the solution of 37 100-instance data sets. For this series,
instances with ‘small’, [0; 50], and ‘medium’, [0; 100], set-up times have been generated, as have
instances with [1; 100], [1; 10] and [1; 1000] processing time ranges (in the case of the latter two
ranges the set-up time limits have been adjusted accordingly). Job weights were sampled from
the range [1; 10], except where noted. All of the above values are integers sampled from uniform
distributions.
Most instances have been generated with an ‘equal’ number of jobs per family (i.e. bN=Gc

or dN=Ge). This is because our preliminary computational testing showed that, on average, such
instances are harder to solve than comparable instances with an ‘unequal’ number of jobs per
family. Correlated with this greater di�culty is an increase in the mean number of batches in an
optimal sequence, this providing a plausible explanation for the e�ect.
We have implemented all available dominance rules, including Rule 6 and the DPDR. The state

information for the DPDR is held within a tree-structure, each level corresponding to a di�erent
variable in the state vector (n1; : : : ; nG; i) for the 1|si|

∑
wC problem (this vector de�ned as in

Reference [1]). We have imposed a limit of one million on the number of nodes in this DPDR
tree, this corresponding to about 20 Mbytes of stored information. If this limit was reached the
enumeration was terminated.
Some instances from four di�erent sets exhibited a requirement for more than a half million

DPDR nodes, and 18 instances in total could not be solved within the DPDR node limit. We
did not impose a computation-time limit or a limit on the number of nodes in the search tree.
A depth-�rst search is used, so that the algorithm need only store O(GN) nodes at any one instant,
and the DPDR becomes the only memory-intensive aspect of the algorithm.
Table I summarizes the branch-and-bound algorithm performance on instances with small set-up

times. The node count for this table includes all nodes from which expansion of the search tree is
considered, including those from which no non-dominated child nodes are possible. PTR denotes
the range over which processing times are uniformly distributed.
It is seen that instances with 50 or fewer jobs can be e�ciently solved by the branch-and-bound

algorithm, although computation times for some 50-job instances are in excess of one second. It
can be observed from Table I that the new algorithm performs better when processing times are
sampled from the restrictive [1; 10] range, an e�ect that further computational testing has con�rmed.
This appears to be due primarily to a small improvement in the performance of the lower bound.
The dependency of search-tree size upon N is clear from Table I, with the average number of
nodes increasing by a factor between about two and �ve for each additional 10 jobs.
A comparison with the ACT results provided in Crauwels et al. [13] indicates that the new

branch-and-bound algorithm is faster, on average and in direct terms, for all comparable instance
speci�cations other than those with N¿60 and G=15. We claim, therefore, that our algorithm
will be competitive with the Crauwels et al. algorithm when processing times are distributed over
[1; 10], and that it will be superior when processing times are not restricted. For the instances
with N =70, G=15 the DPDR node limit for the new algorithm was exceeded 16 times. Due
to the frequency with which the DPDR node limit was reached the use of the new algorithm
on instances with more than 60 jobs cannot be recommended unless the number of families is
restricted or mean set-up times are greater than those studied in Table I.
When branch-and-bound computation times are excessive the adoption of a heuristic solution is

a more attractive alternative. Table I provides the observed average computation time required for
computing the initial upper bound and the maximum percentage deviation from optimal (MaxPD)
of this upper bound. It is clear from this data that Crauwels’ binary-descent heuristic is able to

Copyright ? 2000 John Wiley & Sons, Ltd. J. Sched. 2000; 3:51–69

64 S. DUNSTALL, A. WIRTH AND K. BAKER

Table I. Branch-and-bound performance: small set-up times.

Small setup times Computation Time (ms) Number of nodes Root node LB Initial UB Batches

N G PTR Mean Max Mean Max Mean(%) ACT MaxPD(%) Mean

30 4 [1,100] 19 40 108 364 96.22 9 0.19 9.8
8 [1,100] 33 152 176 947 97.04 10 0.00 15.3
12 [1,100] 28 130 127 704 97.92 10 0.00 18.1

40 4 [1,100] 42 130 307 1285 95.87 12 1.01 11.6
8 [1,100] 118 815 710 5752 96.33 14 0.08 17.4
12 [1,100] 110 502 617 2680 97.09 15 0.11 21.5

50 4 [1,100] 119 240 653 1982 95.64 51 0.44 12.0
6 [1,100] 306 783 1824 5424 95.72 56 0.09 16.6
8 [1,100] 486 1777 2684 11274 95.85 58 0.14 19.3
10 [1,100] 689 5556 3468 29145 96.36 62 0.03 22.3
12 [1,100] 682 3356 3497 19625 96.68 63 0.00 24.1
15 [1,100] 612 4297 2940 23201 97.17 69 0.01 26.9

50 8 [1,10] 371 1931 1919 9787 96.63 60 0.11 21.8
[1,10]∗ 258 1573 1322 8362 96.46 55 0.02 20.4
[1,100]† 823 8934 4957 55463 96.11 50 0.11 15.9
[1,100]‡ 487 2853 2531 15827 96.03 63 0.02 20.7

60 4 [1,100] 228 522 1526 4653 95.71 63 0.14 13.4
8 [1,100] 1979 20403 10726 119888 96.64 73 0.03 21.2
15 [1,100] 4486 40986 20284 171470 96.64 90 0.01 30.0

70 4 [1,100] 514 2350 3737 18940 95.77 77 0.23 14.6
8 [1,100] 6695 51918 35415 293231 95.64 89 0.07 22.8
15 [1,100] 17150 64817 71122 283687 96.34 111 0.05 32.4

∗Unequal number of jobs per class
†Unit weights
‡Weights [1,100]

quickly deliver solutions of very high quality. This performance is in agreement with data provided
by Crauwels for problems with processing times distributed over [1; 10]. For the task of scheduling
more than 50 jobs this heuristic algorithm will often represent the most attractive solution method.
The search tree is larger for our branch-and-bound algorithm in comparison to that of the

algorithm of Crauwels et al. Naturally, this is due to the use of our new lower bound, which is
not as strong as the Lagrangian bound. However the quickly computed ‘chain’ lower bound appears
to be free of the computation-time penalties that would be incurred when using the Lagrangian
lower bound to solve problems with ‘unrestricted’ ranges of processing times.
We have observed in further testing that the minimization of �F is generally more di�cult than

the minimization of Fw, for all instances with set-up times [0; 50] and below. This occurs despite
the clear trend for Fw problems to have more batches in an optimal sequence compared to �F
problems. For ranges of set-up times closer to the range of processing times the opposite trend
has been observed.
A plausible reason for this e�ect does not come to mind readily. However, we have obtained

some insight by looking at the ratio of weighted to unweighted
owtime (Fw=N �F). For ‘small’

Copyright ? 2000 John Wiley & Sons, Ltd. J. Sched. 2000; 3:51–69

LOWER BOUNDS AND ALGORITHMS FOR FLOWTIME MINIMIZATION 65

set-up times this ratio had a value of 4:62 when averaged over each instance with 50, 60 or 70
jobs, [1; 100] processing time ranges and ‘equal’ numbers of jobs per family. A comparison of
this value to the expected job weight of 5:5 shows that jobs with higher weights are not uniformly
spread throughout optimal sequences for Fw, but instead are concentrated near the beginning of
the sequence.
Although this result is expected it does con�rm that job weights have a strong in
uence on the

composition of an optimal sequence. Certainly, if job weights were spread over an extraordinarily
large range the sequence could be constructed easily, by ignoring time and sequencing largest
weight �rst. Nevertheless, when job weights were distributed over a relatively large range, [1; 100],
there was only a minor e�ect upon any measure of interest (see Table I).
For a similar set of instances the value of Fw=N �F rose to 4:67 and 4:78 when set-up times were

distributed over [0; 100] and [0; 200] (respectively), indicating that weights become less in
uential
as set-up times increase. This is intuitively clear, because larger set-up times are expected to have
an increased in
uence on the form of the optimal sequence. When set-up times are ‘medium’ or
greater, Fw problems are generally more di�cult to solve compared to �F problems, at least for
the branch-and-bound algorithm. This reversal in the trend observed for ‘small’ set-ups is thought
to be due to a heightened relative in
uence of the number of batches and the universal trend for
the lower bound to perform less e�ectively for the Fw objective.
Problems with small set-up times are signi�cantly harder to solve than instances with larger

set-up time ranges, as a comparison of Table I with the results for ‘medium’ set-up times
(Table II) shows. This observation is in agreement with previously reported computational ex-
periments [6; 13; 14]. For ‘medium’ set-up times the ACT values drop markedly compared to
‘small’ set-up times, as does the search tree size. The lower-bound quality improves compared
to the ‘small’ set-up times case, due to a reduction in the number of batches in an optimal
sequence (and thus a reduction in the underestimation of the set-up time contribution to

owtime).
The new algorithm appears to be quite well equipped to solve problems with ‘medium’ set-up

times and up to 70 jobs, as except for one instance with G=15 and N =70 all instances were
solved within the DPDR node limit. Only a minor e�ect of the range of processing times is
evident in the data. The variation in ACT, tree size, initial upper- and lower-bound performance
between the data sets with [1; 100] and [1; 1000] processing time ranges appears to stem mostly
from natural sampling variability, as no distinct patterns have emerged. Importantly, the mean
number of batches changed only slightly when the maximum processing time was increased from
100 to 1000, even though a change from 10 to 100 yielded a more noticeable e�ect.
A second series of branch-and-bound algorithm tests has allowed a thorough investigation of

the e�ect of set-up time to be made. In order to demonstrate the e�ects of set-up time in the
clearest possible manner we have assigned the same set-up time s to each family when generating
an instance. In total seven levels of set-up time (1; 2; 5; 10; 50; 100 and 500) and 13 levels of G
were studied. For all instances the number of jobs was �xed at 50, the processing time range was
held constant at [1; 100] and weights were uniformly sampled from [1; 10].
The e�ects of set-up time upon algorithm ACT, maximum computation time and the number

of batches in an optimal sequence are clearly seen in Figure 2. This �gure reinforces the key
observation that the set-up times have a very in
uential e�ect on the performance of the branch-
and-bound algorithm.
Instances with family set-up times near or below 10 time units are evidently the most di�cult

to solve using the branch-and-bound algorithm. It is surprising that although SWPT will allow the

Copyright ? 2000 John Wiley & Sons, Ltd. J. Sched. 2000; 3:51–69

66 S. DUNSTALL, A. WIRTH AND K. BAKER

Table II. Branch-and-bound performance: medium set-up times.

Medium setup times Computation time (ms) Number of nodes Root node LB Initial UB Batches

N G PTR Mean Max Mean Max Mean(%) ACT MaxPD(%) Mean

50 4 [1,100] 62 152 481 1408 95.42 9 0.19 10.6
6 [1,100] 146 887 1011 6905 95.66 10 0.00 14.1
8 [1,100] 232 1113 1477 8401 96.17 10 0.00 16.9
10 [1,100] 239 2171 1375 12923 96.71 12 1.01 19.2
12 [1,100] 267 2779 1495 17822 97.09 14 0.08 21.5
15 [1,100] 194 3242 1048 18959 97.66 15 0.11 23.6

50 8 [1,10] 190 1374 1168 8818 96.72 51 0.44 18.5
10 [1,10] 240 1831 1370 11263 97.02 56 0.09 20.4

50 8 [1,1000] 216 2263 1344 15351 96.21 58 0.14 16.5
10 [1,1000] 202 1445 1209 10118 96.81 62 0.03 19.1

60 4 [1,100] 170 490 1055 4315 95.20 63 0.00 11.5
8 [1,100] 969 4802 5369 27908 95.74 69 0.01 19.0
15 [1,100] 963 20200 4840 111350 97.25 60 0.11 26.0

70 4 [1,100] 293 1469 1961 11876 95.15 55 0.02 12.0
8 [1,100] 2432 15407 12904 94272 95.46 63 0.02 19.8
15 [1,100] 4711 45861 20854 197391 96.79 63 0.14 28.4

branch-and-bound algorithm to quickly deal with a problem without set-up times, even instances
with s=1 are not easy to solve optimally.
The relationship present in the plot of ACT against set-up time we believe stems from the

combination of two competing e�ects. The number of batches in an optimal sequence increases as
the set-up time decreases towards approximately a �fth of the mean processing time. In addition,
we expect that the number of non-dominated nodes at each level of the search tree will increase
due to a reduction in the strength of many of the dominance rules. This leads to a marked rise in
ACT and a similar degradation in other measures of algorithm e�ciency. However, as set-up times
continue to be reduced their in
uence recedes. The SWMPT rule becomes increasingly signi�cant,
because the optimal sequence tends towards an SWPT ordering of jobs, and although the search
tree will contain more levels due to the continual increase in the number of batches, ANN results
indicate that the growth in the number of non-dominated nodes is able to be reversed.
There is a strong tendency for instances with 0:16G=N60:4 to be the hardest to solve, at a

given level of s. This observation is in general agreement with previously published experimental
data. The pattern of increases in the mean number of batches, with set-up time and number of
families, is both well de�ned and expected. Of some interest is the result that when the set-up
time is 500, i.e. approximately 10 times the mean processing time, we can still expect at least
one family to have two or more batches in an optimal solution if G.15 (for s=500 the mean
number of batches was observed to be 3:09 and 15:98 for G=2 and 15, respectively).
Figure 2 also allows us to comment on both the bene�ts of incorporating the DPDR and the

increased di�culty associated with solving the mean
owtime problem. It is apparent that when
minimizing FW the memory-intensive DPDR does not generally assist in reducing ACT, whereas
it is generally quite bene�cial when minimizing �F . We have also observed that when utilizing

Copyright ? 2000 John Wiley & Sons, Ltd. J. Sched. 2000; 3:51–69

LOWER BOUNDS AND ALGORITHMS FOR FLOWTIME MINIMIZATION 67

Figure 2. The e�ect of set-up times on the performance of the branch-and-bound algorithm.

a branch-and-bound algorithm without the DPDR, the average number of nodes increased to 2:3
and 1:3 times the value obtained with the DPDR-equipped algorithm, on average, for �F and FW ,
respectively. When solving instances in order to generate Tables I and II no signi�cant overall
di�erence in either average or maximum computation times was observed between the two versions
of the branch-and-bound algorithm.
All of the 9100 instances used in our second series of tests were solved within the DPDR node

limit when minimizing FW , whereas 22 instances were not completely solved for �F (the greatest
number of unsolved instances being four, when s=10 and G=18). From the scale of the plots
concerned it is evident that ACT values may be up to 10 times greater when the �F objective is
addressed, in comparison to FW . We have observed similar trends in DPDR performance and the
e�ect of job weights in maximum computation time data.

9. CONCLUSIONS AND FURTHER WORK

In this paper we have introduced two new lower bounds for the 1|si|
∑
wC problem. These lower

bounds have been shown analytically to dominate the lower bound of Mason and
Anderson [6]. They have also been shown to be equivalent to each other in terms of lower-bound
value. Importantly, the new lower bounds are free of the schedule-length restrictions faced by the
Lagrangian lower bound of Crauwels et al. [13]. Even though the new lower bounds are not as

Copyright ? 2000 John Wiley & Sons, Ltd. J. Sched. 2000; 3:51–69

68 S. DUNSTALL, A. WIRTH AND K. BAKER

strong as the Crauwels et al. bound, their clear in-practice suitability for use within branch-and-
bound algorithms has been highlighted by the computational experiments reported in this paper.
The branch-and-bound algorithm of Mason and Anderson, which was improved in Reference

[13], has been developed further within this paper through the addition of a new dominance rule
and the substitution of the ‘chain’ lower bound. Our computational experience with this algorithm
has shown it to be able to e�ciently solve instances with �fty or more jobs, depending on the
values of set-up times. The computational experiments have also clearly shown the e�ects of
important instance parameters, such as the number of families and the duration of set-up times,
upon the performance of our algorithm and the composition of optimal sequences for the problem.
We believe that the success of the new branch-and-bound algorithm clearly lies with the e�-

ciency and e�ectiveness of the lower bound used. This result is of signi�cant importance for the
task of scheduling with set-up times, because both of the new lower bounds are based on concepts
which can be applied to other problems with sequence-independent set-up times. Some of these
potential applications have been noted here, and the development of algorithms for these and other
problems represents worthy new directions for future research.

REFERENCES

1. Ghosh JB. Batch scheduling to minimize total completion time. Operations Research Letters 1994; 16:271–275.
2. Liaee MM, Emmons H. Scheduling families of jobs with setup times. International Journal of Production Economics
1997; 51:165–176.

3. Potts CN, Van Wassenhove LN. Integrating scheduling with batching and lot-sizing: a review of algorithms and
complexity. Journal of Operational Research Society 1992; 43:395–406.

4. Webster S, Baker KR. Scheduling groups of jobs on a single machine. Operations Research 1995; 43:692–703.
5. Lawler EL, Lenstra JK, Rinnooy Kan AHG, Shmoys DB. Sequencing and scheduling: algorithms and complexity. In
Handbooks in Operations Research and Management Science, vol. 4. Elsevier: Amsterdam, 1993.

6. Mason AJ, Anderson EJ. Minimizing
ow time on a single machine with job classes and setup times. Naval Research
Logistics 1991; 38:333–350.

7. Monma CL, Potts CN. On the complexity of scheduling with batch setup times. Operations Research 1989; 37:
798–804.

8. Rinnooy Kan AHG. Machine Scheduling Problems: Classi�cation; Complexity and Computations. Nijho�: The Hague,
1976.

9. Potts CN. Scheduling two job classes on a single machine. Computers and Operations Research 1991; 18:411–415.
10. Psaraftis HN. A dynamic programming approach for sequencing groups of identical jobs. Operations Research 1980;

28:1347–1359.
11. Ahn BH, Hyun JH. Single facility multi-class job scheduling. Computers and Operations Research 1990; 17:265–272
12. Bruno J, Sethi R. Task sequencing in a batch environment with setup times. Foundations of Control Engineering 1978;

3:105–107.
13. Crauwels HAJ, Hariri AMA, Potts CN, Van Wassenhove LN. Branch and bound algorithms for single machine

scheduling with batch setup times to minimize total weighted completion time. Annals of Operations Research 1998;
83:59–76.

14. Crauwels HAJ. A comparative study of local search methods for one-machine sequencing problems. Ph.D. Thesis, De
Nayer Institute, Belgium, 1998.

15. Gupta JND. Single facility scheduling with multiple job classes. European Journal of Operational Research 1988;
8:42–45.

16. Crauwels HAJ, Potts CN, Van Wassenhove LN. Local search heuristics for single machine scheduling with batch setup
times to minimize total weighted completion time. Annals of Operation Research 1997; 70:261–279.

17. Mason AJ. Genetic algorithms and scheduling problems. Ph.D. Thesis, University of Cambridge, 1992.
18. Baker KR. Solving the weighted completion time problem with batch setups. Working Paper #98-118, Amos Tuck

School of Business Administration, Dartmouth College, 1998.
19. Dunstall S. A study of models and algorithms for machine scheduling problems with setup times. Ph.D. Thesis,

University of Melbourne, Australia, 2000.
20. Williams DN, Wirth A. A new heuristic for a single machine scheduling problem with setup times. Journal of

Operational Research Society 1996; 47:175–180.
21. Nowicki E, Zdrzalka S. Single machine scheduling with major and minor setup times: a tabu search approach. Journal

of Operational Research Society 1996; 47:1054–1064.

Copyright ? 2000 John Wiley & Sons, Ltd. J. Sched. 2000; 3:51–69

LOWER BOUNDS AND ALGORITHMS FOR FLOWTIME MINIMIZATION 69

22. Liao C-J, Liao L-M. Single facility scheduling with major and minor setups. Computers and Operations Research
1997; 24:169–178.

23. Burbidge JL. Production Flow Analysis for Planning Group Technology. Oxford University Press: Oxford, 1989.
24. Sule DR. Sequencing n jobs on two machines with setup, processing and removal times separated. Naval Research

Logistics Quarterly 1982; 29:517–519.
25. Dunstall S, Wirth A. Models and algorithms for machine scheduling with setup times. In: Computer Aided and

Integrated Manufacturing Systems: Techniques and Applications, Leondes C (ed.). Gordon & Breach: London, to
appear.

26. Smith WE. Various optimizers for single stage production. Naval Research Logistics Quarterly 1956; 3:59–66.
27. Hariri AMA, Potts CN. Single machine scheduling with batch set-up times to minimize maximum lateness. Annals of

Operations Research 1997; 70:75–92.
28. Horn WA. Minimizing average
ow time with parallel machines. Operations Research 1973; 21:846–847.
29. Bruno J, Co�man Jr EG, Sethi R. Scheduling independent tasks to reduce mean �nishing time. Communications of

the ACM 1974; 17:382–387.
30. Baker KR. Introduction to Sequencing and Scheduling. Wiley: New York, 1974.
31. Conway RW, Maxwell WL, Miller LW. Theory of Scheduling. Addison-Wesley: Reading, MA, 1967.
32. Schutten JMJ, Van de Velde SL, Zijm WHM. Single-machine scheduling with release dates, due dates and family

setup times. Management Science 1996; 42:1165–1174.
33. Lawler EL. Sequencing jobs to minimize total weighted completion time subject to precedence constraints. Annals of

Discrete Mathematics 1978; 2:75–90.
34. Horn WA. Single-machine job sequencing with treelike precedence ordering and linear delay penalties. SIAM Journal

of Applied Mathematics 1972; 23:189–202.

Copyright ? 2000 John Wiley & Sons, Ltd. J. Sched. 2000; 3:51–69

