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Abstract. In the setting of concurrent self composition, a single protocol is executed
many times concurrently in a network. In this paper, we prove lower bounds and im-
possibility results for secure protocols in this setting. First and foremost, we prove that
there exist large classes of functionalities that cannot be securely computed under con-
current self composition, by any protocol. We also prove a communication complexity
lower bound on protocols that securely compute a large class of functionalities in this
setting. Specifically, we show that any protocol that computes a functionality from this
class and remains secure for m concurrent executions, must have bandwidth of at least
m bits. The above results are unconditional and hold for any type of simulation (i.e.,
even for non-black-box simulation). In addition, we prove a severe lower bound on
protocols that are proven secure using black-box simulation. Specifically, we show that
any protocol that computes the blind signature or oblivious transfer functionalities and
remains secure for m concurrent executions, where security is proven via black-box
simulation, must have at least m rounds of communication. Our results hold for the
plain model, where no trusted setup phase is assumed. While proving our impossibility
results, we also show that for many functionalities, security under concurrent self com-
position (where a single secure protocol is run many times) is actually equivalent to the
seemingly more stringent requirement of security under concurrent general composi-
tion (where a secure protocol is run concurrently with other arbitrary protocols). This
observation has significance beyond the impossibility results that are derived by it for
concurrent self composition.

Key words. Secure computation, Protocol composition, Self and general composi-
tion, Impossibility results, Lower bounds, Non-black-box and black-box simulation.

1. Introduction

In the setting of two-party computation, two parties with respective private inputs x and
y, wish to jointly compute a functionality f (x, y) = (f1(x, y), f2(x, y)), such that the
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first party receives f1(x, y) and the second party receives f2(x, y). This functionality
may be probabilistic, in which case f (x, y) is a random variable. Loosely speaking, the
security requirements are that nothing is learned from the protocol other than the out-
put (privacy), and that the output is distributed according to the prescribed functionality
(correctness). These security requirements must hold in the face of an adversary who
controls one of the parties and can arbitrarily deviate from the protocol instructions (i.e.,
in this work we consider malicious, static adversaries). In the stand-alone model, pow-
erful feasibility results have been shown for this problem, demonstrating that any two-
party probabilistic polynomial-time functionality can be securely computed, assuming
the existence of trapdoor permutations [19,36].

Security under Concurrent Composition As we have mentioned, the feasibility results
of [19,36] relate only to the stand-alone setting, where a single pair of parties run a
single execution. A more general (and realistic) setting relates to the case that many
protocol executions are run concurrently within a network. Unfortunately, the security
of a protocol in the stand-alone setting does not necessarily imply its security under
concurrent composition. Therefore, it is important to re-establish the feasibility results
of the stand-alone setting for the setting of concurrent composition, or alternatively, to
demonstrate that this cannot be done.

The notion of protocol composition can be interpreted in many ways. A very impor-
tant distinction to be made relates to the context in which the protocol is executed. This
refers to the question of which protocols are run together in the network, or in other
words, with which protocols should the protocol in question compose. There are two
contexts that have been considered, defining two classes of composition:

1. Self composition: A protocol is said to be secure under self composition if it re-
mains secure when it alone is executed many times in a network. We stress that
in this setting, there is only one protocol that is being run many times. This is
the type of composition considered, for example, in the entire body of work on
concurrent zero-knowledge (e.g., [12,34]).

2. General composition: In this type of composition, many different protocols are run
together in the network. Furthermore, these protocols may have been designed in-
dependently of one another. A protocol is said to maintain security under general
composition if its security is maintained even when it is run along with other arbi-
trary protocols. This is the type of composition that was considered, for example,
in the framework of universal composability [5].

We stress a crucial difference between self and general composition. In self composi-
tion, the protocol designer has control over everything that is being run in the network.
However, in general composition, the other protocols being run may even have been
designed maliciously after the secure protocol is fixed. This additional adversarial ca-
pability has been shown to yield practical attacks against real protocols [23].1

Another distinction that we will make relates to the number of times a secure proto-
col is run. Typically, a protocol is expected to remain secure for any polynomial number

1 Although the attacks shown in [23] are due to key reuse, they demonstrate the point that the setting of
general composition poses a real security threat. Specifically, [23] show how the adversary can construct new
protocols whose entire aim is to compromise the security of existing protocols.
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of sessions. This is the “default” notion, and we sometimes refer to it as unbounded
concurrency. A more restricted notion, first considered by [1], is that of bounded con-
currency. In this case, a fixed bound on the number of concurrent executions is given,
and the protocol only needs to remain secure when the number of concurrent executions
does not exceed this bound. When the bound is m, we call this m-bounded concurrency.
We note that the protocol design may depend on this bound.

Finally, we will distinguish between a setting where parties have fixed roles versus
a setting where they may have interchangeable roles. For the sake of this distinction,
note that protocols typically involve different roles. In general, in a two-party protocol,
one role may be the protocol initiator while the other is the protocol responder. More
notable examples of roles arise in specific cases. For example, in zero-knowledge, there
are two different roles: the prover role and the verifier role. Now, in the setting of com-
position with fixed roles, each party assumes the same role in all of the executions.
In contrast, in the setting of composition with interchangeable roles, parties may as-
sume different roles in different executions. The latter setting, of interchangeable roles,
is more general and in many cases is what is needed. However, there are some cases
where fixed roles also make sense (for example, when one party is a server and the
other a client).

It is also possible to distinguish the case that a single set of parties run all of the exe-
cutions from the case that different, and possibly overlapping, sets of parties participate
in the protocol executions. However, in this paper, since our focus is on impossibility
results, it suffices for us to consider the simpler, more restricted case, where a single set
of parties run all executions (both in the setting of concurrent self composition and in
the setting of concurrent general composition).

Feasibility of Secure Computation under Composition The first definition and compo-
sition theorem for security under concurrent general composition was presented by [11]
for the case of perfect security in the information-theoretic setting. Next, [31] consid-
ered the computational setting and the case that a secure protocol is executed once in an
arbitrary network.2 The unbounded case, where a secure protocol can be run any poly-
nomial number of times in an arbitrary network, was then considered in the framework
of universal composability [5]. Informally speaking, a protocol that is proven secure
under the definition of universal composability is guaranteed to remain secure when run
any polynomial number of times in the setting of concurrent general composition. This
setting realistically models the security requirements in modern networks. Therefore,
the construction of protocols that are secure by this definition is of great importance.
On the positive side, it has been shown that in the case of an honest majority, essentially
any functionality can be securely computed in this framework [5]. Furthermore, even
when there is no honest majority, it is possible to securely compute any functionality
in the common reference string (CRS) model [8]. In the CRS model, all parties have
access to a common string that is chosen according to some distribution. Thus, this as-
sumes some trusted setup phase. However, it is desirable to obtain protocols in a setting
where no trusted setup phase is assumed. Unfortunately, in the case of no honest ma-
jority and no trusted setup, broad impossibility results for universal composability have

2 An earlier reference to this problem with general ideas about how to define security appeared in [3,
Appendix A].
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been demonstrated [5,6,9]. Recently, it was shown in [27] that these impossibility re-
sults extend to any security definition that guarantees security under concurrent general
composition (including the definition of [31]).

Thus, it seems that in order to obtain security without an honest majority or a trusted
setup phase, we must turn to self composition. Indeed, as a first positive step, it has been
shown that any functionality can be securely computed under m-bounded concurrent
self composition [25,30].
However, these protocols are highly inefficient: The protocol of [25] has many rounds of
communication and both the protocols of [25] and [30] have high bandwidth. (That is, in
order to obtain security for m executions, the protocol of [25] has more than m rounds
and communication complexity of at least mn2 where n is the security parameter. In
contrast, the protocol of [30] has only a constant number of rounds, but still suffers from
communication complexity of at least mn2.) These works still leave open the following
important questions:

1. Is it possible to obtain protocols that remain secure under unbounded concurrent
self composition, and if yes, for which functionalities?

2. Is it possible to obtain highly efficient protocols that remain secure under m-
bounded concurrent self composition? (By highly efficient, we mean that the
dependence on the bound m is either additive (e.g., m + poly(n) or poly(m) +
poly(n)), or sublinear (e.g., mε · poly(n) for some small constant 0 < ε < 1).3)

As we have mentioned, these questions are open for the case that no trusted setup phase
is assumed and when there is no honest majority, as in the important two party case.

Our Results In this paper, we provide negative answers to the above two questions.
More precisely, we show that there exist large classes of functionalities that cannot be
securely computed under unbounded concurrent self composition, by any protocol. We
also prove a communication complexity lower bound for protocols that are secure under
m-bounded concurrent self composition (by communication complexity, we mean the
bandwidth or total number of bits sent by the parties during the execution). This is the
first lower bound of this type, connecting the communication complexity of a protocol
with the bound on the number of executions for which it remains secure. We begin with
our impossibility result.

Theorem 1.1 (Impossibility for unbounded concurrency—informal). There exist large
classes of two-party functionalities that cannot be securely computed under unbounded
concurrent self composition, by any protocol.

In order to prove this result, in Section 3 we show that for many functionalities, ob-
taining security under unbounded concurrent self composition is actually equivalent to
obtaining security under concurrent general composition (that is, a protocol is secure
under one notion if and only if it is secure under the other). This may seem counter-
intuitive because in the setting of self composition, the protocol designer has full control

3 Notice that a protocol whose complexity has no dependence on m can be used to achieve unbounded

concurrency by setting m = nlogn. Therefore, given that unbounded concurrency cannot be achieved, some
dependence on m is necessary.
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over the network. Specifically, the only protocol that is run in the network is the speci-
fied secure protocol. In contrast, in the setting of general composition, a protocol must
remain secure even when run concurrently with arbitrary other protocols. Furthermore,
these protocols may be designed maliciously in order to attack the secure protocol. De-
spite this apparent difference, we show that equivalence actually holds. We now briefly
describe how this is proven.

The above-described equivalence between concurrent self and general composition
is proven for all functionalities that “enable bit transmission”. Loosely speaking, such
a functionality can be used by each party to send any arbitrary bit to the other party.
In the setting of interchangeable roles (described above), essentially any functionality
that depends on the parties’ inputs (and so is non-trivial) enables bit transmission. In the
setting of fixed roles, it is also required that both parties receive non-trivial output; see
Section 2.4.

Now, many executions of a protocol that securely computes a functionality that en-
ables bit transmission can be used by the parties to send arbitrary messages to each
other. Essentially, this means that many executions of one secure protocol can be used
to emulate the execution of any arbitrary protocol. Thus, the setting of general compo-
sition, where a secure protocol runs concurrently with other arbitrary protocols, can be
emulated (using the bit transmission property) by many executions of a single secure
protocol. We therefore obtain that security under concurrent self composition implies
security under concurrent general composition. Since, trivially, security under general
composition implies security under self composition, we obtain equivalence between
these two notions. We conclude that although general composition considers a very
difficult scenario (in which arbitrary network activity must be considered), for many
functionalities it is actually equivalent to the seemingly more restricted setting of self
composition. That is, we have the following theorem:

Theorem 1.2 (Equivalence of self and general composition—informal). Let f be any
two-party functionality. Then, in the setting of interchangeable roles, f can be securely
computed under unbounded concurrent self composition if and only if it can be securely
computed under concurrent general composition. If f is a functionality that enables bit
transmission, then equivalence also holds in a setting with fixed roles.

As stated in Theorem 1.2, in the setting of interchangeable roles, we obtain full equiva-
lence between concurrent self and general composition (without any additional require-
ment regarding bit transmission). This is the case because when interchangeable roles
are allowed, all functionalities are either trivial (to the extent that they can be computed
without any interaction) or enable bit transmission.4

A natural question to ask is whether or not in the setting of fixed roles, equivalence
also holds for functionalities that do not enable bit transmission. In Section 3.3, we

4 Recall that in this work we only consider the case that the same set of parties run all of the protocol
executions. Thus, we actually only prove equivalence between concurrent self composition and concurrent
general composition in this setting. We remark that the proof of equivalence can easily be extended to the case
that possibly different sets of parties participate in the executions (as long as there may be different sets of
parties in both the settings of self and general composition). Furthermore, as shown in [27], the impossibility
results for concurrent general composition all hold even when only a single set of parties participate.
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show that in the setting of fixed roles, there exists a functionality that can be securely
computed under concurrent self composition but cannot be securely computed under
concurrent general composition (specifically, this is the zero-knowledge proof of knowl-
edge functionality). Thus, when there is no bit transmission, it can be “easier” to obtain
security under self composition than under general composition.

Returning back to the proof of Theorem 1.1, impossibility is derived by combining
the equivalence between concurrent self and general composition as stated in Theo-
rem 1.2 with the impossibility results for concurrent general composition that were
demonstrated in [27]. The actual impossibility results obtained are described in Sec-
tion 4. This answers the first question above, at least in that it demonstrates impossibility
for large classes of functionalities. (It is still far, however, from a full characterization
of feasibility.) Regarding the second question, in Section 5, we prove the following the-
orem that rules out the possibility of obtaining “efficient” protocols that remain secure
under m-bounded concurrent self composition.

Theorem 1.3 (Communication complexity lower bound—informal). There exists a
large class of two-party functionalities with the property that any protocol that securely
computes a functionality in this class under m-bounded concurrent self composition,
must have communication complexity of at least m.

Theorem 1.3 is essentially proven by directly combining the proof of Theorem 1.2 with
proofs of impossibility from [9,27]; see Section 5.

We remark that our definition of security under concurrent self composition is such
that honest parties may choose their inputs adaptively, based on previously obtained
outputs. This is a seemingly harder definition to achieve than one where the inputs to all
the executions are fixed ahead of time. We stress that allowing the inputs to be chosen
adaptively is crucial to the proof of Theorems 1.1 to 1.3. Nevertheless, we believe that
this is also the desired definition (since in real settings, outputs from previous executions
may indeed influence the inputs of later executions).

Black-Box Lower Bound The above lower bounds and impossibility results are un-
conditional. That is, they hold without any complexity assumptions and assume nothing
about the simulation; in particular it is not assumed that the simulator is “black-box”.5

In addition to the above, in Section 6, we prove a severe lower bound on the round
complexity of protocols that can be proven secure using black-box simulation. This
lower bound is proven specifically for the functionalities of blind signatures [10] and
1-out-of-2 oblivious transfer [13,33].

Theorem 1.4 (Black-box lower bound—informal). Any protocol that securely com-
putes the blind signature or oblivious transfer functionalities under m-bounded concur-
rent self composition, and can be proven using black-box simulation, must have more
than m rounds of communication.

5 A black-box simulator uses only oracle access to the real adversary A; see the paragraph that follows
Definition 1.
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Black-box lower bounds do not imply infeasibility in general. In fact, constant-round
protocols for m-bounded concurrent self composition have been demonstrated [30].
Nevertheless, Theorem 1.4 shows that any such protocol must use non-black-box sim-
ulation techniques. Note also that all known highly efficient protocols are proven via
black-box simulation; therefore, Theorem 1.4 may indicate a certain difficulty in ob-
taining very efficient protocols in this setting.

The idea behind the proof of Theorem 1.4 is to show that when concurrent self com-
position is considered, the “rewinding capability” of the simulator is severely limited. In
fact, for a protocol of m rounds that is run m times concurrently, there exists a schedul-
ing of messages so that in one of the executions, the simulator is unable to carry out any
rewinding of the adversary. However, informally speaking, a black-box simulator must
rewind in order to successfully simulate. Therefore, any protocol that remains secure
for m concurrent executions must have more than m rounds of communication.

Theorem 1.4 stands in stark contrast with concurrent zero-knowledge, where black-
box simulation does suffice for obtaining unbounded concurrent composition [34]. In
fact, a logarithmic number of rounds suffice for obtaining security for any polynomial
number of executions [32]. Thus, in the “black-box world” and in the setting of concur-
rent self composition, zero-knowledge is strictly easier to achieve than blind signatures
and oblivious transfer.

We remark that Theorems 1.1, 1.3 and 1.4 hold even if at any given time, at most
two executions are running simultaneously. (Loosely speaking, in such a case the m-
bounded concurrency means that m different protocol executions may overlap.) This
shows that our lower bounds do not stem from deep protocol nesting (in contrast to [7],
for example). Indeed, a nesting depth of at most two is needed.

Extensions to Multi-party Computation We note that although Theorems 1.1 and 1.3
are stated for two-party functionalities, they immediately imply impossibility results
for multi-party functionalities as well. This is because secure protocols for multi-party
functionalities can be used to solve two-party tasks as well. Likewise, by appropriately
defining “bit transmission” for multi-party functionalities, it is possible to prove Theo-
rem 1.2 for this setting as well.

A New Result for Concurrent General Composition While proving Theorem 1.3, we
also obtain a new impossibility result for concurrent general composition. Specifically,
we show that even if the inputs used by an honest party in a secure protocol are inde-
pendent of the inputs used in the other arbitrary protocols, then impossibility still holds.
See Section 5.2 for more details. (Interestingly, as shown in [15] and discussed in Sec-
tion 6.2, oblivious transfer under concurrent self composition and with fixed roles can
be achieved in the case that all inputs are independently chosen. This does not contra-
dict the above result for general composition because oblivious transfer does not enable
bit transmission. Therefore, the equivalence between self and general composition of
Theorem 1.2 does not hold.)

Other Related Work The focus of this work is the ability to obtain secure protocols for
solving general tasks. However, security under concurrent composition has also been
studied for specific tasks of interest. Indeed, the study of security under concurrent
composition was initiated in the context of concurrent zero knowledge [12,14], where
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a prover runs many copies of a protocol with many verifiers. Thus, concurrent zero-
knowledge is cast in the setting of concurrent self composition. This problem has re-
ceived much attention; see [1,7,34] for just a few examples. Other specific problems
have also been considered, but are not directly related to this paper. One work that
requires mentioning is the (black-box) protocol for unbounded concurrent oblivious
transfer of [15]. This construction seems to be in direct contradiction to Theorem 1.4.
However, in the model of [15], all the inputs in all the executions are assumed to be
independent of each other. In contrast, we consider a more standard model where quan-
tification is over all inputs, and in particular, over possibly correlated inputs.

Open Questions As we have mentioned, the constant-round protocol of [30] has very
high communication complexity. Specifically, the number of bits sent in the protocol
is �(m(n2 + |�|)), where � is a protocol that remains secure under concurrent self
composition when given access to an ideal zero-knowledge functionality. Thus, the fac-
tor of m is multiplicative in the communication complexity. In contrast, Theorem 1.3
only shows that a linear dependence on m (or an additive factor) is necessary. This gap
is very significant because a bandwidth of m + |�| may be acceptable in practice, in
contrast to the very high communication complexity of the protocol of [30].

Another interesting question relates to the feasibility of obtaining security under con-
current self composition and with fixed roles, for functionalities that do not enable bit
transmission. As we have mentioned, the zero-knowledge functionality does not en-
able bit transmission and can be securely computed under concurrent self composition.
However, it is not known which other functionalities can also be securely computed.
The oblivious transfer functionality would be of specific interest here; both because
of its importance as a cryptographic primitive, and because by Theorem 1.4, it cannot
be securely computed using black-box simulation. Thus, the question remains whether
or not non-black-box simulation can be used to achieve oblivious transfer under un-
bounded concurrent self composition.

2. Definitions

In this section, we present definitions of security under concurrent self composition
and concurrent general composition. In addition, we define functionalities with “inter-
changeable roles” and functionalities that “enable bit transmission”. Our definitions are
presented for the special case of two-party protocols. The extension to the multi-party
case is straightforward.

Preliminaries We denote the security parameter by n. A function μ(·) is negligi-
ble in n (or just negligible) if for every polynomial p(·) there exists a value N such
that for all n > N it holds that μ(n) < 1/p(n). Let X = {X(n,a)}n∈N,a∈{0,1}∗ and
Y = {Y(n, a)}n∈N,a∈{0,1}∗ be distribution ensembles. Then, we say that X and Y are

computationally indistinguishable, denoted X
c≡ Y , if for every probabilistic polynomial-

time distinguisher D there exists a function μ(·) that is negligible in n, such that for
every a ∈ {0,1}∗,

|Pr[D(X(n,a)) = 1] − Pr[D(Y(n, a)) = 1]| < μ(n).

When X and Y are equivalent distributions, we write X ≡ Y .
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We adopt a convention whereby a machine is said to run in polynomial-time if its
number of steps is polynomial in the security parameter, irrespective of the length of its
input. Formally, each machine has a security-parameter tape upon which 1n is written.
The machine is then polynomial in the contents of this tape.

2.1. Concurrent Self Composition of Secure Two-Party Protocols

We begin by presenting the definition for security under concurrent self composition.
The basic description and definition of secure computation follows [2,4,20,28].

Two-party Computation A two-party protocol problem is cast by specifying a random
process that maps pairs of inputs to pairs of outputs (one for each party).6 We refer to
such a process as a functionality and denote it f : {0,1}∗ × {0,1}∗ → {0,1}∗ × {0,1}∗,
where f = (f1, f2). That is, for every pair of inputs (x, y), the output-pair is a ran-
dom variable (f1(x, y), f2(x, y)) ranging over pairs of strings. The first party (with
input x) wishes to obtain f1(x, y) and the second party (with input y) wishes to ob-
tain f2(x, y). We often denote such a functionality by (x, y) �→ (f1(x, y), f2(x, y)).
Thus, for example, the zero-knowledge proof of knowledge functionality for a rela-
tion R is denoted by ((x,w),λ) �→ (λ, (x,R(x,w))). (Equivalently, it could be defined
by ((x,w), x) �→ (λ,R(x,w)), but the first definition will be more convenient for us.)
In the context of concurrent composition, each party actually uses many inputs (one
for each execution), and these may be chosen adaptively based on previous outputs.
We consider both concurrent self composition (where the number of executions is un-
bounded) and m-bounded concurrent self composition (where the number of concurrent
executions is a priori bounded by m and the protocol design can depend on this bound).

Adversarial Behaviour In this work we consider a malicious, static adversary that
runs in polynomial time (recall that this means that it is polynomial in the security
parameter, irrespective of the length of its input). Such an adversary controls one of
the parties (who is called corrupted) and may then interact with the honest party while
arbitrarily deviating from the specified protocol. Our definition does not guarantee any
fairness. That is, the adversary always receives its own output and can then decide when
(if at all) the honest party will receive its output. The scheduling of message delivery is
decided by the adversary.

Security of Protocols (Informal) The security of a protocol is analyzed by comparing
what an adversary can do in the protocol to what it can do in an ideal scenario that
is clearly secure. This is formalized by considering an ideal computation involving an
incorruptible trusted third party to whom the parties send their inputs. The trusted party
computes the functionality on the inputs and sends each party its designated output.
Unlike in the stand-alone model, here the trusted party computes the functionality many
times, each time with different inputs. Loosely speaking, a protocol is secure if any
adversary interacting in the real protocol (where no trusted third party exists) can do no
more harm than if it was involved in the above-described ideal computation.

6 Thus, our specific definition is for “secure function evaluation” only. However, it can be generalized to
reactive functionalities in a straightforward way.
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Concurrent Executions in the Ideal Model An ideal execution with an adversary who
has auxiliary input z and controls P2 proceeds as follows (when the adversary controls
P1 the roles are simply reversed):

Inputs: Party P1 and P2’s inputs are respectively determined by probabilistic polyno-
mial-time Turing machines M1 and M2, and initial inputs x and y to these machines.
As we will see below, these Turing machines determine the values that the parties use
as inputs in the protocol executions. These input values are computed from the initial
input, the current session number and outputs that were obtained from executions that
have already concluded. Note that the number of previous outputs ranges from zero
(for the case that no previous outputs have yet been obtained) to some polynomial in
n that depends on the number of sessions initiated by the adversary.7

Session initiation: The adversary initiates a new session by sending a start-session mes-
sage to the trusted party. The trusted party then sends (start-session, i) to the honest
party, where i is the index of the session (i.e., this is the ith session to be started).

Honest party sends input to trusted party: Upon receiving (start-session, i) from the
trusted party, the honest party P1 applies its input-selecting machine M1 to its
initial input x, the session number i and its previous outputs, and obtains a
new input xi . That is, in the first session, x1 = M1(x,1). In later sessions, xi =
M1(x, i, αi1 , . . . , αij ) where j sessions have already concluded and the outputs were
αi1, . . . , αij .
The honest party P1 sends (i, xi) to the trusted party.

Adversary sends input to the trusted party and receives output: Whenever the adver-
sary wishes, it may send a message (i, yi) to the trusted party, for any yi of its
choice. Upon sending this pair, it receives back (i, f2(xi, yi)) where xi is the value
that P1 previously sent the trusted party. (If i start-session messages have not yet
been sent to the trusted party, then the (i, yi) message from the adversary is ignored.
In addition, once an input indexed by i has already been sent by the adversary, the
trusted party ignores any subsequent such messages.)

Adversary instructs trusted party to answer honest party: When the adversary sends a
message of the type (send-output, i) to the trusted party, the trusted party sends
(i, f1(xi, yi)) to the honest party P1, where xi and yi are the respective inputs sent by
P1 and the adversary for this session. (If (i, xi) and (i, yi) have not yet been received
by the trusted party, then this (send-output, i) message is ignored.)

Outputs: The honest party P1 always outputs the vector (f1(xi1, yi1), f1(xi2, yi2), . . .)

of outputs that it received from the trusted party. Formally, whenever it receives an
output, it writes it to its output-tape. Thus, the outputs do not appear in ascending
order according to the session numbers, but rather in the order that they are received.

7 Notice that we place no restriction on the lengths of the input values output by M1 and M2. It is known
that secure protocols must, to some extent, reveal information about the lengths of inputs. Therefore, it is
impossible to achieve security if the inputs can have arbitrary lengths and the output does not reveal these
lengths. This problem can be solved through the definition of the functionality being computed. One possibil-
ity is to simply have the functionality output include the lengths of the inputs. Another possibility is to define
the functionality so that only “legal” input lengths are allowed. For example, if a functionality f should be
computed on equal-length inputs only, then we define g(x, y) so that g(x, y) = f (x, y) when |x| = |y|, and
g(x, y) = ⊥ otherwise. From here on we do not relate to this issue, and note that our results do not depend on
how it is solved.
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The adversary may output an arbitrary (probabilistic polynomial-time computable)
function of its auxiliary input z, the corrupted party P2’s input-selecting machine
M2, initial input y, and the outputs obtained from the trusted party.

Let f : {0,1}∗ × {0,1}∗ �→ {0,1}∗ × {0,1}∗ be a functionality, where f = (f1, f2),
and let S be a non-uniform probabilistic polynomial-time machine (representing the
ideal-model adversary). Then, the ideal execution of f (with security parameter n, input-
selecting machines M = (M1,M2), initial inputs (x, y), and auxiliary input z to S),
denoted IDEALf,S,M(n, x, y, z), is defined as the output pair of the honest party and S
from the above ideal execution.

We note that the definition of the ideal model is the same for unbounded and m-
bounded concurrency. This is because this bound is relevant only to the scheduling
allowed to the adversary in the real model; see below. However, the fact that a concurrent
setting is considered can be seen from the above-described interaction of the adversary
with the trusted party. Specifically, the adversary is allowed to obtain outputs in any
order that it wishes, and can choose its inputs adaptively based on previous outputs.
This is inevitable in a concurrent setting where the adversary can schedule the order in
which all protocol executions take place.

Execution in the Real Model We next consider the real model in which a real two-
party protocol is executed (and there exists no trusted third party). Formally, a two-
party protocol ρ is defined by two sets of instructions ρ1 and ρ2 for parties P1 and
P2, respectively. A protocol is said to be polynomial-time if the running-time of each
ρi in a single execution is bounded by a fixed polynomial in the security parameter n,
irrespective of the length of the input.

Let f be as above and let ρ be a probabilistic polynomial-time two-party protocol
for computing f . In addition, let A be a non-uniform probabilistic polynomial-time
adversary that controls either P1 or P2. Then, the real concurrent execution of ρ (with
security parameter n, input-selecting machines M = (M1,M2), initial inputs (x, y), and
auxiliary input z to A), denoted REALρ,A,M(n, x, y, z), is defined as the output pair of
the honest party and A, resulting from the following process. The parties run concurrent
executions of the protocol, where an honest party P1 follows the instructions of ρ1 in
all of the executions; likewise, an honest P2 always follows ρ2. Thus, the parties play
the same role in every execution. Now, the ith session is initiated by the adversary by
sending a start-session message to the honest party. The honest party then applies its
input-selecting machine on its initial input, the session number i and its previously
received outputs, and obtains the input for this new session. Upon the conclusion of an
execution of ρ, the honest party writes its output from that execution on its output-tape.
The scheduling of all messages throughout the executions is controlled by the adversary.
That is, the execution proceeds as follows. The adversary sends a message of the form
(i, α) to the honest party. The honest party then adds the message α to the view of its
ith execution of ρ and replies according to the instructions of ρ and this view.8 The
adversary continues by sending another message (j,β), and so on. We note that there is
no restriction on the scheduling allowed by the adversary. (We sometimes refer to this

8 Notice that the honest party runs each execution of ρ obliviously to the other executions. Thus, this is
stateless composition.
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as unbounded concurrency, in order to distinguish it from m-bounded concurrency that
is defined next.)

In addition to the above setting where no restriction is placed on the scheduling, we
also consider m-bounded concurrency, where the scheduling by the adversary must ful-
fill the following condition: for every execution i, from the time that the ith execution
begins until the time that it ends, messages from at most m different executions can
be sent. (Formally, view the schedule as the ordered series of messages of the form
(index,message) that are sent by the adversary. Then, in the interval between the be-
ginning and termination of any given execution, the number of different indices viewed
can be at most m.) We note that this definition of concurrency covers the case that m

executions are run simultaneously. However, it also includes a more general case where
many more than m executions take place, but each execution overlaps with at most m

other executions. In this setting, the value m is fixed ahead of time, and the protocol de-
sign may depend on the choice of m. We denote the output of the adversary and honest
party in the setting of m-bounded concurrency by REALm

ρ,A,M
(n, x, y, z).

Security as Emulation of a Real Execution in the Ideal Model Having defined the ideal
and real models, we can now define security of protocols. Loosely speaking, a proto-
col is secure if for every real-model adversary A and pair of input-selecting machines
(M1,M2), there exists an ideal model adversary S such that for all initial inputs x, y,
the outcome of an ideal execution with S is computationally indistinguishable from the
outcome of a real protocol execution with A. Notice that the order of quantifiers is such
that S comes after M1 and M2. Thus, S knows the strategy used by the honest parties to
choose their inputs. However, S does not know the initial input of the honest party, nor
the random tape used by its input-selecting machine (any “secrets” used by the honest
parties are included in the initial input, not the input-selecting machine). Notice also
that a special case of this definition is where the inputs are fixed ahead of time. In this
case, the initial inputs are vectors where the ith value is the input for the ith session, and
in the ith session the input-selecting machines M1 and M2 just output the ith value of
the input vector. We now present the definition:

Definition 1 (Security under concurrent self composition). Let f and ρ be as above.
Protocol ρ is said to securely compute f under concurrent self composition if for every
real-model non-uniform probabilistic polynomial-time adversary A controlling party
Pi (i ∈ {1,2}) and every pair of probabilistic polynomial-time input-selecting machines
M = (M1,M2), there exists an ideal-model non-uniform probabilistic polynomial-time
adversary S controlling Pi , such that

{IDEALf,S,M(n, x, y, z)}n∈N;x,y,z∈{0,1}∗
c≡ {REALρ,A,M(n, x, y, z)}n∈N;x,y,z∈{0,1}∗ .

Let m = m(n) be a fixed polynomial. Then, we say that ρ securely computes f under
m-bounded concurrent self composition if

{IDEALf,S,M(n, x, y, z)}n∈N;x,y,z∈{0,1}∗
c≡ {REALm

ρ,A,M
(n, x, y, z)}n∈N;x,y,z∈{0,1}∗ .
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Definition 1 requires that the ideal-model simulator/adversary run in strict polynomial-
time. However, a more liberal interpretation of “efficient simulation” is often allowed,
in which case the simulator can run in expected polynomial-time. We note that all of
our impossibility results also hold for this more relaxed definition.

Black-Box Simulation We say that a protocol ρ for securely computing f is proven
secure using black-box simulation if S is given only oracle access to A. That is, for
every A and every pair M = (M1,M2), there exists an ideal-model adversary S such
that

{IDEALf,SA(z),M(n, x, y,λ)}n∈N;x,y,z∈{0,1}∗
c≡ {REALm

ρ,A,M
(n, x, y, z)}n∈N;x,y,z∈{0,1}∗ .

We stress that in this case, S is not given the auxiliary input z, but rather has oracle
access to A(z) only. The proof of our black-box lower bound (Theorem 1.4) relies on
the fact that the black-box simulator S is not given the adversary A’s auxiliary input.
Withholding the auxiliary input from S is standard practice, and is used in an essential
way in all known black-box lower bounds for zero-knowledge. Indeed, most known
(zero-knowledge) black-box lower bounds are known to not hold when the simulator
receives the adversary’s auxiliary input [1].

Non-trivial Protocols Notice that in the ideal model, the honest party is never guar-
anteed to receive output. Therefore, the “real” protocol that just hangs and does not
provide output to any party is actually secure by definition (and so our impossibility
results cannot apply to all protocols). We therefore use the notion of non-trivial proto-
cols, as defined in [8]. Such a protocol has the property that if the real-model adversary
instructs the corrupted party to act honestly (i.e., follow the protocol specification), then
both parties receive output.

Adaptively Chosen Inputs Definition 1 allows the honest parties to choose their inputs
adaptively, based on previously obtained outputs. This is a potentially more difficult de-
finition to achieve than that presented in [25] where all inputs were fixed ahead of time.9

It is significant that this ability to adaptively choose inputs is crucial to the proof of our
non-black-box lower bounds and impossibility results. Nevertheless, we also claim that
this is a far more realistic model; in many settings, parties do choose their inputs based
on their previous outputs. (Note that our black-box lower bounds in Section 6 hold even
if all inputs are fixed ahead of time.)

The Complexity of the Parties Our above definition requires that the adversary is
bound by a fixed polynomial. In contrast, the complexity of the honest parties depends
on the protocol (which is fixed), the number of sessions (which is decided by the adver-
sary), and the complexity of the input-selecting machines. Therefore, there is no single
polynomial that bounds an honest party’s overall running-time for every scenario. Nev-
ertheless, for every given real-model adversary and input-selecting machine, the running

9 We note that although the main definition of [25] considers fixed inputs, it is remarked that the security
of their protocol holds even when inputs are chosen adaptively. The more restricted definition was used for
the sake of simplicity.
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time of the honest party is bounded by a fixed polynomial. We stress that the protocol
ρ is required to be polynomial, meaning that the running-time of the honest parties in a
single execution is bounded by a fixed polynomial in the security parameter, for every
input-selecting machine and initial input.

Generalizations of the Model The above-described model is quite general. However,
some generalizations may be considered. First, our definition above considers a rather
limited case where one set of parties run all of the executions. An important generaliza-
tion of this model is a setting where many (possibly different and overlapping) sets of
parties run many concurrent executions. Furthermore, instead of restricting the parties
to always use the same role (i.e., P1 always runs ρ1 and P2 always runs ρ2), it is pos-
sible to allow P1 and P2 to run either ρ1 or ρ2 (the specific role taken by each can be
negotiated upon initiating the execution). As we have mentioned, since the focus of this
work is impossibility, we presented the more restricted notion.

Another generalization of the model relates to the running-time of the parties and
adversary. In our definition above, the complexity of an honest party’s instructions in
a protocol must be upper-bound by a fixed polynomial in the security parameter. This
suffices for most tasks. However, it does not allow for protocols that take inputs of
length that can be any polynomial (say, dependent on the running-time of the adver-
sary). Examples of such protocols are encryption and signatures, where messages of
any polynomial length may be considered. In order to capture such applications, it is
possible to allow a protocol ρ to run in time that is polynomial in the length of the in-
put, instead of in time that is polynomial in the security parameter. Note that since the
inputs are selected by machines that are polynomial in the security parameter, we are
still guaranteed that polynomial-length inputs are considered (this is important because
otherwise the parties may be allowed to run in time that is exponential in the security
parameter). A second alternative is to have all the entities (include the input-selecting
machines and ρ) run in time that is polynomial in the input-length. However, we must
then quantify only over initial inputs that are of length that is polynomial in the security
parameter. (That is, we require that for every real adversary A there exists a simulator
S such that for every polynomial q(·) and all sufficiently large n’s, the result of an ideal
execution with inputs of length q(n) is indistinguishable from the result of a real exe-
cution of ρ with inputs of length q(n).) See [5] for more discussion on this issue (these
generalizations appear in the new version of [5]).

2.2. Concurrent General Composition of Secure Two-Party Protocols

Informally speaking, concurrent general composition considers the case that a protocol
ρ for securely computing some functionality f , is run concurrently (many times) with
arbitrary other protocols π . In other words, the secure protocol ρ is run many times
in a network in which arbitrary activity takes place. One important issue that must be
dealt with in such a scenario is the way in which the inputs for the secure protocol ρ are
chosen. In general, as for self composition, we need to guarantee security for adaptively
chosen inputs. This means that the honest parties may choose their inputs to ρ as a
function of their view in the arbitrary network π and their outputs from executions of ρ
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that have already concluded. Of course, a party’s actions in the arbitrary network may
also be influenced by its outputs from executions of ρ that have already concluded.10

One way to formally define the above would be to take a similar approach as for self
composition. Specifically, party Pi ’s inputs to ρ are determined by an input-selecting
machine Mi which is applied to Pi ’s view in the arbitrary protocol π and the outputs
that it has received from executions of ρ that have already concluded. (This suffices for
having the inputs to future executions of ρ depend on π and on previous ρ-outputs.
However, π itself may also depend on ρ-outputs and thus π should be able to refer
to already obtained ρ-outputs.) Then, security is defined by requiring that for every
protocol π and all input-selecting machines, an adversary interacting with the parties
in a real execution of π with ρ can do no more harm than an adversary that works in
a scenario where π is unchanged, yet the executions of ρ are replaced with ideal calls
to f .

A simpler and equivalent approach is to model the arbitrary network activity π as a
“calling protocol” with respect to the functionality f . That is, π is a protocol that con-
tains, among other things, “ideal calls” to a trusted party that computes a functionality f .
This means that in addition to standard messages sent between the parties, protocol π ’s
specification contains instructions of the type “send the value x to the trusted party and
receive back output y”. Then, the real-world scenario is obtained by replacing the ideal
calls to f in protocol π with real executions of protocol ρ. (When we say that an ideal
call to f is replaced by an execution of ρ, this means that the parties run ρ upon the
same inputs that π instructs them to send to the trusted party computing f .) The com-
posed protocol is denoted πρ and it takes place without any trusted help. We note that in
this composed protocol, messages of π may be sent concurrently to the executions of ρ.
In addition, the inputs are determined by π and may therefore be influenced by previous
ρ-outputs and the party’s overall view in the arbitrary network. Security is defined by
requiring that for every protocol π that contains ideal calls to f , an adversary interact-
ing with the composed protocol πρ (where there is no trusted help) can do no more
harm than in an execution of π where a trusted party computes all the calls to f . This
therefore means that ρ behaves just like an ideal call to f , even when it is run concur-
rently with any arbitrary protocol π . (This formulation is equivalent to the previous one.
In order to see this, just think of π as incorporating the input-selecting machines Mi .
Since quantification is over all protocols π and all input-selecting machines Mi , these
can incorporated into one.)

We remark that the protocol π above can represent an arbitrary protocol running
in the network, or a secure protocol for computing some function g, that contains a
“function-call” to a secure subprotocol ρ. Both of these views of π are consistent
with the definition of concurrent general composition. Our formalization of security
under concurrent general composition is based on the “modular” composition operation
from [4,5,28]. In order to define security, we first define the hybrid model, where a pro-
tocol π can utilize ideal calls to a trusted party, and the real model, where protocols are
run without any trusted help. Following this, we proceed to define what it means for a

10 This framework is very general in that it allows information to flow from ρ to π and vice versa. We
remark that in Section 5.2, we show that impossibility results for concurrent general composition hold even if
the inputs to ρ and π are independent and fixed before any protocol execution begins.
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protocol to be secure. The definition that we represent below is not the most general. In
particular, it considers only the two-party case. We present this restricted definition as
it is simpler and it suffices for the results of this paper. For a more general definition,
see [27].

The Hybrid Model Let π be an arbitrary probabilistic polynomial-time protocol11 that
utilizes ideal interaction with a trusted party computing a two-party functionality f .
This means that π contains two types of messages: standard messages and ideal mes-
sages: A standard message is one that is sent between the parties that are participating
in the execution of π ; an ideal message is one that is sent by a participating party
to the trusted third party, or from the trusted third party to a participating party. This
trusted party computes f on the messages that it receives from the parties, and returns
the output (f1(xi, yi) to P1 and f2(xi, yi) to P2). Notice that the computation of π is a
“hybrid” between the ideal model (where a trusted party carries out the entire computa-
tion) and the real model (where the parties interact with each other only). Specifically,
the standard messages of π are sent directly between the parties, and the trusted party
is only used in the ideal calls to f .

The interaction with the trusted party is exactly according to the description of con-
current executions in the ideal model, as described in Section 2.1. In contrast, the stan-
dard messages are dealt with exactly according to the description of the real model,
as described in Section 2.1. More formally, computation in the hybrid model proceeds
as follows. The computation begins with the adversary receiving the input and random
tape of the corrupted party. Throughout the execution, the adversary sends any standard
messages that it wishes to the honest party. In addition, it sends the trusted party the
adversary’s ideal messages as defined in Section 2.1 (these include start-session and
send-output messages, along with adversarially generated inputs; as described there,
these messages also include unique indices in order to differentiate sessions). The hon-
est party always follows the specification of protocol π . Specifically, upon receiving a
message (from the adversary or trusted party), the party reads the message, carries out
a local computation as instructed by π , and sends standard and/or ideal messages, as
instructed by π . At the end of the computation, the honest party writes the output value
prescribed by π on its output tape and the adversary outputs an arbitrary function of its
view. Let n be the security parameter, let S be an adversary for the hybrid model with
auxiliary input z, and let x, y ∈ {0,1}∗ be the parties’ respective inputs to π . Then, the
hybrid execution of π with functionality f , denoted HYBRID

f

π,S(n, x, y, z), is defined as
the output of the adversary S and the honest party from the above hybrid execution.

The Real Model—General Composition Let ρ be a probabilistic polynomial-time two-
party protocol for computing the functionality f . Intuitively, the composition of proto-
col π with ρ is such that ρ takes the place of the interaction with the trusted party
that computes f . Formally, each party holds separate probabilistic interactive Turing
machines (ITMs) that work according to the specification of protocol ρ for that party
(specifically, ρ1 for P1 and ρ2 for P2). When π instructs a party to send an ideal mes-
sage α to the trusted party, the party writes α on the input tape of a new ITM for ρ

11 Here too, a protocol is said to be polynomial-time if the running-time of the honest parties in a single
execution is polynomial in the security parameter n, irrespective of the length of the input.
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and invokes the machine. Any message that it receives that is marked for an execution
of ρ, it forwards to the appropriate ITM; all other messages are answered according to
π . (The different executions of ρ are distinguished with indices, as described in Sec-
tion 2.1. Furthermore, π -messages are distinguished from ρ-messages with a unique
index or symbol for π .) Finally, when an execution of ρ concludes and a value β is
written on the output tape of the corresponding ITM, the party copies β to the incoming
communication tape for π , as if β is an ideal message (i.e., output) received from the
trusted party. This composition of π with ρ is denoted πρ and takes place without any
trusted help. Let n be the security parameter, let A be an adversary for the real model
with auxiliary input z, and let x, y ∈ {0,1}∗ be the parties’ respective inputs to π . Then,
the real execution of π with ρ, denoted REALπρ,A(n, x, y, z), is defined as the output of
the adversary A and the honest party from the above real execution.

Security as Emulation of a Real Execution in the Hybrid Model Having defined the
hybrid and real models, we can now define security of protocols. Loosely speaking, the
definition asserts that for any context, or calling protocol π , the real execution of πρ

emulates the hybrid execution of π which utilizes ideal calls to f . This is formulated
by saying that for every real-model adversary there exists a hybrid model adversary for
which the output distributions are computationally indistinguishable. The fact that the
above emulation must hold for every protocol π that utilizes ideal calls to f , means that
general composition is being considered.

Definition 2 (Security under concurrent general composition). Let ρ be a proba-
bilistic polynomial-time two-party protocol and f a two-party functionality. Then, ρ

securely realizes f under concurrent general composition if for every probabilistic
polynomial-time protocol π that utilizes ideal calls to f and every non-uniform prob-
abilistic polynomial-time real-model adversary A for πρ , there exists a non-uniform
probabilistic polynomial-time hybrid-model adversary S such that

{HYBRID
f

π,S(n, x, y, z)}n∈N;x,y,z∈{0,1}∗
c≡ {REALπρ,A(n, x, y, z)}n∈N;x,y,z∈{0,1}∗ .

Note that non-trivial protocols are also defined for general composition. Once again, the
requirement is that if A instructs the corrupted party to act honestly in the execution of
ρ, then the honest party receives its output from ρ.

Remark The description of the hybrid model execution here differs from that of [27].
Specifically, here the adversary explicitly instructs the honest party to send an input
to the trusted party (by sending a start-session message), and explicitly instructs the
trusted party to answer the honest party. In contrast, in the definition of [27], the trusted
party just receives inputs and computes outputs, and the adversary is in control over the
delivery of messages between the parties and the trusted party. As can easily be seen,
there is actually no difference between the models because delivering inputs and outputs
is equivalent to instructing the parties to send the messages.

Generalizations of the Model The model here for concurrent general composition can
be generalized in the same ways as described for concurrent self composition. Specifi-
cally, the arbitrary protocol π can be defined for a large set of parties, and the ideal calls
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to f can be for different (possibly overlapping) subsets of the parties. Furthermore, the
model can be generalized so that the protocol ρ can work on inputs of length that is not
a priori bounded by any polynomial (as is needed for encryption and signatures). As we
have described above, one way to do this is to allow ρ to run in time that is polynomial
in the input length, but π (and the adversary) must still run in time that is polynomial
in the security parameter. A second alternative is to also allow π and the adversary to
run in time that is polynomial in the input length. However, in this case, we must limit
x, y and z to be of length that is polynomial in the security parameter n. As before, we
require that for every adversary A and protocol π , there exists a simulator S such that
for every polynomial q(·) and all sufficiently large n’s, the result of a hybrid execution
of π with inputs of length q(n) is indistinguishable from the result of a real execution
of πρ with inputs of length q(n).

2.3. Functionalities with Fixed Versus Interchangeable Roles

Our formulation of secure two-party computation under concurrent self and general
composition assumes that the same party plays the same role in every execution. There-
fore, if the functionality being considered is that of 1-out-of-2 oblivious transfer, defined
by ((x0, x1), σ ) → (λ, xσ ), then party P1 always plays the “sender”, and P2 always
plays the “receiver”. Likewise, for the zero-knowledge functionality, one party always
plays the prover while the other party always plays the verifier. This is very limiting,
and many real applications would require more flexibility regarding the roles. (Note
that in some settings, flexibility is not required. For example, in an asymmetric setting
of clients and servers, a client will never play a server role and vice versa.)

In order to deal with the case that both parties may play both roles in the computation
(e.g., both parties may be provers or verifiers in the zero-knowledge proofs), we de-
fine a special class of functionalities that we call “functionalities with interchangeable
roles”. Such a functionality enables both parties to play both roles, by having part of
the input determine who plays which role. In general, let f = (f1, f2) be any two-party
functionality. Then, we say that g = (g1, g2) computes f with interchangeable roles if
it computes the following functionality:

g((x,α), y) =
{

(f1(x, y), f2(x, y)) if α = 1,

(f2(y, x), f1(y, x)) if α = 2.

Thus, the index α input by the first party determines which party plays the role of
“party 1” and which party plays the role of “party 2”. More concretely, in the oblivious
transfer functionality, the first party sends its input along with the index α = 1 if it is
the sender, and α = 2 if it is the receiver. In this way, either party can be the sender or
receiver, depending on which index is input.

Protocols with Interchangeable Roles Our aim in the above definition of functional-
ities with interchangeable roles is to capture the natural setting where different parties
may play different roles in different executions. However, a more natural way to define
this would be in the context of the protocol, rather than of the functionality. Specifically,
let ρ be a protocol where ρ1 and ρ2 are the instructions for P1 and P2, respectively.
Then, instead of party Pi always using instruction ρi , it is possible to allow both P1 and
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P2 to use instructions ρ1 and ρ2, interchangeably. The specific role taken by each party
could be mutually negotiated upon initiating the protocol.12 This is in contrast to our
definition of functionalities with interchangeable roles. Here, we still consider the case
that party P1 always follows ρ1 and party P2 always follows ρ2. The only difference is
that the functionality definition enables the parties to interchange roles with respect to
the functionality input and output.

We note that any protocol that is secure under the definition where both P1 and P2 can
use the instructions ρ1 and ρ2 interchangeably, is also secure for our definition of func-
tionalities with interchangeable roles. However, the converse does not hold. (See [25,
30] for examples of protocols that are secure under bounded-concurrent self composi-
tion, as long as the same party always plays the same role in the protocol.) In this paper
we prove lower bounds and impossibility results. Therefore, considering “weaker” de-
finitions (i.e., ones that are easier to achieve) strengthens our results. We note that the
proof of equivalence between self and general composition holds also for the case that
both P1 and P2 use ρ1 and ρ2 interchangeably (and also for other generalizations that
have been mentioned).

2.4. Functionalities that Enable Bit Transmission

Informally speaking, a functionality enables bit transmission if it can be used by the
parties to send bits to each other. For example, the “less than” functionality enables
bit transmission, as follows. If P1 wishes to send a bit to P2, then P2 fixes its input
at a predetermined value (say 5). Now, if P1 wishes to send P2 the bit 0, then it uses
input 4, and if it wishes to send P2 the bit 1 then it uses input 6. In this way, P2 will
know which bit P1 sends based on the output. More generally, P1 can transmit a bit
to P2 if there exists an input y for P2 and a pair of inputs x and x′ for P1 such that
f2(x, y) 	= f2(x

′, y). This suffices because P1 and P2 can decide that f2(x, y) should
be interpreted as bit 0 and f2(x

′, y) as bit 1. Likewise, P2 can transmit a bit to P1
if the reverse holds. We say that a functionality enables bit transmission if it can be
used by P1 to transmit a bit to P2 and vice versa. Thus, a functionality can only enable
bit transmission if both parties receive output; it is impossible to transmit a bit to a
party that receives no output. (Of course, as we will see below, if the functionality in
question has interchangeable roles, then the ability to transmit a bit in one direction
immediately implies that the functionality enables bit transmission.) We now present
the formal definition:

Definition 3 (Functionalities that enable bit transmission). A deterministic function-
ality f = (f1, f2) enables bit transmission from P1 to P2 if there exists an input y

for P2 and a pair of inputs x and x′ for P1 such that f2(x, y) 	= f2(x
′, y). Likewise,

f = (f1, f2) enables bit transmission from P2 to P1 if there exists an input x for P1 and
a pair of inputs y and y′ for P2 such that f1(x, y) 	= f1(x, y′). We say that a function-
ality enables bit transmission if it enables bit transmission from P1 to P2 and from P2
to P1.

12 This extension would be necessary in the case that many different (and possibly intersecting) pairs of
parties run the protocol. This is because it may be the case that two parties who are currently running ρ1 in
other executions wish to begin an execution with each other. In this case, one of them must use the instructions
of ρ2, meaning that it does not always play the same role.
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We note that the notion of enabling bit transmission can be generalized to probabilistic
functionalities in a straightforward way. Specifically, it is required that there exists an
input y, a pair of inputs x and x′, and a probabilistic polynomial-time distinguishing al-
gorithm A such that Pr[A(f2(x, y)) = 1] > 1 − μ(n) and Pr[A(f2(x

′, y)) = 1] < μ(n),
where μ is some negligible function. If these conditions hold, then P2 can input y and
use A to determine whether P1 used input x or x′ (and thereby determine whether P1

intended to send 0 or 1).

Example—Zero Knowledge The zero knowledge functionality ((x,w),λ) �→
(λ, (x,R(x,w))) for a relation R enables bit transmission from P1 to P2, but not from
P2 to P1. (Actually the functionality only enables bit transmission from P1 to P2 when
there exists a pair (x,w) such that R(x,w) = 1 and another pair (x′,w′) such that
R(x′,w′) = 0. This holds as long as R 	= φ and R 	= {0,1}∗ × {0,1}∗.)

Functionalities with Interchangeable Roles Let f = (f1, f2) be a functionality and let
g be the functionality that computes f with interchangeable roles. Then, g enables bit
transmission if f enables bit transmission from P1 to P2 or if f enables bit transmission
from P2 to P1. This follows directly from Definition 3 and from the definition of g.

We note that if f does not enable bit transmission from P1 to P2 or from P2 to
P1, then f can be securely computed by each party through local computation only.
Specifically, if f does not enable bit transmission from P1 to P2, then for every x, x′, y
we have f2(x, y) = f2(x

′, y). In other words, f2 depends only on the value of y and so
P2 can compute its output f2(x, y) based solely on its own local input y. An analogous
claim holds if f does not enable bit transmission from P2 to P1. We therefore call
such a functionality unilateral, because it can be computed by each party without any
interaction with the other. Clearly, any “interesting” function is not unilateral.

Definition 4 (Unilateral functionalities). A deterministic two-party functionality f =
(f1, f2) is unilateral if f does not enable bit transmission from P1 to P2 or from P2

to P1.

Let f be any functionality that is not unilateral. Then, by the above discussion, we
have that the functionality g, that computes f with interchangeable roles, enables bit
transmission. That is, we have the following claim:

Claim 2.1. Let f = (f1, f2) be any functionality that is not unilateral. Then, the func-
tionality g that computes f with interchangeable roles enables bit transmission.

Returning to our example of zero-knowledge, the functionality in which either party
can play the role of the prover enables bit transmission (in both directions). This is
a natural extension of concurrent zero knowledge and could be called something like
“concurrent non-malleable zero knowledge”. Thus, as we will see, our results prove that
such a zero knowledge functionality cannot be securely computed under concurrent self
composition; see Section 4.
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3. Self Composition Versus General Composition

In this section, we study the relation between concurrent self composition (where a
single secure protocol is run many times concurrently, but it is the only protocol being
executed) and concurrent general composition (where a secure protocol is run many
times concurrently with arbitrary other protocols).

3.1. Equivalence for Functionalities that Enable Bit Transmission

We show that if a functionality f enables bit transmission, then a protocol ρ securely
computes f under (unbounded) concurrent self composition if and only if it securely
computes f under concurrent general composition. Thus, the difference between self
and general composition no longer holds for such functionalities. We stress that there is
nevertheless a difference between these notions when bounded composition is consid-
ered. Specifically, security under bounded-concurrency can be achieved for self com-
position [26,29,30], but cannot be achieved for general composition [27]. (By bounded
concurrency in the setting of general composition, we mean that the number of exe-
cutions of the secure protocol is a priori bounded, exactly like in self composition. In
contrast, there is no bound on the size of the “calling protocol” π .)

Theorem 5. Let f be a polynomial-time two-party functionality that enables bit trans-
mission, and let ρ be a polynomial-time protocol. Then, ρ securely computes f under
unbounded concurrent self composition if and only if ρ securely computes f under
concurrent general composition.

Proof. We begin by showing that concurrent general composition implies concurrent
self composition. Intuitively, this is obvious because in the setting of general compo-
sition, a secure protocol is run many times concurrently to any other protocol. If the
“other protocol” contains no messages, then we obtain the setting of self composition.
We now formally prove the implication. This simply involves describing a protocol π

that emulates the technical process of an execution of a protocol ρ in the setting of con-
current self composition. Let ρ be a protocol that securely computes f under concurrent
general composition. We show that ρ also securely computes f under concurrent self
composition. That is, for every real-model adversary A controlling a party Pi and every
pair of probabilistic polynomial-time input-selecting machines M = (M1,M2), there
exists an ideal-model adversary S controlling Pi , such that

{IDEALf,S,M(n, x, y, z)}n∈N;x,y,z∈{0,1}∗
c≡ {REALρ,A,M(n, x, y, z)}n∈N;x,y,z∈{0,1}∗ .

We begin by defining a protocol π that will emulate the setting of concurrent self com-
position. Let A be the real model adversary for the setting of concurrent self compo-
sition and let M = (M1,M2) be a pair of probabilistic polynomial-time input-selecting
machines. Furthermore, let t (n) be a polynomial upper-bound on the running-time of A.
Then, the protocol π for party P1 with input x ∈ {0,1}∗ is defined as follows:

Party P1 initializes an index counter i to 1. Upon receiving a start-session message,
P1 locally computes xi = M1(x, i, αi1 , . . . , αij ), where αi1, . . . , αij are the outputs al-
ready received from the trusted party (the code of M1 is hardwired into the instructions
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of π ). P1 then sends xi to the trusted party computing f , and increments the counter i.
Upon receiving an output f1(xi, yi) for some i from the trusted party, P1 writes this out-
put on its output-tape. (Note that the above exactly describes the behaviour of P1 in the
setting of concurrent self composition; see Section 2.1.) P1 sends up to t (n) inputs to
the trusted party, and then waits until it receives its outputs from the trusted party (recall
that t (n) is an upper-bound on the running-time of the adversary A). The instructions
for party P2 are defined analogously. This completes the description of π .

First, observe that π is a polynomial-time protocol. This holds because the honest
parties run in time at most t (n) times the complexity of the input-selecting machines,
which are polynomial. Second, notice that there exists an adversary A′ for protocol π (in
the setting of general composition) such that the output of the honest parties and A with
machines M and inputs (x, y, z) for the concurrent self composition of ρ, is identical
to the output of the honest parties and A′ upon inputs (x, y, z) in an execution of the
composed protocol πρ . This follows immediately from the fact that πρ does nothing
except to emulate many concurrent executions of ρ alone. Now, by the security of ρ

under concurrent self composition, we have that there exists a hybrid-model simulator
S ′ for A′. In a straightforward manner, we can use S ′ in order to construct an ideal-
model simulator S for A in the setting of concurrent self composition. We thus conclude
that ρ is secure under concurrent self composition.

We now prove the other (more interesting) direction of the theorem. That is, we show
that if ρ computes a functionality f that enables bit transmission and ρ is secure under
unbounded concurrent self composition, then ρ is also secure under concurrent general
composition. (As we will show in Section 3.3, the requirement of bit transmission is
essential and without it, the theorem does not hold.) The idea behind the proof is that
the parties can use the “bit transmission property” of f in order to emulate an execution
of πρ , while only running copies of ρ. This can be carried out by sending the messages
of π one bit at a time, via ideal calls to f . Thus, it is possible to emulate the setting
of concurrent general composition, within the context of concurrent self composition.
Before formally proving this, we present some preliminary notations regarding f .

Recall that f enables bit transmission. Therefore, there exist predetermined inputs
that the parties can use to transmit bits to each other. Denote by x0, x1 and yrec the
inputs that are used by P1 to send a bit to P2. (That is, in order to send the bit σ , party
P1 inputs xσ and party P2 inputs yrec.) Likewise, denote by y0, y1 and xrec the inputs
that are used by P2 to send a bit to P1. We are now ready to prove the theorem.

Let π be a protocol that utilizes ideal calls to f and let Aπ be a real-model adversary
for πρ . Without loss of generality, we assume that in protocol π , each message sent
by the parties contains a single bit only (this can be achieved by just breaking each
message up into individual bits). We also assume that the specified output of π is the
entire series of standard and ideal messages received during the execution. We use the
fact that ρ is secure under concurrent self composition in order to show the existence of
a hybrid-model adversary Sπ such that

{HYBRID
f

π,Sπ
(n, x, y, z)} c≡ {REALπρ,Aπ

(n, x, y, z)}.
In order to do this, we first construct a real-model adversary Aρ and input-selecting
machines M = (M1,M2) for the setting of self composition, such that concurrent ex-
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ecutions of ρ with adversary Aρ , machines M and inputs (x, y, z), are identical to an
execution of πρ with adversary Aπ and inputs (x, y, z).

We begin by defining the input-selecting machines M = (M1,M2). Informally speak-
ing, the machine M1 contains the specification of protocol π for P1, with input x. That
is, M1(x,1) equals the first message sent by P1 (assuming that P1 sends the first mes-
sage in π ). Furthermore, M1(x, i, α1, . . . , αi) computes the next message sent by P1
in π , when P1 has input x and its series of incoming (standard and/or ideal) messages
equals α1, . . . , αi . (Note that although we consider a real-model protocol πρ here, the
protocol π itself has both standard and ideal messages; recall that in πρ the output of
ρ is treated by π as if it is an ideal message from the trusted party.) The machine M2
is exactly the same for P2; that is, it contains the specification of π for P2 with input
y. More formally, when the specification of π instructs P1 to send a single bit σ to P2
(as a standard message), then M1 outputs xσ (recall that xσ is the input to f used by P1
for transmitting the bit σ ). This value xσ is then used by P1 in the next execution of ρ.
Likewise, when P1 is supposed to receive a single bit from P2 (as a standard message),
then M1 outputs xrec (recall that xrec is the input to f used by P1 for receiving a bit
from P2. Note that after the execution of ρ with the input xrec concludes, the resulting
output is interpreted by M1 to be the bit 0 or 1, according to the specified convention.
In addition to the above treatment of standard π -messages, when π instructs P1 to send
an ideal message x̂ to the trusted party, then M1 outputs x̂ itself (to be input by P1 into
the next execution of ρ). The definition of M2 is analogous.

Next, we construct an adversary Aρ from Aπ . Recall that Aρ works in a setting of
unbounded concurrent self composition of ρ, whereas Aπ runs πρ ; we distinguish be-
tween π -messages (belonging to protocol π ) and ρ-messages. Upon auxiliary input z,
Aρ internally invokes Aπ with z, and emulates an execution of πρ for Aπ , while actu-
ally running many copies of ρ only. It does this as follows: when Aπ attempts to send
a π -message σ ∈ {0,1} to the honest party, Aρ sends the same message by running an
execution of ρ and inputting vσ (where vσ is the input to f used by the corrupted party
to send the bit σ to the honest party; note that vσ equals either xσ or yσ , depending on
which party is corrupted). Likewise, when Aρ receives a bit σ from the honest party
through an execution of ρ where it input vrec (as described above, σ is derived by con-
vention from the output received from this execution of ρ), then it internally forwards
σ to Aπ as if it was received directly from the honest party. When Aπ wishes to run an
execution of ρ with the honest party, then Aρ just forwards all messages between the
parties directly. At the conclusion, Aρ outputs whatever Aπ does. We now claim that,

{REALρ,Aρ,M(n, x, y, z)}n∈N;x,y,z∈{0,1}∗ ≡ {REALπρ,Aπ
(n, x, y, z)}n∈N;x,y,z∈{0,1}∗ .

(1)

In order to see that (1) holds, notice first that when an honest party runs concurrent
executions of ρ using the above-defined input-selecting machine, the result is exactly
the same as when the honest party runs πρ itself. This is due to the fact that the input-
selecting machine just translates π -messages to inputs for ρ and vice versa. Next, notice
that Aρ also just translates π -messages from Aπ to inputs for ρ and vice versa. There-
fore, the views of Aπ and the honest party in a real execution of πρ are identical to
their views when Aρ is the adversary and many executions of ρ take place.
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Now, since ρ securely computes f under concurrent self composition, we have that
there exists an ideal-model simulator Sρ such that,

{IDEALf,Sρ ,M(n, x, y, z)}n∈N;x,y,z∈{0,1}∗
c≡ {REALρ,Aρ,M(n, x, y, z)}n∈N;x,y,z∈{0,1}∗ .

(2)

It remains to show how to construct a hybrid-model simulator Sπ for π with ideal calls
to f , from the ideal-model simulator Sρ who has many ideal calls to f (and nothing
else).

Upon input z, simulator Sπ internally invokes Sρ with input z, and emulates the
setting of many ideal calls to f . In this emulation, Sπ plays the role of the trusted party
for all of the calls to f that are used for the purpose of sending π -messages. In contrast,
other calls to f are sent to the real trusted party. Specifically, when Sρ sends a message
(i, vi) to the trusted party computing f , simulator Sπ works as follows:

1. If π specifies that the ith message is an ideal one (i.e., vi is an input to be sent to
the trusted party in the hybrid execution with π ), then Sπ just forwards this to the
trusted party.

2. If π specifies that the ith message is a standard bit that is sent by the corrupted
party to the honest party (i.e., vi is an input that is used for bit transmission from
the corrupted party to the honest party), then Sπ computes the functionality f on
the input vi sent by Sρ and the prescribed “receive transmission value” for the hon-
est party (this value is either xrec or yrec depending on which party is corrupted). If
the output of f is one of the two prescribed values for bit transmission (i.e., either
the value that is pre-determined to denote 0 or the value that is predetermined to
denote 1), then Sπ sends the appropriate bit to the honest party as a standard mes-
sage. Otherwise, Sπ sends the honest party an invalid message, causing an abort.
In addition, Sπ simulates the message that Sρ expects to receive from the trusted
party.

3. If π specifies that the ith message is a standard bit that is sent by the honest party
to the corrupted party, then Sπ waits to receive a standard π -message σ from the
honest party. When it does, it internally emulates the trusted party for an execution
with Sρ where the honest party inputs its prescribed “send transmission value” in
order to send the corrupted party the bit σ (this “transmission value” is either xσ

or yσ depending on which party is corrupted).

The above instruction are followed until the conclusion of π . Sπ then just outputs what-
ever Sρ does and halts.

It follows from the above description that the output of Sπ and the honest party in
this hybrid execution of π , is identical to the output of Sρ and the honest party in many
ideal executions of f . That is,

{HYBRID
f

π,Sπ
(n, x, y, z)}n∈N;x,y,z∈{0,1}∗ ≡ {IDEALf,Sρ ,M(n, x, y, z)}n∈N;x,y,z∈{0,1}∗ .

(3)

As in the proof of (1), the simulator Sπ perfectly emulates the setting for Sρ by just
translating messages into the correct format. Therefore, (3) holds.
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By combining (1) to (3), we obtain that ρ is secure under concurrent general compo-
sition, as desired. �

Extension to Multi-party Functionalities Theorem 5 can be extended to multi-party
functionalities in a straightforward way. Thus, we actually obtain equivalence between
concurrent self composition and concurrent general composition for any multi-party
functionality that enables bit transmission. (Note that in the multi-party case, we will
say that a functionality enables bit transmission if it enables bit transmission between
all pairs of parties.)

3.2. Equivalence for Functionalities with Interchangeable Roles

Recall that by Claim 2.1, if a functionality g computes a non-unilateral functionality
f with interchangeable roles, then g enables bit transmission. (Recall that a function-
ality is unilateral if it can be computed without any interaction between the parties;
that is, a party’s output is completely independent of the other party’s input.) Now, if
a functionality f is unilateral, then it can be securely computed under both concurrent
general composition and concurrent self composition, because only local computation
is required. On the other hand, if g computes a functionality f that is not unilateral,
then it enables bit transmission and so by Theorem 5, it can be computed for concurrent
general composition if and only if it can be computed for concurrent self composition. It
therefore follows that when interchangeable roles are considered, concurrent self com-
position and concurrent general composition are equivalent for every functionality f .
That is, we have the following corollary:

Corollary 6. Let f = (f1, f2) be any deterministic polynomial-time two-party func-
tionality and let g compute f with interchangeable roles. Then, a polynomial-time pro-
tocol ρ securely computes g under concurrent self composition if and only if it securely
computes g under concurrent general composition.

Corollary 6 has important ramifications to a general setting of composition where many
different (and possibly intersecting) pairs of parties run a secure protocol ρ. In this nat-
ural setting, there are no fixed roles for the parties. We therefore have that obtaining
security under self composition is equivalent to obtaining security under general com-
position, for every functionality.

3.3. Separation for Other Functionalities

In this section, we consider functionalities that do not enable bit transmission and do not
compute other functionalities with interchangeable roles. (In other words, we consider
functionalities that enable bit transmission in one direction only.) We show that there
exists a functionality of this type that cannot be securely computed under concurrent
general composition, but can be securely computed under concurrent self composition.
Thus, there do exist examples where it is “easier” to obtain concurrent self composition
than concurrent general composition. We prove this separation for the important zero-
knowledge proof of knowledge functionality

((x,w),λ) �→ (λ, (x,R(x,w)))
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where R is an NP-relation. Note that this functionality does enable bit transmission from
P1 to P2, but does not enable bit transmission from P2 to P1. Since bit transmission is
enabled from P1 to P2, this functionality is not unilateral (as in Definition 4). Therefore,
by Corollary 6, in the setting of interchangeable roles, the functionality can be securely
computed under concurrent self composition if and only if it can be securely computed
under concurrent general composition. Here, we consider the case that one party always
plays the prover and the other party always plays the verifier. Therefore, Corollary 6
does not apply. We remark that we do not claim that such a model is reasonable. Rather,
the aim of this proof is to demonstrate that bit transmission in both directions is crucial
for the proof of equivalence between concurrent self and concurrent general composi-
tion.

Proposition 7. Assume that (weak) one-way functions exist. Then, the zero-knowledge
proof of knowledge functionality for an NP-complete relation R cannot be securely
computed under concurrent general composition, but can be securely computed under
concurrent self composition.

Proof Sketch. The fact that the zero-knowledge proof of knowledge functionality for
an NP-complete relation cannot be securely computed under concurrent general com-
position was shown in [27].13

We now sketch a proof that the zero-knowledge proof of knowledge functionality
can be securely computed under concurrent self composition, for any NP-relation R.
In this sketch, we assume that the reader is familiar with the literature on both zero
knowledge proofs and proofs of knowledge. We show that in order to securely compute
the zero knowledge proof of knowledge functionality defined above, one can use any
concurrent zero-knowledge proof system (e.g., [34]), that is also a stand-alone proof of
knowledge. (Such a proof system exists by taking the construction of [34] and using
a witness indistinguishable proof of knowledge in the last stage.) We also assume that
the protocol is such that the honest prover always first checks that its input is correct;
i.e., for input (x,w) it first checks that R(x,w) = 1). If not, then the honest prover just
sends (x,0) to the verifier (otherwise, it runs the prescribed protocol).

Consider first the case that the verifier is corrupted. In this case, the concurrent
zero-knowledge simulator can be used to simulate the view of the verifier. Specifi-
cally, the ideal-model adversary can just obtain all of the outputs from the trusted party
(x1, b1), . . . , (xN , bN), where bi = R(xi,wi), and then run the zero-knowledge simula-
tor on these inputs. More precisely, if bi = 0, then the ideal-model adversary need only
simulate the prover sending (xi,0) to the verifier (because this is what the honest prover
does). In contrast, for all xi ’s such that bi = 1, the standard concurrent zero-knowledge
simulator can be used. An important point to note here is that since the prover never
receives any output, its inputs are effectively fixed at the onset (i.e., xi = M(x, i) for all

13 To be exact, in [27] impossibility was shown for the functionality (x,λ) �→ (λ,f (x)), where f is
weakly one-way. Now, let f be a weak one-way function, and define the relation Rf = {(f (x), x)}. Then, the
zero-knowledge proof of knowledge functionality for Rf is exactly ((f (x), x), λ) �→ (λ, (f (x),1)). Since
f (x) can be efficiently computed from x, this functionality is equivalent to (x,λ) �→ (λ,f (x)), for which
impossibility has been demonstrated. Impossibility for the NP-relation Rf , and therefore any NP-complete
relation R, follows.
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i). Therefore, it suffices to use the standard formulation of concurrent zero knowledge
where inputs are not chosen adaptively [12].

Next, consider the case that the prover P ∗ is corrupted. In this case, the ideal-model
adversary must extract the witnesses wi from the prover in order to send them to the
trusted party. It does this as follows. First, it chooses random coins r1, . . . , rN , so that
each ri is the length of the random string used by the honest verifier in an execution of
the protocol, and N is an upper bound on the number of executions (N can be taken, for
example, to be the running-time of P ∗). Then, the ideal-model adversary invokes P ∗
and runs the honest verifier strategy for all executions, using random coins r1, . . . , rN .
(Note that the prover receives no output from the functionality and so the ideal-model
adversary does not yet interact with the trusted party.) Now, let I be the set of indices so
that i ∈ I if the ith session of the proof was accepting. In the next step, the ideal-model
adversary will obtain the witnesses for all of these sessions. (For the non-accepting
sessions, the ideal-model adversary can just send (xj ,⊥) to the trusted party.)

In order to extract the witnesses, for every i ∈ I , the ideal-model adversary defines
a prover P ∗

i who invokes P ∗ and internally runs sessions 1, . . . , i − 1, i + 1, . . . ,N by
running the honest verifier with coins r1, . . . , ri−1, ri+1, . . . , rN . In contrast, session i

is run externally. This P ∗
i is a stand-alone prover for a proof of knowledge. Therefore,

the given knowledge extractor can be used to extract the witness wi . In this way, all
witnesses {wi | i ∈ I } can be obtained, and the ideal-model adversary can send all the
pairs (xi,wi) to the trusted party. We note that P ∗

i will prove the same statement xi

that was proven by P ∗ in the execution where the ideal-model adversary played the
honest verifier in all sessions. This is because the same rj ’s are used for all j 	= i,
and so the view of P ∗ is the same before the ith session begins. (It is crucial that the
same statements xi are proven because otherwise the distribution over the inputs may
be skewed. Note that, unlike the honest prover, the cheating prover may choose the
statements to be proven as a function of its view in a real execution.)

It remains to prove that this extraction procedure runs in polynomial time. We show
this for the simplified (but incorrect) case that the knowledge extractor for P ∗

i runs
in expected-time that is exactly poly(n)/pi , where pi is the probability that the ith

proof from P ∗ is convincing. (Alternatively, we could use strong proofs of knowledge,
see [16].) Now, the probability that the extractor is run at all for the ith session is pi

(because with probability 1 − pi the proof of this session was not accepting in the first
execution). Furthermore, in this simplified case, the expected number of steps of the
extractor for this session is poly(n)/pi . Therefore, the overall expected time is poly(n).
Since this is repeated at most N = poly(n) times, we have that the expected overall run-
ning time of the extractor, and thus the ideal-model adversary, is expected polynomial-
time. We stress that the proof without this simplifying assumption is significantly more
difficult and uses techniques from [17].

We conclude that there exists a protocol that securely computes the zero-knowledge
proof of knowledge functionality under concurrent self composition. �

4. Impossibility Results for Concurrent Self Composition

An immediate and important ramification of Theorem 5 and Corollary 6 is that known
impossibility results for concurrent general composition also apply to unbounded con-
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current self composition, as long as the functionality in question enables bit transmis-
sion (or we consider interchangeable roles). As we will see, this rules out the possibility
of obtaining security under concurrent self composition for large classes of two-party
functionalities. We stress that the impossibility results are unconditional. That is, they
hold without any complexity assumptions and for any type of simulation (in particular
they are not limited to “black-box” simulation).

Impossibility for Concurrent General Composition The following impossibility re-
sults for concurrent general composition were shown in [27]:

1. Let f : {0,1}∗ → {0,1}∗ be a deterministic polynomial-time function that is
(weakly) one-way. Then, the functionality (x,λ) → (λ,f (x)) cannot be securely
computed under concurrent general composition by any non-trivial protocol. (Re-
call that a protocol is non-trivial if it generates output when both parties are hon-
est.)

2. Let f : {0,1}∗ × {0,1}∗ → {0,1}∗ be a deterministic polynomial-time function-
ality. If f depends on both parties’ inputs,14 then the functionality (x, y) →
(f (x, y), f (x, y)) cannot be securely computed under concurrent general com-
position by any non-trivial protocol.

3. Let f : {0,1}∗ × {0,1}∗ → {0,1}∗ × {0,1}∗ be a deterministic polynomial-time
functionality and denote f = (f1, f2). If f is not completely revealing,15 then
the functionality (x, y) → (f1(x, y), f2(x, y)) cannot be securely computed under
concurrent general composition by any non-trivial protocol.

We stress that these impossibility results hold even if only a single pair of parties are
involved in the protocol executions (as we define security here). See [27, full version]
for more details.

Impossibility Results for Concurrent Self Composition Let � be the set of function-
alities described above that cannot be securely realized under concurrent general com-
position, and let  be the set of all two-party functionalities that enable message trans-
mission. Applying Theorem 5 to the results of [27], we obtain the following corollary:

Corollary 8. Let f be a functionality in �∩ . Then, f cannot be securely computed
under unbounded concurrent self composition by any non-trivial protocol.

The set of functionalities � ∩  contains all the functionalities ruled out in [27] that
also enable bit transmission. For example, Yao’s famous millionaires’ problem (i.e.,
the computation of the “less than” functionality), where both parties receive output, is
included in this set. Applying Corollary 6, we also obtain the following result:

14 Formally, a functionality f depends on both inputs if there exist x1, x2, y and x, y1, y2 such that
f (x1, y) 	= f (x2, y) and f (x, y1) 	= f (x, y2).

15 The definition of completely revealing functionalities (Definition 10) can be found in Section 5. In-
tuitively, a functionality is completely revealing if one party can choose an input so that the output of the
functionality will then fully reveal the other party’s input.
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Corollary 9. Let f be any functionality in �. Then, the functionality g that computes
f with interchangeable roles cannot be securely computed under unbounded concurrent
self composition by any non-trivial protocol.

As we mentioned in the proof of Proposition 7, the zero-knowledge proof of knowl-
edge functionality for an NP-complete relation cannot be securely computed under con-
current general composition. Therefore, Corollary 9 shows that in a concurrent setting
where both parties prove and verify statements (sometimes called non-malleable con-
current zero-knowledge), it is impossible to securely compute the zero-knowledge proof
of knowledge functionality.

5. Communication Complexity Lower Bound

In this section we prove that for a class of functionalities F , if a protocol ρ securely
computes a functionality f ∈ F under m-bounded concurrent composition, and f en-
ables bit transmission, then ρ must have bandwidth of at least m bits. We prove this
for one class of functionalities F , although the proof can be extended to other classes
of functionalities that suffer from the impossibility results stated in Section 4. (It seems
that there is not much to be gained by repeating the proof for other classes of functional-
ities as well. These additional cases can be derived from our proof below and the proofs
of impossibility in [9] in a reasonably straightforward, but tedious, manner.)

In order to prove this lower bound, we “unravel” a number of different theorems that
are used in order to obtain the impossibility result stated in Corollary 8. The chain of
theorems leading to this corollary is as follows:

1. Theorem 5 (in this paper) shows that security under concurrent self composition
implies security under concurrent general composition.

2. In [27], it was shown that security under concurrent general composition implies a
relaxed variant of universal composability (called specialized-simulator universal
composability).

3. In [9], impossibility results for specialized-simulator universal composability
were demonstrated.

Thus, impossibility for concurrent self composition is obtained by combining all of the
three above steps. Here, we combine all of these steps into one proof. This is needed for
proving the lower bound on the communication complexity of protocols that are secure
under m-bounded concurrent self composition. In addition, this enables us to provide a
self-contained impossibility result.

5.1. The Lower Bound

Functionalities that are Completely Revealing We prove the lower bound for one class
of functionalities: those that do not “completely reveal P1 or P2’s input”, and enable bit
transmission. In order to state this, we need to formally define what it means for a
functionality to be “completely revealing”. Loosely speaking, a functionality is com-
pletely revealing for party P1, if party P2 can choose an input so that the output of the
functionality fully reveals P1’s input (for all possible choices of that input). That is, a
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functionality is completely revealing for P1 if there exists an input y for P2 so that for
every x, it is possible to derive x from f (x, y). For example, let us take the maximum
function for a given range, say {0, . . . , n}. Then, party P2 can input y = 0 and the result
is that it will always learn P1’s exact input. In contrast, the less-than function is not
completely revealing because for any input used by P2, there will always be uncertainty
about P1’s input (unless P1’s input is the smallest or largest in the range).

For our lower bound here, we will consider functionalities over finite domains only.
This significantly simplifies the definition of “completely revealing”. However, our
proof holds for the general case as well; see the full version of [9] for a complete defin-
ition and for more motivation.

We begin by defining what it means for two inputs to be “equivalent”: Let f : X ×
Y → {0,1}∗ ×{0,1}∗ be a two-party functionality and denote f = (f1, f2). Let x1, x2 ∈
X. We say that x1 and x2 are equivalent with respect to f2 if for every y ∈ Y it holds
that f2(x1, y) = f2(x2, y). Notice that if x1 and x2 are equivalent with respect to f2,
then x1 can always be used instead of x2 (at least without affecting P2’s output). Thus
two inputs that are equivalent are exactly the same, and essentially, there is no reason
to define the function over both of them (one of them can just be removed from the
function domain). We now define completely revealing functionalities:

Definition 10 (Completely revealing functionalities over finite domains). Let f :
X × Y → {0,1}∗ × {0,1}∗ be a deterministic two-party functionality such that the do-
main X × Y is finite, and denote f = (f1, f2). We say that the function f2 completely
reveals P1 ’s input if there exists a single input y ∈ Y for P2, such that for every two
distinct inputs x1 and x2 for P1 that are not equivalent with respect to f2, it holds that
f2(x1, y) 	= f2(x2, y). Complete revealing for P2’s input is defined analogously. We say
that a functionality f is completely revealing if f1 completely reveals P2’s input and f2
completely reveals P1’s input.

If a functionality is completely revealing for P1, then party P2 can set its own input to be
the “special value” y from the definition, and then P2 will always obtain the exact input
used by P1 (or one that is equivalent to it). Specifically, given v = f2(x, y), party P2
can traverse over all X and find the unique x for which it holds that f2(x, y) = v (where
uniqueness here is modulo equivalent inputs x and x′). It then follows that x must be
P1’s input (or at least is equivalent to it). Thus we see that P1’s input is completely
revealed by f2. In contrast, if f2 is not completely revealing for P1, then there does not
exist such an input for P2 that enables it to completely determine P1’s input. This is
because for every y that is input by P2, there exist two non-equivalent inputs x1 and
x2 such that f2(x1, y) = f2(x2, y). Therefore, if P1’s input happens to be x1 or x2, it
follows that P2 is unable to determine which of these inputs were used by P1. Notice
that if a functionality is not completely revealing, P2 may still learn much of P1’s input
(or even the exact input “most of the time”). However, there is a possibility that P2 will
not fully obtain P1’s input. As we will see, the existence of this “possibility” suffices
for proving our lower bound.

Note that we require that x1 and x2 be non-equivalent because otherwise, x1 and x2
are really the same input and so, essentially, both x1 and x2 are P1’s input. Technically,
if we do not require this, then a functionality may not be completely revealing simply
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due to the fact that no y can have the property that f2(x1, y) 	= f2(x2, y) when x1 and
x2 are equivalent. This would therefore not capture the desired intuition.

As we have mentioned above, the “less than” function (otherwise known as Yao’s
millionaires’ problem) is not completely revealing, as long as the range of inputs is
larger than 2. This can easily be demonstrated.

Bandwidth The statement of the theorem below refers to the bandwidth of a proto-
col ρ. This is defined to be the total number of bits sent by both parties in a protocol
execution.

We are now ready to state the lower bound:

Theorem 11. Let f = (f1, f2) be a deterministic polynomial-time two-party function-
ality over a finite domain that is not completely revealing and enables bit transmission.
If a non-trivial polynomial-time protocol ρ securely computes f under m-bounded con-
current self composition, then the bandwidth of ρ is greater than or equal to m.

Proof. As a first step, we note that the proof of Theorem 5 actually proves something
stronger than the theorem statement. Before showing this, we first define the bandwidth
of a hybrid-model protocol π that utilizes ideal calls to f : the bandwidth of such a
protocol equals the total number of bits sent by the parties to each other, plus a single
bit for each call to f .16 Now, let π be a hybrid-model protocol that utilizes ideal calls
to f , and has bandwidth at most m. Then, in the proof of Theorem 5, we actually
showed that if f enables bit transmission, then m invocations of ρ suffice for perfectly
emulating πρ (one invocation for each bit of π and one invocation for replacing each
ideal call to f ). In other words, for any protocol π of bandwidth at most m, an execution
of πρ can be emulated using m concurrent executions of ρ. Furthermore, this yields a
simulator for the hybrid-model execution of π with f . Thus, security under m-bounded
concurrent self composition implies security under concurrent general composition for
protocols π of bandwidth at most m. We conclude that the following claim holds:

Claim 5.1. Let f be a polynomial-time two-party functionality that enables bit trans-
mission, and let ρ be a polynomial-time protocol. If ρ securely computes f under
m-bounded concurrent self composition, then for every hybrid-model polynomial-time
protocol π of bandwidth at most m that utilizes ideal calls to f and for every non-
uniform probabilistic polynomial-time real-model adversary A for πρ , there exists a
non-uniform probabilistic polynomial-time hybrid-model adversary S such that

{HYBRID
f

π,S(n, x, y, z)}n∈N;x,y,z∈{0,1}∗
c≡ {REALπρ,A(n, x, y, z)}n∈N;x,y,z∈{0,1}∗ . (4)

We now proceed with the actual proof of Theorem 11. Let f = (f1, f2) be a determin-
istic polynomial-time two-party functionality over a finite domain, such that f enables
bit transmission and is also not completely revealing. We prove the theorem for the case

16 This may seem to be a strange way to count the bandwidth of a hybrid-model protocol. However, what
we are really interested in is the bandwidth of a real protocol; this is just a tool to reach that aim and defining
it in this way simplifies things.
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that f2 does not completely reveal P1’s input; the other case is analogously proven. As-
sume, by contradiction, that there exists a protocol ρ that securely computes f under
m-bounded concurrent self composition, and has bandwidth less than m. We then show
that in such a case, it is possible to construct a protocol π that utilizes ideal calls to
f and has bandwidth at most m, such that π has the following property: There exists
a real-model adversary A for πρ such that no hybrid-model adversary/simulator S can
cause (4) of Claim 5.1 to hold. This thereby contradicts Claim 5.1, and we conclude that
if ρ securely computes f under m-bounded concurrent self composition, then it must
have bandwidth of at least m.

Protocol π of Bandwidth m: Protocol π works as follows. Party P2 receives as input
two uniformly chosen values x ∈R X and y ∈R Y . (Note that since security must hold
for all inputs, it must also hold for uniformly chosen inputs.) Then, P2 sends the input
y to the trusted party for an ideal call to f . In addition, P2 runs the instructions of P1
in ρ with input x (in this execution of π , P2 interacts with P1 and so this will look
like a reversed execution of ρ if P1 runs the instructions of P2 in ρ). At the conclusion,
P2 outputs 1 if and only if the output that it receives from the ideal call to the trusted
party is f2(x, y). This completes the instructions for P2. Regarding the instructions for
Party P1, it actually makes no difference because this party will always be corrupted in
π . Nevertheless, for the sake of completeness of π , one can define P1 in an analogous
way to P2. This completes the description of π . Note that by the assumption that ρ

has bandwidth of less than m, the protocol π has bandwidth less than or equal to m.
(Protocol π consists of one reversed execution of ρ plus one ideal call. Therefore, if ρ

has bandwidth m–1, then π has bandwidth m; the additional bit being due to the single
ideal call to f .)

We stress that P2’s instructions in protocol π are not equivalent to its instructions
in ρ. This is because in π , party P2 follows the instructions of P1 in ρ. However, such
behaviour may not be in accordance with ρ, because P1’s instructions in ρ may not be
symmetric with P2’s instructions (e.g., see the protocols of [26,30] that use asymmetri-
cal instructions in an inherent way). Nevertheless, by Claim 5.1, protocol ρ must remain
secure for all protocols π of bandwidth at most m, and in particular, for the protocol π

above.

Real-Model Adversary A for πρ : Let A be an adversary who controls the corrupted
party P1. Before describing A, notice that the composed protocol πρ essentially con-
sists of two executions of ρ: in one of the executions, each party plays its designated role
(these are the ρ-messages) and in the other, the parties play reversed roles (these are the
π -messages). Adversary A works as follows. When P2 sends the first ρ-message to P1
(we assume without loss of generality that the first message in ρ is sent by P2), adver-
sary A forwards this same message back to P2 as if it is P1’s first standard π -message
to P2. Then, when P2 answers this standard π -message (according to P1’s instructions
in ρ and with input x), A forwards it back to P2 as if it is a ρ-message from P1.

Since party P2 runs the ρ-instructions of P1 in π , the execution of πρ with adversary
A amounts to P2 playing both roles in a single execution of ρ, where input x is used for
P1’s role and input y is used for P2’s role. Furthermore, P2 plays both roles honestly
and according to the respective instructions of P1 and P2. Therefore, the transcript of
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messages generated by P2 (by itself) in πρ is identical to the case that two honest
parties P1 and P2 run ρ with respective inputs x and y. By the security of ρ and the
fact that it is a non-trivial protocol, we have that except with negligible probability, P2
receives the P2-output from this execution of ρ, and this output must equal f2(x, y).
(This follows from the guaranteed behaviour of a non-trivial protocol when two honest
parties participate.) Now, since P2 outputs 1 in π if and only if it receives f2(x, y) from
the trusted party, we have that it outputs 1 in the πρ execution with A, except with
negligible probability (recall that in πρ , the output from ρ is treated by P2 as if it was
received from the trusted party).

Hybrid-Model Adversary S for π : By the assumption that ρ is secure under m-bounded
concurrent self composition and from Claim 5.1, we have that there exists a hybrid-
model adversary S such that:

{HYBRID
f

π,S(n,λ, (x, y), λ)} c≡ {REALπρ,A(n,λ, (x, y), λ)}. (5)

Notice here that P2’s input is (x, y) as described above and we can assume that P1’s
input and the adversary’s auxiliary input are empty strings.

We now make an important observation about the hybrid-model simulator S from (5).
In the ideal execution, with overwhelming probability, S must send the trusted party
an input x̃ ∈ X such that for every ỹ ∈ Y , f2(x̃, ỹ) = f2(x, ỹ), where x is from P2’s
input to π . In other words, S must send the trusted party a value x̃ that is equivalent
to P2’s input x. Otherwise, P2’s output from the hybrid and real executions will be
distinguishable. In order to see this, recall that in a real execution with A, party P2
outputs 1 except with negligible probability. Therefore, the same must be true in the
hybrid execution. However, if S sends an input x̃ for which there exists at least one ỹ

so that f2(x̃, ỹ) 	= f2(x, ỹ), then with probability at least 1/|Y | party P2 will output 0,
specifically when P2’s input y equals this ỹ. (Note that since Y is finite, this is a constant
probability. Also, recall that P2 only outputs 1 if it receives f2(x, y) from the ideal call
to the trusted party.) This argument works because P2 does not use y in any messages
sent to S in the hybrid-model execution of π . Thus, S works independently of the choice
of y.

Until now, we have shown that the hybrid-model adversary S can “extract” an input
x̃ that is equivalent to x. However, notice that S does this while essentially running
an on-line execution of ρ with party P1. (Of course, the interaction is actually of π -
messages with P2. Nevertheless, P2 just plays P1’s role in ρ for this interaction, so this
makes no difference.) This means that S could actually be used by an adversary who has
corrupted P2 and wishes to extract the honest P1’s input, or one equivalent to it. Since
f is not completely revealing, this is a contradiction to the security of ρ. We proceed to
formally prove this.

A Different Scenario: We now change scenarios and consider a single execution of ρ

with an honest party P1 who has input x ∈R X, and a real-model adversary A′ who
controls a corrupted P2. The strategy of A′ is to internally invoke the hybrid-model
adversary S , and perfectly emulate for it the hybrid-model execution of π with ideal
calls to f . Adversary A′ needs to emulate the trusted party for the ideal call to f that is
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made by S , as well as the π -messages that S expects to receive. Notice that in the setting
of a hybrid-model execution of π , these π -messages are sent by P2. However, they are
exactly the messages that an honest P1 would send in a single real-model execution
of ρ, with input x. Therefore, A′ forwards S the messages that it receives from P1 in
its real execution of ρ, as if S received them from P2 in a hybrid-model execution of π .
Likewise, standard π -messages from S are sent externally to P1. At some stage of the
emulation, S must send a value x̃ to the trusted party. A′ obtains this x̃, outputs it and
halts.

The view of S in this emulation by A′ (until A′ halts) is identical to its view in a
hybrid-model execution of π . Therefore, by the above observation regarding S , it holds
that x̃ must be such that for every ỹ ∈ Y , f2(x̃, ỹ) = f2(x, ỹ), except with negligible
probability. That is, in a single real execution of ρ between an honest P1 and an adver-
sary A′ controlling P2, we have that A′ outputs a value x̃ that is equivalent to P1’s input
x (except with negligible probability).

It remains to show that in an ideal execution of f , for every ideal-model simulator
S ′ controlling P2, the probability that S ′ outputs a value x̃ that is equivalent to x, is
less than 1 − 1/p(n), for some polynomial p(·). This suffices because the real-model
adversary A′ does output such an x̃; this therefore proves that there does not exist a
simulator for A′, in contradiction to the (stand-alone) security of ρ. Now, in an ideal
execution, S ′ sends some input ỹ to the trusted party and receives back f2(x, ỹ). Fur-
thermore, S ′ sends ỹ before receiving any information about x. Therefore, we can view
the ideal execution as one where S ′ first sends some ỹ to the trusted party and then
P1’s input x is chosen uniformly from X. Now, since f2 is not completely revealing,
we have that for every ỹ ∈ Y , there exist two non-equivalent inputs x1, x2 ∈ X such that
f2(x1, ỹ) = f2(x2, ỹ). Since x ∈R X, we have that with probability 2/|X|, party P1’s
input x is in the set {x1, x2}. Thus, with probability 2/|X|, party P2’s output (and so
the value received by S ′) is f2(x1, ỹ) = f2(x2, ỹ). Given that this event occurred, S can
output a value that is equivalent to x with probability at most 1/2. (Recall that x1 and
x2 are not equivalent. Therefore, S ′ cannot output a value that is equivalent to both x1

and x2. Furthermore, the probability that x = x1 equals the probability that x = x2. In
other words, S ′ must fail with probability 1/2 in this case.) We conclude that in the
ideal execution, S ′ outputs a value that is not equivalent to P1’s input with probability
at least 1/|X|. Thus, the REAL and IDEAL executions can be distinguished with advan-
tage that is at most negligibly smaller than 1/|X|. Since X is finite, 1/|X| is a constant
probability and so this contradicts the security of ρ, completing the proof. �

Functionalities with Interchangeable Roles Recall that by Claim 2.1, if a functionality
g computes a non-unilateral functionality f with interchangeable roles, then g enables
bit transmission. (Recall that a functionality is not unilateral if it cannot be computed
without any interaction between the parties; that is, there is some dependence on the
inputs.) Now, observe that if a functionality is not completely revealing, then it cannot
be unilateral. This holds because if a functionality f is unilateral, then all inputs x1 and
x′

1 are equivalent with respect to f2 and all inputs x2 and x′
2 are equivalent with respect

to f1. Therefore, f is completely revealing (in a vacuous sense). Combining the above
together, we have the following corollary to Theorem 11:
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Corollary 12. Let f = (f1, f2) be any deterministic two-party functionality over a
finite domain that is not completely revealing and let g compute f with interchangeable
roles. If a non-trivial protocol ρ securely computes g under m-bounded concurrent self
composition, then the bandwidth of ρ is greater than or equal to m.

Bounded Simultaneity We note that Theorem 11 holds even if at any given time, at
most two sessions of ρ are running simultaneously. Thus, the lower bound holds even if
the number of sessions that are open at any given time is severely limited.

5.2. Concurrent General Composition with Independent Inputs

The proof of Theorem 11 actually yields an interesting new result with respect to con-
current general composition. Notice first that the proof relates almost exclusively to
concurrent general composition, with the connection to concurrent self composition
stated in Claim 5.1. Essentially, we show that πρ cannot be simulated in the hybrid
model, by any simulator S . An important observation is that the honest party P2’s input
to π is y ∈R Y and its input to ρ is x ∈R X. Furthermore, these inputs are fixed before
any protocol executions take place. That is, a contradiction is achieved even in a sce-
nario where two protocols with independent inputs are run concurrently. (Recall that the
honest party’s inputs are independently chosen in each execution and that, as far as its
concerned, it runs π and ρ without any interaction between them.) This extends previ-
ous lower bounds for concurrent general composition that were demonstrated in [27].

We note that this has serious implications. Specifically, one may have thought that as
long as independently chosen inputs are used, there is no danger posed by concurrent
general composition. This may actually be the case; however, it cannot be proven using
the simulation (i.e., real/ideal model) based definition adopted here.

6. Black-Box Lower Bounds on Round Complexity

In this section we prove black-box lower bounds for m-bounded concurrent secure two-
party computation. Specifically, we show that any protocol that securely computes the
blind signature and oblivious transfer functionalities under m-bounded concurrent self
composition, and can be proven using black-box simulation, must have more than m

rounds of communication. (In order to simplify the exposition, we count a round of
communication to be a pair of messages sent between the parties. Thus, in more com-
mon terminology, we actually show that more than 2m rounds are required for obtaining
m-bounded concurrent self composition.)

Before proceeding, we compare these lower bounds to those presented in Section 5.
First, and most significantly, the lower bounds here are only for protocols that can be
proven secure via black-box simulation. Thus, they do not constitute absolute lower
bounds. In fact, it has been shown that any efficient functionality can be securely
computed under m-bounded concurrent self composition, with a constant-round proto-
col [30]. Nevertheless, the lower bounds do demonstrate that non-black-box techniques
are essential for achieving round complexity that is lower than m. This has important
ramifications since all known (highly) efficient protocols, that use specific number-
theoretic hardness assumptions, are proven using black-box simulation. Another im-
portant difference between the lower bounds is with respect to the functionalities for
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which the lower bounds hold. Our non-black-box lower bounds hold for a large class
of functionalities (and, as mentioned, this can be extended further). In contrast, we only
know how to prove black-box lower bounds for the two specific functionalities of blind
signatures and oblivious transfer. Of course, on the other hand, our black-box lower
bounds are far more severe than our non-black-box lower bounds (high round complex-
ity is more problematic than high communication complexity). Another “advantage”
of our black-box lower bounds is that they hold even if the inputs in all the concur-
rent executions are fixed ahead of time, rather than being chosen adaptively (recall that
an adaptive choice of inputs is essential for our non-black-box lower bounds). Finally,
we note that the blind signature and oblivious transfer functionalities do not enable bit
transmission (unless interchangeable roles are considered). Therefore, our non-black-
box lower bounds do not hold for these functionalities.

6.1. The Main Result

As we have seen, two-party protocols are proven secure by demonstrating that for every
real model adversary A controlling one of the parties, there exists an ideal model ad-
versary/simulator S who can simulate a real execution for A. The adversary S interacts
with the trusted third party to whom it sends inputs and receives outputs. Typically, S
extracts an input used by A and sends this to the trusted party. The trusted party then
computes the output (based on the input sent by S and the input of the honest party) and
returns the output to S . Having received this output, S completes the simulation, ensur-
ing that A’s view is consistent with the output received from the trusted party. Since the
output of A depends on the input of the honest party, S must query the trusted party
in order to complete the simulation. The fact that S needs to interact with the trusted
party is crucial to the lower bound. This is fundamentally different to the case of zero-
knowledge where the verifier’s output is always the same (i.e., a bit saying accept). Thus
a simulator for zero-knowledge need not have any interaction with an external trusted
third party. This difference explains why our lower bound does not apply to concurrent
zero-knowledge.

Continuing the above idea, it follows that for S to simulate m executions of a secure
protocol, it must query the trusted party m times. Another key observation is that once
the input of an execution has been sent to the trusted party, further rewinding of A is
problematic. This is because A may choose its inputs depending on the messages it has
seen. Therefore, rewinding A may result in A modifying its input. Since this modified
input would also need to be sent to the trusted party and only one input can be sent to
the trusted party in each execution, it is not possible to rewind A in an effective way.

Finally, consider the following scheduling of messages in a concurrent execution:
Between every round of messages in the first execution, place a complete protocol ex-
ecution. We remark that this scheduling is possible if the protocol has m rounds and
remains secure for m concurrent executions. (Also, notice that at any given time, at
most two different protocol executions are actually running simultaneously.) Then, by
the above discussion, S must send an input to the trusted party between every round of
the first execution (otherwise S can simulate a complete execution without conversing
with the trusted party). Since S cannot rewind A behind the points at which input is sent
to the trusted party, this implies that S cannot rewind A at all in the first execution. How-
ever, S is a black-box simulator and it must be able to rewind in order to successfully
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simulate. We conclude that one cannot obtain a secure protocol that has m rounds and
remains secure for m concurrent executions. We note that this intuition seems to hold
for any protocol and any functionality being computed. However, as we have already
seen, our lower bound does not hold for every functionality (zero-knowledge being a
non-trivial counter-example). Technically, we need to use functionalities that enable us
to completely prevent S from carrying out any rewinding at any stage; this is discussed
below. Before proceeding to the formal proof, we define what it means for parties to use
fixed inputs.

Fixed Inputs We say that an input-selecting machine M generates fixed inputs if its
input is a vector v = (v1, v2, . . .) and for every i and every α, M(v, i, α) = vi . Thus, M

outputs the ith element of its input vector, irrespective of the sequence α of previously
obtained outputs. In this sense, the sequence of inputs that M generates is fixed before
any executions take place.

Theorem 13. There exists a probabilistic polynomial-time two-party functionality f

such that every non-trivial protocol that securely computes f under m-bounded con-
current self composition and can be proven using black-box simulation, must have more
than m rounds of communication. This holds even if the input-selecting machines M1

and M2 generate fixed inputs only.

Proof. We prove this theorem under the assumption that one-way functions exist. This
suffices because it has been shown that secure coin tossing (even for a single execution)
implies the existence of one-way functions [22]. Therefore, if one-way functions do
not exist, the coin tossing functionality already fulfills the requirement of the theorem
statement.

Our proof is based on the motivating discussion above and is according to the follow-
ing outline. We begin by defining a functionality f for which the lower bound holds, and
assume by contradiction that there exists an m-round protocol � that securely computes
f under m-bounded concurrent self composition. Next, a specific real-model adversary
A is constructed who controls P2 and interacts with P1 in an execution of �. By the
security of �, there exists an ideal-model simulator S for A. The adversary A is con-
structed so that we can claim certain properties of the simulator S . One important claim
about S will be that in one of the executions, it is essentially unable to rewind A. Fur-
thermore, in this execution, A basically plays the role of an honest P2. Therefore, we
have that S can actually “simulate” while interacting with an honest P2, whom it cannot
rewind. This observation is used to construct a new adversary A′ who controls P1 and
attacks P2. In this attack, A′ invokes S who proceeds to “simulate” for P2. The proof
is then concluded by showing that this enables A′ to obtain information that cannot be
obtained in the ideal-model, contradicting the security of �.

As mentioned in the above outline, we begin by defining a functionality f for
which the lower bound holds. The functionality definition refers to a secure signa-
ture scheme [21] which can be constructed from any one-way function [35]. It actually
suffices for us to use a one-time signature scheme. Before defining the functionality,
we present an informal definition of secure one-time signature schemes. A signature
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scheme is a triplet of algorithms (Gen,Sign,Verify), where Gen is a probabilistic gener-
ator that outputs a pair of signing and verification keys (sk, vk), Sign is a signing algo-
rithm and Verify is a verification algorithm. Without loss of generality, we assume that
the signing key sk explicitly contains the verification key vk. The validity requirement
for signature schemes states that except with negligible probability, honestly generated
signatures are almost always accepted; i.e., for almost every (vk, sk) ← Gen(1n) and
for every message x, Verifyvk(x,Signsk(x)) = 1. The security requirement of a signature
scheme states that the probability that an efficient forging algorithm M can succeed in
generating a valid forgery is negligible. This should hold even when M is given a sig-
nature to any single message of its choice. That is, in order for M to succeed, it must
generate a valid signature on any message other than the one for which it received a sig-
nature. More formally, the following experiment is defined: The generator Gen is run,
outputting a key-pair (vk, sk). Next, M is given vk and outputs a message x. Finally,
M is given a signature σ = Signsk(x) and outputs a pair (x∗, σ ∗). Then, we say that M

succeeded if Verifyvk(x
∗, σ ∗) = 1 and x∗ 	= x. (That is, M output a valid signature on a

message other than x.) We say that a one-time signature scheme is secure if for every
non-uniform polynomial-time M , the probability that M succeeds is negligible.

We are now ready to define the functionality f , which can be seen as a “blind signa-
ture” type functionality [10]:

The blind signature functionality f :

• Inputs:
– P1 has a signing-key sk (for a secure one-time signature scheme).
– P2 has a verification-key vk and an input α ∈ {0,1}n.

• Output:
– P1 receives no output and P2 receives σ = Signsk(α).

That is, the functionality can be defined as follows:

(sk, (vk,α)) �→ (λ,Signsk(α)).

There are three important features of this functionality. First, in the ideal model, in order
to compute P2’s output, the trusted third party must be queried. (Otherwise, a signature
would be generated without access to sk and this would constitute a forgery.) Second,
if the verification-key vk given to P2 is the key associated with sk, then party P2 can
check by itself that it received the correct output. Combined with the first feature, this
means that P2 can essentially check whether or not the trusted party was queried in an
ideal execution. Third, P1 learns nothing about P2’s input. These features are central in
the proof of the lower bound.

We note that secure computation requirements are for all inputs and all sufficiently
large n’s. Therefore, the security of a protocol must also hold when P1 and P2 are
given randomly generated associated signing and verification keys (i.e., vk and sk such
that (vk, sk) ← Gen(1n)). From here on, we assume that the inputs of the parties P1
and P2 are always such that they have associated keys. That is, in every execution the
fixed-input vectors x and y are such that for every i, xi and yi contain associated keys.
We also assume that P2’s inputs α and A’s auxiliary input z are uniformly distributed
in {0,1}n. Once again, since security holds for all inputs, it also holds for uniformly
distributed inputs.
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Proving the Lower Bound In the remainder of the proof, we show that any m-bounded
concurrent secure two-party protocol for computing f must have more than m rounds.
By contradiction, assume that there exists such a protocol � with exactly m rounds (if
it has less, then empty messages can just be added). Without loss of generality, assume
also that the first message of � is sent by P2.

We consider a scenario where exactly m = m(n) executions are run; denote these m

executions of � by �1, . . . ,�m and denote the ith round of execution �j by �j(i).
Also, denote the messages sent by P1 and P2 in �j(i) by �j(i)1 and �j(i)2, re-
spectively. Finally, denote the inputs of P1 and P2 in the ith execution by ski and
(vki, αi), respectively, where each (vki, ski) is independently generated of all other
pairs (vkj , skj ).17 That is, the fixed-input vectors used by the parties are of the
form x = (sk1, . . . , skm) and y = ((vk1, α1), . . . , (vkm,αm)) where αi ∈R {0,1}n and
(vki, ski) ← Gen(1n) are all independently chosen. We now define an adversary A
for �.

The adversary A: Adversary A corrupts party P2 and schedules the m executions as
follows. A plays �1(1) (i.e., the first round of �1) and then runs the entire execution
of �2. Next, �1(2) is run and then the entire execution of �3. In general, the (i–1)th

round of �1 is run followed by the entire execution of �i . Since there are m rounds
in �1 and m concurrent executions, we have that between every two rounds �1(i–1)

and �1(i) of �1, there is a complete execution of �i . See Fig. 1 for a diagram of the
schedule.
We now describe A’s strategy within each execution. For the first execution �1,
adversary A replaces its input (vk1, α1) with (vk1, z); recall that z is A’s auxiliary
input and that it is uniformly distributed in {0,1}n. Then, A runs execution �1 on
this input, following the protocol instructions exactly. So, apart from replacing part
of its input, A plays exactly like the honest P2 in execution �1.
For all other executions �i , adversary A behaves as follows. Recall that execution �i

follows immediately after round �1(i–1) (i.e., immediately after A receives message
�1(i–1)1). Now, A takes the input (vki, αi) of P2 and replaces αi with �1(i–1)1.
Actually, the input αi to f must be of length n. Therefore, A uses a pseudoran-
dom function F [18] with a random key k, and replaces αi with Fk(�1(i–1)1).
Formally, the key k must be randomly chosen and included in A’s auxiliary in-
put; we omit this in order to simplify notation. (Recall that pseudorandom func-
tions can be constructed from any one-way function, as needed.) After replacing αi

with Fk(�1(i–1)1), adversary A honestly follows the protocol instructions of P2 in
�i . By the definition of f , A’s output from �i should be a value σi that consti-
tutes a valid signature on Fk(�1(i–1)1) using signing-key ski (i.e., σi is such that
Verifyvki

(σi,Fk(�1(i–1)1)) = 1). Now, A checks that this holds for σi . If yes, A
proceeds as in the above-described schedule. Otherwise, A sends ⊥, outputs the out-
put values from already completed executions (i.e., σ2, . . . , σi−1) and aborts. At the
conclusion, A outputs all of its inputs and outputs from the protocol executions.

Before proceeding with the proof, we provide some motivation to this construction of
the adversary A. The basic idea is to prevent any simulator S from effectively “rewind-

17 We could have used the same pair (sk, vk) in all m executions and define the functionality f using a
many-time signature scheme.
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Fig. 1. The schedule of the adversary. The arrows refer to messages from execution �1.

ing” A in the execution of �1. This is achieved as follows. First, A aborts unless its
output from �i is a valid signature on Fk(�1(i–1)1), where validity is with respect
to vki . Second, in an ideal-model execution, S can obtain at most one signature that
is valid with respect to the verification key vki . (This is because S does not know the
signing key ski . Therefore, unless S can forge signatures, it can only obtain a signa-
ture by querying the trusted third party. However, the trusted party can only be queried
once in each execution, and so only provides a single signature with key ski .) Third,
by the collision resistance of pseudorandom functions,18 S cannot generate a message
�1(i–1)′1 such that Fk(�1(i–1)′1) = Fk(�1(i–1)1). Putting this together, we have that
there is at most one �1(i–1)1 message seen by A for which it does not abort. That is,
S is unable to see A’s response on different �1(i–1)1 messages, or in other words, S is
unable to rewind A in �1. We note that this heavily utilizes the first two features of the
functionality f as described above.

The above explains why S cannot rewind A in execution �1. This, in itself, does
not lead to any contradiction. However, recall that in order for S to simulate A, it must
send A’s input to the trusted third party. This means that S must successfully extract A’s

18 We use pseudorandom functions and not collision resistant hash functions so that we can rely on the
existence of one-way functions only.
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input from all executions, and in particular from �1. We conclude that S can extract A’s
input in �1 without rewinding A. Such an S can therefore be used by an adversary who
controls P1 and attacks P2, in order to extract P2’s input (P2 cannot be rewound, but
S does not need to rewind it). Since P2’s input remains secret in f , this contradicts the
security of the protocol. This last point utilizes the third feature of f described above;
i.e., the fact that the signature is “blind”.

Ideal-Model Simulation of A By the assumption that � is black-box secure, we have
that there exists a black-box simulator S such that the result of an ideal execution with
S is indistinguishable from the result of a real execution of A running �1, . . . ,�m.
We now make some claims regarding the behaviour of S . Recall that S is given oracle
access to the adversary A. Thus, the oracle given to S is a next message function that
receives a series of messages and computes A’s response in the case that A received
these messages in an execution. We note that if A would abort after receiving only a
prefix of the messages in an oracle query, then its reply to the query is ⊥. We now prove
a special property of all oracle calls in which A does not abort.

Claim 6.1. For every i, let Qi be the set of all oracle queries sent by S to A during the
ideal-model execution which include all messages from the �i execution and where A
does not abort.19 Then, except with negligible probability, the same message �1(i–1)1
appears in every q ∈ Qi .

Proof. The proof of this claim is based on the security of the signature scheme and
the collision resistant property of random (and thus pseudorandom) functions. First, we
claim that except with negligible probability, S does not produce two oracle queries q

and q ′ containing �1(i–1)1 	= �1(i–1)′1, such that Fk(�1(i–1)1) = Fk(�1(i–1)′1). Oth-
erwise, we can construct a machine M that distinguishes Fk from a random function.
Machine M works by emulating the entire experiment with A and S , including choos-
ing all inputs. The only difference is that instead of A computing αi = Fk(�1(i–1)1),
machine M queries its oracle with �1(i–1)1 and sets αi to equal its oracle response.
(Recall that M has oracle access to a function that is either truly random or equals
Fk(·), for a random key k.) Now, on the one hand, if M has oracle access to Fk(·), then
M’s emulation for S is perfect. Therefore, with non-negligible probability M obtains
from S two messages �1(i–1)1 	= �1(i–1)′1 such that its oracle response is the same.
On the other hand, if M has oracle access to a random function, then it will see such a
collision with at most negligible probability. Therefore, with non-negligible probability,
M distinguishes a pseudorandom function from a random one.

We now prove the claim under the assumption that such oracle queries q and q ′ are
never produced by S . Intuitively, in this case, the claim follows from the security of the
signature scheme. That is, S is allowed to query the trusted party for the ith execution
only once, and this query provides S with a signature such that if the signature is on
the message x where x = Fk(�1(i–1)1), then A does not abort. Now, if there are two

19 That is, we consider all of the oracle queries made by S to A throughout the simulation and take the
subset of those queries which include all the messages of �i . By the scheduling described in Fig. 1, such a
query defines the ith message of �1 that is sent by A (i.e., �1(i)2).
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oracle queries with different �1(i–1)1 messages (and thus with different Fk(�1(i–1)1)

values) such that A does not abort in either of them, then it must be that S provided A
with valid signatures on both Fk(�1(i–1)1) values. Since only one signature could have
been obtained from the trusted party, S must have generated a forgery.

More formally, we construct a signature-forging algorithm M that is given vk and
simulates A and the trusted party for S . That is, M chooses the inputs for both parties
in every execution �j for j 	= i. This means that M knows the signing-key skj for all
of these executions. In contrast, the verification-key vki of the ith execution is set to be
the verification-key vk received by M . The forger M then perfectly emulates an ideal-
model execution for S . This involves emulating A and the trusted party. Note that the
trusted party can be emulated with no problem in all executions except for �i (because
M knows all the inputs, including the signing keys). In contrast, in order to emulate
the trusted party for the ith execution, M needs to be able to sign with the key that is
associated with vk. M does this by querying its signing oracle. Thus, the emulation is
perfect.

Now, assume that with non-negligible probability, there exist two queries q, q ′ ∈ Qi

with different messages �1(i–1)1 and �1(i–1)′1, respectively. Since A does not abort,
it must have received valid signatures for both Fk(�1(i–1)1) and Fk(�1(i–1)′1) under
the verification key vki = vk. (Recall that in this case, Fk(�1(i–1)1) 	= Fk(�1(i–1)′1).)
Now, when A halts and its view includes the prefix q , its output includes a signature
on Fk(�1(i–1)1) (because A outputs the output it received in all executions before it
possibly aborts). Likewise, when A halts and its view includes the prefix q ′, its out-
put includes a signature on Fk(�1(i–1)′1). We conclude that by continuing the emula-
tion with both these prefixes, M can obtain (Fk(�1(i–1)1), σ ) and (Fk(�1(i–1)′1), σ ′)
that constitute two valid message/signature pairs for the key vk. However, during the
ideal-model execution, S can only query the trusted party once for the ith execution.
Therefore, M queried its signing oracle with at most one of these messages. The other
pair thus constitutes a valid forgery and M succeeds with non-negligible probability, in
contradiction to the security of the signature scheme. �

Next, we claim that S must obtain the input z that is used by A in the execution
of �1. That is,

Claim 6.2. At some point in the ideal execution, except with negligible probability, S
must send the trusted party the pair (∗, z) where z is A’s auxiliary input and ∗ denotes
any string.

Proof. In a real execution of �1, . . . ,�m, the output of A from �1 is a valid signa-
ture σ1 on z; that is, σ1 is such that Verifyvk1

(z, σ1) = 1. This is because A plays the
honest party’s strategy in this execution with input (vk1, z), and thus the execution of
�1 is exactly like an execution between two honest parties. (The fact that the output
is obtained in such an execution follows from the fact that the secure protocol is non-
trivial.) Therefore, it follows that in an ideal execution with S , except with negligible
probability, the output of A must also be a valid signature σ1 on z. This holds because,
otherwise, a distinguisher D who receives all the parties’ inputs and outputs, including
A’s auxiliary input z, could easily distinguish the real and ideal executions.
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Now, in an ideal execution, S is given no information about sk1 and z. Thus, if S
queries the trusted party with (∗, z), it will obtain the necessary signature σ1 on z.
Otherwise, it must forge a signature on z, so that verification with the key vk1 succeeds.
Formally, if S can obtain a correct σ1 without querying the trusted party with (∗, z), then
we can construct a forging algorithm M who breaks the one-time signature scheme. The
actual reduction is essentially the same as in the proof of Claim 6.1 and the details are
therefore omitted. �

Essentially, Claim 6.1 tells us that for every i, there is only a single �1(i–1)1 message
sent by S to A for which A does not abort. Thus, any “rewinding” of A is of no help
(i.e., in any rewinding, S will either have to replay the same messages as before, or
A will just abort). Furthermore, Claim 6.2 tells us that S succeeds in “extracting” the
input z used by A in the execution of �1. These claims are central to our construction
of an adversary A′ who corrupts P1 and uses S to “attack” P2. (Notice that we are
switching the identity of the corrupted party here.) The adversary A′ will internally
invoke S and forward all messages from �1 between S and the honest P2 (instead of
between S and A). Now, since S has only black-box access to A and cannot rewind A,
its interaction with A is the same as its interaction with P2. Recall further that A actually
plays the role of the honest P2 in �1, and so it makes no difference to S whether it is
running an ideal execution with A or a real execution with P2. This implies that if S
can extract A’s input in the ideal model execution, then A′ (internally running S) can
extract P2’s input in a real execution. However, this will result in a contradiction because
P2’s input should not be revealed in a secure protocol execution (by the definition of the
functionality f ).

The adversary A′: Let A′ be an adversary for a single execution of � who corrupts P1
and interacts with P2. In this execution, P1’s input is a signing key sk and P2’s input
is the associated verification key vk and a uniformly chosen α ∈R {0,1}n. A′ inter-
nally incorporates S and emulates the concurrent executions of �1, . . . ,�m while
externally interacting in a single execution of � with P2.20

Notice that S interacts with a trusted third party and with A; therefore, A′’s emu-
lation involves emulating both of these entities. S also expects to receive the input
(vk1, α1, . . . , vkm(n), αm(n)) that A receives, and so A′ must provide this in the em-
ulation as well. (Note that S does not receive A’s auxiliary input z.) Below, we will
refer to P2 as the external P2 in order to differentiate between real interaction with
P2 and internal emulation.
The executions �2, . . . ,�m are all internally emulated by A′. That is, A′ selects all
the inputs (for both parties) and emulates both A and the trusted party for S . This
emulation can be carried out perfectly because A′ knows all inputs, including the
signing keys. However, the emulation of �1 is carried out differently. That is, A′ sets

20 Notice that if the definition allows S to run in expected polynomial-time, then A′ cannot internally run
S (because it is limited to strict polynomial-time). Nevertheless, this can be overcome as follows. Let q(n)

be the polynomial that bounds the expected running time of S . Then, if in the emulation, S exceeds 2q(n)

steps, A′ truncates the execution and outputs time-out. This ensures that A′ runs in strict polynomial-time.
Furthermore, by Markov’s inequality, A′ outputs time-out with probability at most 1/2. Thus, A′’s success
probability in its attack will be at most 1/2 of what it would be if it could run S without truncation. This
suffices for our lower bound.
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S’s input in �1 to be (vk,α′) where vk is the verification key associated with sk and
α′ ∈R {0,1}n. (Recall that sk is A′’s input in the single execution with the external
P2 and that, by assumption, sk explicitly contains a description of vk. Notice also,
that α′ has no correlation with the external P2’s input α.) Having set the input, we
now describe how A′ emulates S’s interaction with A in �1. This emulation works
by having the external P2 play the role of A. That is, let q be an oracle query from
S to A, such that A’s response to q is the ith message of execution �1. Then, if A
would abort upon receiving q or any prefix of q , adversary A′ emulates A aborting.
(Note that A′ can know if A would abort because this depends only on A’s output
from executions �2, . . . ,�m, which are all internally emulated by A′.) Otherwise,
q is such that A does not abort, but rather replies with the ith message of �1 (i.e.,
�1(i)2). Now, if the external P2 has already sent the ith message of �, then A′
replays this same message to S as A’s reply. Otherwise, A′ extracts the �1(i–1)1
message from q and sends it to the external P2, who replies with �1(i)2. A′ records
this message and passes it to S as A’s reply from the query q . This describes how the
role of A in �1 is emulated. (The above description implicitly assumes that, without
loss of generality, S queries A with all prefixes of q before querying q .) In order to
complete the emulation, A′ also needs to emulate the trusted party in �1. However,
this is straightforward because A′ knows the signing key sk (it is its input), and can
therefore provide the output as generated by the trusted party. At the conclusion, A′
outputs its view, including all the messages sent by S to the trusted third party. This
completes the description of A′.

Deriving a Contradiction We first claim that S’s view in the emulation by A′ is sta-
tistically close to its view in an ideal execution with oracle-access to A. The emulation
of A and the trusted third party in executions �2, . . . ,�m is clearly identical. We now
demonstrate statistical closeness for execution �1. First, note that the input distribution
for �1 is the same. That is, S is given a pair (vk,α′) for P2’s input, and the external P2
really uses the pair (vk,α). (Recall that α and α′ are independent uniformly distributed
n-bit strings.) This is exactly the same as in an ideal execution where S’s input in �1
equals (vk,α); yet A replaces α with z and really uses the pair (vk, z) for input. Second,
we claim that the distribution over the messages sent by P2 is statistically close to the
distribution over the non-abort messages answered by A. This holds due to the fact that
both A and P2 follow the instructions of �, and from the following observation. Denote
by Q the set of all oracle queries q which result in A′ sending a message to the exter-
nal P2. Then, except with negligible probability, the same �1(i)1 messages appear in
every q ∈ Q, for every i. This follows directly from Claim 6.1; i.e., otherwise, with non-
negligible probability, there exists a j for which Qj contains two different �1(j–1)1
messages. Thus, A’s non-abort replies are consistent with an honest party who receives
a single series of messages �1(1)1, . . . ,�1(m)1. This also implies that the messages
replayed from P2 to S are the same as would be sent by A to S , except with negligible
probability. Third, A′ sends ⊥ to S in the emulation if and only if A would send ⊥
to S in an ideal execution. Finally, note that since A′ has the signing key sk, it plays
the trusted party’s role perfectly in the emulation. Combining the above, we have that
S’s view in the emulation by A′ is statistically close to its view in an ideal execution.
That is, all abort and non-abort oracle replies received by S in the emulation by A′ are
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statistically close to what S would see in an ideal execution with A. Furthermore, the
output from the emulated trusted party that S receives from A′ is identically distributed
to the output that S would receive from the real trusted party in an ideal execution. In
conclusion, all messages seen by S in the two scenarios are statistically close.

Now, by Claim 6.2, except with negligible probability, S must send (∗, z) to the
trusted third party at some stage of the ideal execution, where z is the auxiliary input of
A that it uses as input in �1. Therefore, with probability negligibly close to 1, S must
send (∗, α) in the above emulation by A′, where α is the input used by P2 in �. In
such a case, α is included in A′’s output. In summary, in a real execution of A′ with P2,
adversary A′ obtains P2’s input with probability almost 1. Intuitively, this yields a con-
tradiction because P2’s input is not revealed by the functionality definition. Formally,
consider the ideal-model execution for this scenario; let S ′ be the ideal-model adversary
that is guaranteed to exist for A′ in �. By the security of the protocol, it must be that
S ′ outputs P2’s input α with probability negligibly close to 1. (Otherwise, the real and
ideal executions can be easily distinguished.) However, in such an ideal execution, S ′
is given no information on P2’s input α. Since α is uniformly distributed in {0,1}n it
follows that S ′ can output this value with at most negligible probability. We therefore
conclude that such a protocol � does not exist. �

Notice that Theorem 13 holds if the simulator for the case that P2 is corrupted is
black-box, irrespective of whether or not the simulator for a corrupt P1 is also black-
box (of course, the roles of P1 and P2 can be reversed). We remark that in the protocol
of [25], one corruption case is proven using black-box simulation and the other is proven
using non black-box simulation. Therefore, Theorem 13 states that any protocol using
such a strategy must have round complexity greater than m.

Impossibility of Black-Box Unbounded Concurrent self Composition The following
corollary is immediately derived from Theorem 13.

Corollary 14. The blind signature functionality f defined above cannot be securely
computed under unbounded concurrent self composition while using black-box simula-
tion.

Notice that Corollary 14 is significantly weaker than the impossibility results provided
by Corollary 8 in Section 4. This is both due to the fact that Corollary 14 refers to only
a single functionality, and in addition, only rules out protocols that are proven secure
using black-box simulation. Nevertheless, it is important to note that the blind-signature
functionality does not enable bit transmission. The functionality is therefore not ruled
out by Corollary 8.

Non-uniform Versus Uniform Adversaries Our proof of the lower bound uses the non-
uniformity of the adversary A in an essential way. That is, we require that A use its
auxiliary input z in the execution of �1. This is important because, on the one hand,
the simulator S must not have access to the input used by A. On the other hand, the
distinguisher must know which input is used by A in order to check that the signature
generated by S is on the “correct” input. We solve this by using A’s auxiliary input
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which is not given to S (but is given to the distinguisher). We remark that we do not
know whether or not Theorem 13 holds also for uniform adversaries.

6.2. Impossibility for Concurrent Oblivious Transfer

As we have mentioned, Theorem 13 and Corollary 14 refer to the specific blind signa-
ture functionality. In this section, we extend the black-box impossibility result to the
oblivious transfer functionality; a highly important building block in many secure pro-
tocols. Recall that 1-out-of-2 oblivious transfer is defined by: ((x0, x1), σ ) �→ (λ, xσ ),
where x0, x1 ∈ {0,1}n and σ ∈ {0,1} [13].

Corollary 15. There does not exist a non-trivial protocol that securely computes the
1-out-of-2 oblivious transfer functionality under unbounded concurrent self composition
and can be proven using black-box simulation.

Proof of Sketch. We show that a protocol for 1-out-of-2 oblivious transfer that re-
mains secure under unbounded concurrent self composition can be used to obtain a
protocol for the blind signature functionality that remains secure under unbounded con-
current self composition. Since we have already proven an impossibility result for the
blind signature functionality, this implies an impossibility result for the oblivious trans-
fer functionality as well.

We now describe the protocol for blind signatures that uses the 1-out-of-2 oblivious
transfer functionality. We remark that since the concurrent setting that we consider is
where only a single protocol is run many times concurrently, our protocol for blind
signatures must use invocations of the oblivious transfer functionality and nothing else.
Our protocol uses the specific construction of [24] for a (regular non-blind) one-time
signature scheme. The signature scheme of [24] is defined as follows. Let f be a one-
way function. Then, the signing-key equals 2n random strings x0

1 , x1
1 . . . , x0

n, x1
n each

of length n, and the verification key equals y0
1 , y1

1 . . . , y0
n, y1

n , where for every i, y0
i =

f (x0
i ) and y1

i = f (x1
i ). Now, a signature on the message w = w1 · · ·wn ∈ {0,1}n equals

x
w1
1 , . . . , x

wn
n . The verification of a signature is carried by simply checking that for every

i, f (x
wi

i ) = y
wi

i . We are now ready to present the protocol:

Protocol 1 (Blind signatures from oblivious transfer).

• Inputs: Party P1 (the signer) has (x0
1 , x1

1 . . . , x0
n, x1

n), and P2 has (y0
1 , y1

1 . . . , y0
n, y1

n)

and w ∈ {0,1}n.
• The Protocol:

1. P1 and P2 run n copies of a protocol for 1-out-of-2 oblivious transfer that
remains secure under concurrent self composition.

2. In the ith execution, P1 inputs (x0
i , x1

i ) and P2 inputs wi .
3. P2 checks that for every i, f (x

wi

i ) = y
wi

i and if yes, outputs x
w1
1 , . . . , x

wn
n .

The proof of security of the protocol is straightforward. That is, in the case that P1

is corrupted, the ideal-model simulator/adversary obtains all the xb
i ’s from A. This is
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because A must send each xb
i to the oblivious transfer functionality. These strings con-

stitute the entire signing key and thus the simulator sends them to the trusted party.
Likewise, in the case that P2 is corrupted, the wi ’s sent to each copy of the oblivious
transfer protocol constitute the entire input w. Therefore, the ideal-model simulator can
send the input to the trusted party and obtain the required signature. The key point is
that since the oblivious transfer functionality remains secure under unbounded concur-
rent self composition, the same is true of the blind signature functionality. However, this
contradicts Corollary 14.

We note that the exact lower bound on the number of rounds of oblivious transfer
derived above is as follows: any protocol that securely computes the oblivious transfer
functionality under m-bounded concurrent self composition must have more than m/n

rounds. This loss of a factor of n is due to the fact that n copies of the oblivious transfer
functionality are needed for every blind signature execution. �

Remark. Notice that Corollary 15 seems to contradict [15], where a protocol for con-
current oblivious transfer was demonstrated. However, the model of concurrency of [15]
is different to ours in an essential way. Specifically, they assume that the inputs of the
parties are chosen independently in every execution. For simplicity, one can think of
the inputs in each execution as being chosen uniformly from a fixed and given domain.
This implies that the parties’ inputs are not correlated, and furthermore, that each party’s
inputs in different executions are also not correlated.

In contrast, our model follows the more standard definition where quantification is
over all inputs (and, in particular, over correlated inputs). Specifically, our definition
implies security even in the case that both parties’ fixed-input vectors are generated
from a single distribution XY (with a single random tape). Furthermore, we use this
correlation in an essential way in our lower bound.

6.3. Extensions of the Black-Box Lower Bounds

We now show extensions of our lower bounds to more relaxed definitions of security.

Restricting the Input Correlations As described above, the current formulation of the
lower bound considers a case where all inputs can be correlated. However, the bound
can also be shown to hold when some independence of inputs exists. We consider a
number of possible models:

1. First consider a model where the inputs of P1 and P2 may be correlated in any
given execution, but the inputs between different executions are independent. For-
mally, in this model the fixed-input vectors are chosen according to a series of
fixed and known distributions XY = XY1, . . . ,XYm, where for each i, XYi(ri)

outputs a pair of inputs (xi, yi) for the parties, and for every i 	= j , the random
coins used by XYi and XYj are independent. The fact that the distributions are
“known” is formalized by saying that for every adversary A and series of distri-
butions XY , there exists a simulator S and so on. Thus, a different ideal-model
simulator is allowed for every series of distributions.

We claim that the lower bound holds also for this model. In fact, the proof of
Theorem 13 holds without any modification. This follows from the fact that the
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input distribution considered in the proof is such that the inputs in different exe-
cutions are chosen independently of each other. Specifically, in a given execution,
the inputs are a pair of signature keys (vk, sk) ← Gen(1n) and a random string
α ∈R {0,1}n. However, in different executions, different (and independently cho-
sen) signing keys are used. Therefore, the random coins used in generating the
inputs are independent in every execution.

2. In the above model, the parties have correlated inputs, but the auxiliary in-
put of the adversary is independent. However, one can also consider a model
where the parties’ inputs are independent of each other, but the adversary’s aux-
iliary input may be correlated. That is, define the (known) input distributions as
XYZ = X1, Y1,Z1, . . . ,Xm,Ym,Zm, where the random coins used in each Xi

and Yj are independent (including when i = j ). However, Zi may be correlated
to Xi and Yi (formally, give Zi the coins rx

i and r
y
i used by Xi and Yi , respec-

tively). As above, the proof of Theorem 13 also works here. The only difference is
that A’s auxiliary input is defined to be (z, vk1, . . . , vkm), where z ∈R {0,1}n and
vki is the verification key associated with ski that P1 receives for input in the ith

execution. In such a case, the input of P2 does not include vki (since this would
constitute correlated input); rather, P2 receives a random αi only. The rest of the
proof remains the same.

In contrast to the above models where Theorem 13 holds, consider a further relaxation
where the inputs of the parties are chosen independently of each other and indepen-
dently of the inputs in other executions. This is the model considered by [15]. Since
they demonstrated the feasibility of oblivious transfer in the model, we know that Theo-
rem 13 does not hold here. We remark, however, that this model is rather restricted as it
does not allow any correlation of inputs between the parties, or any correlated auxiliary
knowledge given to the adversary.
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