
 !""#$%& '($)# *+,-. &' /012 334 5/67/2 89$':#; <0//

©9
*!;'3#=& +>>'9%=$%'& ('; ,)#';#$%9=" -'?3!$#; .9%#&9#

 !

T C C C

V. A

Institute of Mathematical Sciences, CIT Campus, Taramani

Chennai 600113, India

arvind@imsc.res.in

http://www.imsc.res.in/~arvind

The quest for fast exact exponential-time algorithms and fast parameterized

algorithms for NP-hard problems has been an exciting and fruitful area of re-

search over the last decade. There is an accompanying theory of hardness

based on the Exponential Time Hypothesis (ETH) and the Strong Exponential

Time Hypothesis (SETH). In this interesting article, Daniel Lokshtanov, Dániel

Marx, and Saket Saurabh describe recent progress on algorithmic lower bound

results based on these hypotheses.

L E

T H

Daniel Lokshtanov∗ Dániel Marx† Saket Saurabh‡

Abstract

In this article we survey algorithmic lower bound results that have been

obtained in the field of exact exponential time algorithms and parameterized

complexity under certain assumptions on the running time of algorithms

∗Department of Computer Science and Engineering, University of California, USA.

dlokshtanov@ucsd.edu
†Institut für Informatik, Humboldt-Universiät , Berlin, Germany. dmarx@cs.bme.hu
‡The Institute of Mathematical Sciences, Chennai, India. saket@imsc.res.in

 !"#$% &' ()* !" "# $% $&'()*%

 !

solving CNF-S, namely Exponential time hypothesis (ETH) and Strong

Exponential time hypothesis (SETH).

1 Introduction

The theory of NP-hardness gives us strong evidence that certain fundamental com-

binatorial problems, such as 3SAT or 3-C, are unlikely to be polynomial-

time solvable. However, NP-hardness does not give us any information on what

kind of super-polynomial running time is possible for NP-hard problems. For ex-

ample, according to our current knowledge, the complexity assumption P , NP

does not rule out the possibility of having an nO(log n) time algorithm for 3SAT

or an nO(log log k) time algorithm for k-C, but such incredibly efficient super-

polynomial algorithms would be still highly surprising. Therefore, in order to

obtain qualitative lower bounds that rule out such algorithms, we need a complex-

ity assumption stronger than P , NP.

Impagliazzo, Paturi, and Zane [36, 35] introduced the Exponential Time Hy-

pothesis (ETH) and the stronger variant, the Strong Exponential Time Hypothesis

(SETH). These complexity assumptions state lower bounds on how fast satisfi-

ability problems can be solved. These assumptions can be used as a basis for

qualitative lower bounds for other concrete computational problems.

The goal of this paper is to survey lower bounds that can be obtained by as-

suming ETH or SETH. We consider questions of the following form (we employ

the O∗ notation which suppresses factors polynomials in input size):

• C N on an n-vertex graph can be solved in time O∗(2n).

Can this be improved to 2o(n) or to (2 − ǫ)n?

• k-I S on an n-vertex graph can be solved in time nO(k).

Can this be improved to no(k)?

• k-I S on an n-vertex planar graph can be solved in time

O∗(2O(
√
k)). Can this be improved to 2o(

√
k)?

• D S on a graph with treewidth w can be solved in time O∗(3w).

Can this be improved to O∗((3 − ǫ)w)?

• H S over an n-element universe is solvable in time O∗(2n).

Can this be improved to 2o(n) or to (2 − ǫ)n?

As we shall see, if ETH or SETH hold then many of these questions can be an-

swered negatively. In many cases, these lower bounds are tight: they match (in

 !" #$%%"&'()* &!" +, -.

 !

some sense) the running time of the best known algorithm for. Such results pro-

vide evidence that the current best algorithms are indeed the best possible.

The main focus of this survey is to state consequences of ETH and SETH for

concrete computational problems. We avoid in-depth discussions of how believ-

able these conjectures are, what complexity-theoretic consequences they have, or

what other techniques could be used to obtain similar results.

Parameterized complexity. Many of the questions raised above can be treated

naturally in the framework of parameterized complexity introduced by Downey

and Fellows [22]. The goal of parameterized complexity is to find ways of solving

NP-hard problems more efficiently than brute force, by restricting the “combina-

torial explosion” in the running time to a parameter that for reasonable inputs is

much smaller than the input size. Parameterized complexity is basically a two-

dimensional generalization of “P vs. NP” where in addition to the overall input

size n, one studies how a relevant secondary measurement affects the computa-

tional complexity of problem instances.

This additional information can be the size or quality of the output solution

sought for, or a structural restriction on the input instances considered, such as a

bound on the treewidth of the input graph. Parameterization can be employed in

many different ways; for general background on the theory, the reader is referred

to the monographs [22, 26, 48].

The two-dimensional analogue (or generalization) of P, is solvability within a

time bound of O(f (k)nc), where n is the total input size, k is the parameter, f is

some (usually computable) function, and c is a constant that does not depend on

k or n. Parameterized decision problems are defined by specifying the input, the

parameter, and the question to be answered. A parameterized problem that can

be solved in O(f (k)nc) time is said to be fixed-parameter tractable (FPT). Just as

NP-hardness is used as evidence that a problem probably is not polynomial time

solvable, there exists a hierarchy of complexity classes above FPT, and showing

that a parameterized problem is hard for one of these classes gives evidence that

the problem is unlikely to be fixed-parameter tractable. The main classes in this

hierarchy are:

FPT ⊆ W[1] ⊆ W[2] ⊆ · · · ⊆ W[P] ⊆ XP

The principal analogue of the classical intractability class NP is W[1], which is a

strong analogue, because a fundamental problem complete for W[1] is the k-S

H P N TM (with unlimited nonde-

terminism and alphabet size) — this completeness result provides an analogue of

Cook’s Theorem in classical complexity. In particular this means that an FPT

algorithm for any W[1] hard problem would yield a O(f (k)nc) time algorithm

for k-S H P N T M. A conve-

 !"#$% &' ()* !" "# $% $&'()*%

nient source ofW[1]-hardness reductions is provided by the result that k-C is

complete for W[1]. Other highlights of the theory include that k-D S,

by contrast, is complete for W[2]. XP is the class of all problems that are solvable

in time O(ng(k)).

There is also a long list of NP-hard problems that are FPT under various pa-

rameterizations: finding a vertex cover of size k, finding a cycle of length k, find-

ing a maximum independent set in a graph of treewidth at most k, etc. The form

of the function f (k) in the running time of these algorithms vary drastically. In

some cases, for example in results obtained from Graph Minors theory, the func-

tion f (k) is truly humongous (a tower of exponentials), making the result purely

of theoretical interest. On the other hand, in many cases f (k) is a moderately

growing exponential function: for example, f (k) is 1.2738k in the current fastest

algorithm for finding a vertex cover of size k [14], which can be further improved

to 1.1616k in the special case of graphs with maximum degree 3 [55]. For some

problems, f (k) can be even subexponential (e.g., c
√
k) [21, 20, 19, 2]. For more

background on parameterized algorithms, the reader is referred to the monographs

[22, 26, 48].

Exact algorithms. At this point we take a slight detour and talk about the ex-

act exponential algorithms, which will be central to this survey. Every prob-

lem in NP can be solved in time 2n
O(1)

by brute force - i.e by enumerating all

candidates for the witness. While we do not believe that polynomial time al-

gorithms for NP-complete problems exist, many NP-complete problems admit

exponential time algorithms that are dramatically faster than the brute force al-

gorithms. For some classical problems, such as S S, G C

or H C such algorithms [32, 40, 3] were known even before the

discovery of NP-completeness. Over the last decade, a subfield of algorithms

devoted to developing faster exponential time algorithms for NP-hard problems

has emerged. A myriad of problems have been shown to be solvable much faster

than by brute force, and a variety of algorithm design techniques for exponential

time algorithms has been developed. Some problems, such as I S

and D S have seen a chain of improvements [28, 53, 50, 39], each

new improvement being smaller than the previous. For these problems the run-

ning time of the algorithms on graphs on n vertices seems to converge towards

O(cn) for some unknown c. For other problems, such as G C or

T S, non-trivial solutions have been found, but improving these

algorithms further seems to be out of reach [5]. For other problems yet, such as

CNF-S or H S, no algorithms faster than brute force have been discov-

ered. We would refer to the book of Fomin and Kratsch for more information on

exact exponential time algorithms [29].

 !" #$%%"&'()* &!" +, -.

 !

For the purpose of this survey we will not distinguish between exact and pa-

rameterized algorithms. Instead we will each time explicitly specify in terms of

which parameter the running time is measured. For an example an exact expo-

nential time algorithm for I S could be viewed as parameterized al-

gorithm where the parameter is the number of vertices in the input graph. Such a

perspective allows us to discuss complexity theory for both exact and parameter-

ized algorithms in one go.

Organization. The survey is organized as follows. In Section 2, we give all the

necessary definitions and introduce our complexity theory assumptions. We have

organized the results topic wise. In Sections 3 and 4 we give various algorithmic

lower bounds on problems in the field of exact algorithms and parameterized algo-

rithms, respectively. We look at lower bounds for problems that are known to be

W[1]-hard in Section 5. Section 6 deals with structural parameterizations. More

precisely, in this section we give lower bounds results on problems parameterized

by the treewidth of the input graph. Finally, we conclude with some remarks and

open problems in Section 7.

Notation. We use G = (V, E) to denote a graph on vertex set V and the edge set

E. For a subset S of V , the subgraph of G induced by S is denoted by G[S] and it

is defined as the subgraph of G with vertex set S and edge set {(u, v) : u, v ∈ S }.
By NG(u) we denote the (open) neighborhood of u, that is, the set of all vertices

adjacent to u. Similarly, for a subset T ⊆ V , we define NG(T) = (∪v∈TNG(v)) \ T .
A r-CNF formula φ = c1 ∧ · · · ∧ cm is a boolean formula where each clause is a

disjunction of literals and has size at most r. By [k] we denote the set {1, 2, . . . , k}.

2 Complexity Theory Assumptions

In this section we outline the complexity theory assumptions that is central to this

survey. We start with a few definitions from parametrized complexity. We mainly

follow the notation of Flum and Grohe [26]. We describe decision problems as

languages over a finite alphabet Σ.

Definition 2.1. Let Σ be a finite alphabet.

(1) A parameterization of Σ∗ is a polynomial time computable mapping κ : Σ∗ →
N.

(2) A parameterized problem (over Σ) is a pair (Q, κ) consisting of a set Q ⊆ Σ∗
of strings over Σ and a parameterization κ of Σ∗.

 !"#$% &' ()* !" "# $% $&'()*%

 !

For a parameterized problem (Q, κ) over alphabet Σ, we call the strings x ∈ Σ∗
the instances of Q or (Q, κ) and the number of κ(x) the corresponding parameters.

We usually represent a parameterized problem on the form

Instance: x ∈ Σ∗.
Parameter: κ(x).

Problem: Decide whether x ∈ Q.

Very often the parameter is also a part of the instance. For example, consider

the following parameterized version of the minimum feedback vertex set problem,

where the instance consists of a graph G and a positive integer k, the problem is

to decide whether G has a feedback vertex set, a set of vertices whose removal

destroys all cycles in the graph, of k elements.

F V S
Instance: A graph G, and a non-negative integer k.

Parameter: k.

Problem: Decide whether G has a feedback vertex set

with at most k elements.

In this problem the instance is the string (G, k) and κ(G, k) = k. When the param-

eterization κ is defined as κ(x, k) = k, the parameterized problem can be defined

as subsets of Σ∗ ×N. Here the parameter is the second component of the instance.

In this survey we use both notations for parameterized problems.

Definition 2.2. A parameterized problem (Q, κ) is fixed-parameter tractable if

there exists an algorithm that decides in f (κ(x)) · nO(1) time whether x ∈ Q, where

n := |x| and f is a computable function that does not depend on n. The algo-

rithm is called a fixed-parameter algorithm for the problem. The complexity class

containing all fixed-parameter tractable problems is called FPT.

A common way to obtain lower bounds is by reductions. A reduction from one

problem to another is just a proof that a “too fast” solution for the latter problem

would transfer to a too fast solution for the former. The specifics of the reduction

varies based on what we mean by “too fast”. The next definition is of a kind of

reductions that preserves fixed-parameter tractability.

Definition 2.3. Let (Q, κ) and (Q′, κ′) be two parameterized problems over the

alphabet Σ and Σ′, respectively. An fpt reduction (more precisely fpt many-one

reduction) from (Q, κ) to (Q′, κ′) is a mapping R : Σ∗ → (Σ′)∗ such that:

1. For all x ∈ Σ∗ we have x ∈ Q if and only if R(x) ∈ Q′.

 !" #$%%"&'()* &!" +, -.

 !

2. R is computable by an fpt-algorithm (with respect to κ).

3. There is a computable function g : N → N such that κ′(R(x)) ≤ g(κ(x)) for

all x ∈ Σ∗.

It can be verified that fpt reductions work as expected: if there is an fpt reduc-

tion from (Q, κ) to (Q′, κ′) and (Q′, κ′) ∈ FPT, then (Q, κ) ∈ FPT as well. We now

define the notion of subexponential time algorithms.

Definition 2.4. SUBEPT is the class of parameterized problems (P, κ) where P

can be solved in time 2
κ(x)

s(κ(x)) |x|O(1) = 2o(κ(x))|x|O(1). Here, s(k) is a monotonically

increasing unbounded function. A problem P in SUBEPT is said to have subex-

ponential algorithms.

A useful observation is that an "arbitrarily good" exponential time algorithm

implies a subexponential time algorithm and vice versa.

Proposition 2.5 ([26]). A parameterized problem (P, κ) is in SUBEPT if and only

if there is an algorithm that for every fixed ǫ > 0 solves instances x of P in time

2ǫκ(x)|x|c where c is independent of x and ǫ.

The r-CNF-S problem is a central problem in computational complexity, as

it is the canonical NP-complete problem. We will use this problem as a basis for

our complexity assumptions.

r-CNF-S
Instance: A r-CNF formula F on n variables and m clauses.

Parameter 1: n.

Parameter 2: m.

Problem: Decide whether there exists a {0, 1} assignment to the

variables of F such that it is satisfiable?.

It is trivial to solve 3-CNF-S it time 2n · (n + m)O(1). There are better algo-

rithms for 3-CNF-S, but all of them have running time of the form cn · (n+m)O(1)

for some constant c > 1 (the current best algorithm runs in timeO(1.30704n) [33]).

Our first complexity hypothesis, formulated by Impagliazzo, Paturi and Zane [37],

states that every algorithm for 3-CNF-S has this running time, that is, the prob-

lem has no subexponential time algorithms.

Exponential Time Hypothesis (ETH) [37]: There is a positive real

s such that 3-CNF-S with parameter n cannot be solved in time

2sn(n + m)O(1).

 !"#$% &' ()* !" "# $% $&'()*%

 !

In particular, ETH states that 3-CNF-S with parameter n cannot be solved

in 2o(n)(n + m)O(1) time. We will use this assumption to show that several other

problems do not have subexponential-time algorithms either. To transfer this hard-

ness assumption to other problems, we need a notion of reduction that preserves

solvability in subexponential time. It is easy to see that a polynomial-time fpt-

reduction that increases the parameter only linearly (that is, κ′(R(x)) = O(κ(x))

holds for every instance x) preserves subexponential-time solvability: if the target

problem (Q′, κ′) is in SUBEPT, then so is the source problem (Q, κ). Most of the

reductions in this survey are on this form. However, it turns out that sometimes a

more general form of subexponential time reductions, introduced by Impagliazzo,

Paturi, and Zane [37], are required. Essentially, we allow the running time of the

reduction to be subexponential and the reduction to be a Turing reduction rather

than a many-one reduction:

Definition 2.6. A SERF-T reduction from parameterized problem (A1, κ1) to a

parameterized problem (A2, κ2) is a Turing reduction M from A1 to A2 that has the

following properties.

1. Given an ǫ > 0 and an instance x of A1, M runs in time O(2ǫκ1(x)|x|O(1)).

2. For any query M(x) makes to A2 with the input x
′,

(a) |x′| = |x|O(1),

(b) κ2(x
′) = ακ1(x).

The constant α may depend on ǫ while the constant hidden in the O()-

notation in the bound for |x′| may not.
It can easily be shown that SERF-T reductions are transitive. We now prove

that SERF-T reductions work as expected and indeed preserve solvability in subex-

ponential time.

Proposition 2.7. If there is a SERF-T reduction from (A1, κ1) to (A2, κ2) and A2

has a subexponential time algorithm then so does A1.

Proof. By Proposition 2.5 there is an algorithm for (A2, κ2) that for every ǫ > 0

can solve an instance x in time O(2ǫκ2(x)|x|c) for some c independent of x and ǫ.

We show that such an algorithm also exists for (A1, κ1).

Given an ǫ > 0 we need to make an algorithm running in time O(2ǫκ1(x)|x|c′)
for some c′ independent of x and ǫ. We choose ǫ′ = ǫ/2 and run the SERF-

T reduction from (A1, κ1) to (A2, κ2) with parameter ǫ′. This reduction makes

at most O(2ǫ
′κ1(x)|x|O(1)) calls to instances x′ of A2, each with |x′| ≤ |x|O(1) and

κ2(x
′) ≤ ακ1(x). Each such instance can be solved in time 2ǫκ1(x)/2|x|O(1). Hence

the total running time for solving x is 2ǫκ1(x)|x|c′ for some c′ independent of x and

ǫ. By Proposition 2.5 this means that (A1, κ1) is in SUBEPT. �

 !" #$%%"&'()* &!" +, -.

 !

Since every variable appears in some clause it follows that n ≤ rm, and hence

r-CNF-S with parameter m (the number of clauses) is SERF-T reducible to r-

CNF-S with parameter n. However, there is no equally obvious SERF-T reduc-

tion from r-CNF-Swith parameter n to r-CNF-Swith parameterm. Neverthe-

less, Impagliazzo, Paturi and Zane [37] established such a reduction, whose core

argument is called the sparsification lemma stated below.

Lemma 2.8 ([37]). (Sparsification Lemma) For every ǫ > 0 and positive integer

r, there is a constant C = O((r
ǫ
)3r) so that any r-CNF formula F with n variables,

can be expressed as F = ∨t
i=1
Yi, where t ≤ 2ǫn and each Yi is an r-CNF formula

with every variables appearing in at most C clauses. Moreover, this disjunction

can be computed by an algorithm running in time 2ǫnnO(1).

Lemma 2.8 directly gives a SERF-T reduction from r-CNF-Swith parameter

n to r-CNF-S with parameter m. Thus the following proposition is a direct

consequence of the sparsification lemma.

Proposition 2.9 ([37]). Assuming ETH, there is a positive real s′ such that 3-

CNF-S with parameter m cannot be solved in time O(2s′m). That is, there is no

2o(m) algorithm for 3-CNF-S with parameter m.

Proposition 2.9 has far-reaching consequences: as we shall see, by reductions

from from 3-CNF-S with parameter m, we can show lower bounds for a wide

range of problems. Moreover, we can even show that several NP-complete prob-

lems are equivalent with respect to solvability in subexponential time. For an

example, every problem in SNP and size-constrained SNP (see [37] for defini-

tions of these classes) can be shown to have SERF-T reductions to r-CNF-S

with parameter n for some r ≥ 3. The SNP and size-constrained SNP problem

classes contain several important problems such as r-CNF-S with parameter n

and I S, V C and C parameterized by the number of

vertices in the input graph. This gives some evidence that a subexponential time

algorithm for r-CNF-S with parameter n is unlikely to exist, giving some credi-

bility to ETH.

It is natural to ask how the complexity of r-CNF-S evolves as r grows. For

all r ≥ 3, define,

sr = inf
{

δ : there exists an O∗(2δn) algorithm solving r-CNF-S

with parameter n
}

.

s∞ = lim
r→∞

sr.

 !"#$% &' ()* !" "# $% $&'()*%

 !

Since r-CNF-S easily reduces to (r + 1)-SAT it follows that sr ≤ sr+1. However,

saying anything else non-trivial about this sequence is difficult. ETH is equiva-

lent to conjecturing that s3 > 0. Impagliazzo, Paturi and Zane [37] present the

following relationships between the sr’s and the solvability of problems in SNP

in subexponential time. The theorem below is essentially a direct consequence of

Lemma 2.8

Theorem 2.10 ([37]). The following statements are equivalent

1. For all r ≥ 3, sr > 0.

2. For some r, sr > 0.

3. s3 > 0.

4. SNP * SUBEPT.

The equivalence above offers some intuition that r-CNF-S with parameter n

may not have a subexponential time algorithm and thus strengthens the credibility

of ETH. Impagliazzo and Paturi [37, 10] studied the sequence of sr’s and obtained

the following results.

Theorem 2.11 ([37, 10]). Assuming ETH, the sequence {sr}r≥3 is increasing in-

finitely often. Furthermore, sr ≤ s∞(1 − d
r
) for some constant d > 0

A natural question to ask is what is s∞? As of today the best algorithms for r-

CNF-S all use time O(2n(1−
c
r
)) for some constant c independent of r and n. This,

together with Theorem 2.11 hints at s∞ = 1. The conjecture that this is indeed the

case is known as the Strong Exponential Time Hypothesis.

Strong Exponential Time Hypothesis (SETH) [37, 10]: s∞ = 1.

An immediate consequence of SETH is that that SAT with parameter n (here

the input formula F could have arbitrary size clauses) cannot be solved in time

(2 − ǫ)n(n + m)O(1). In order to justify SETH one needs to link the existence of

a faster satisfiability algorithm to known complexity assumptions, or at least give

an analogy of Theorem 2.10 for SETH. In a recent manuscript, Cygan et al. [17]

show that for several basic problems their brute force algorithm can be improved

if and only if SETH fails. Thus there is at least a small class of problems whose

exponential time complexity stands and falls with SETH.

Theorem 2.12 ([17]). The following are equivalent.

• ∃δ < 1 such that r-CNF-S with parameter n is solvable in O(2δn) time for

all r.

• ∃δ < 1 such that H S for set systems with sets of size at most k is

solvable in O(2δn) time for all k. Here n is the size of the universe.

 !" #$%%"&'()* &!" +, -.

 !

• ∃δ < 1 such that S S for set systems with sets of size at most k is

solvable in O(2δn) time for all k,. Here n is the size of the universe.

• ∃δ < 1 such that k-NAE-S is solvable in O(2δn) time for all k. Here n is

the number of variables.

• ∃δ < 1 such that satisfiability of cn size series-parallel circuits is solvable

in O(2δn) time for all c.

This immediately implies that a 2δn time algorithm for any of the above prob-

lems without the restrictions on clause width or set size would violate SETH. All

of the problems above have O(2n) time brute force algorithms, and hence these

bounds are tight.

It is tempting to ask whether it is possible to show a “strong” version of the

Sparsification Lemma, implying that under SETH there is no algorithm for r-

CNF-S with running time O((2 − ǫ)m) for any ǫ > 0. However, faster algo-

rithms for SAT parameterized by the number of clauses do exist. In particular, the

currently fastest known algorithm [34] for SAT parameterized by the number of

clauses runs in time O(1.239m).

3 Lower Bounds for Exact Algorithms

In this section we outline algorithmic lower bounds obtained using ETH and

SETH on the running time of exact exponential time algorithms.

In order to prove that a too fast algorithm for a certain problem P contradicts

ETH, one can give a reduction from 3-CNF-S to P and argue that a too fast algo-

rithm for L would solve 3-CNF-S in time 2o(m). This together with Lemma 2.9

would imply that 3-CNF-S can be solved in time 2o(n), contradicting ETH. Quite

often the known NP-completeness reduction from 3-CNF-S to the problem in

question give the desired running time bounds. We illustrate this for the case of

3-C. We use the well-known fact that there is a polynomial-time reduction

from 3-CNF-S to 3-Cwhere the number of vertices of the graph is linear

in the size of the formula.

Proposition 3.1 ([51]). Given a 3SAT formula φ with n-variables and m-clauses,

it is possible to construct a graph G with O(n + m) vertices in polynomial time

such that G is 3-colorable if and only if φ is satisfiable.

Proposition 3.1 implies that the number of vertices in the graph G is linear

in the number of variables and clauses. Thus, an algorithm for 3-C with

running time subexponential in the number of vertices would gives a 2o(m) time

algorithm for 3-CNF-S. This together with Lemma 2.9 imply the following.

 !"#$% &' ()* !" "# $% $&'()*%

 !

Theorem 3.2. Assuming ETH, there is no 2o(n) time algorithm for

3-C.

Similarly, one can show that various graph problems such as D S,

I S, V C and H P do not have 2o(n) time al-

gorithms unless ETH fails.

Theorem 3.3. Assuming ETH, there is no 2o(n) time algorithm forD S,

I S, V C or H P.

The essential feature of the reductions above is that the number of vertices is

linear in the number of clauses of the original 3SAT formula. If the reduction

introduces some blow up, that is, the number of vertices is more than linear, then

we still get lower bounds, but weaker than 2o(n). For example, such blow up is

very common in reductions to planar problems. We outline one such lower bound

result for P H C. Here, the input consists of planar graph G

on n vertices and the objective to check whether there is a hamiltonian cycle inG.

Proposition 3.4 ([30]). Given a 3SAT formula φ with n-variables and m-clauses,

it is possible to construct a planar graph G with O(m2) vertices and edges in

polynomial time such that G has a hamiltonian cycle if and only if φ is satisfiable.

Proposition 3.4 implies that the number of vertices in the graphG is quadratic

in the number of clauses. Thus, an algorithm for P H C with

running time 2o(
√
n) would gives a 2o(m) time algorithm for 3-CNF-S. This to-

gether with Lemma 2.9 imply the following.

Theorem 3.5. Assuming ETH, there is no 2o(
√
n) time algorithm for PH-

 C.

One can prove similar lower bounds for P V C, P D-

 S and various other problems on planar graphs and other kind of ge-

ometric graphs. Note that many of these results are tight: for example, P

H C can be solved in time 2O(
√
n).

While reductions from SAT can be used to prove many interesting bounds un-

der ETH, such an approach has an inherent limitation; the obtained bounds can

only distinguish between the asymptotic behaviour, and not between different con-

stants in the exponents. Most efforts in Exact Exponential time algorithms have

concentrated exactly on decreasing the constants in the exponents of the running

times, and hence, in order to have a good complexity theory for Exact Expo-

nential Time Algorithms one needs a tool to rule out O(cn) time algorithms for

problems for concrete constants c. Assuming that SETH holds and reducing from

r-CNF-S allows us to rule out O(cn) time algorithms for at least some problems

(see Theorem 2.10). However, the complexity theory of Exact Exponential Time

Algorithms is still at a nascent stage, with much left unexplored.

 !" #$%%"&'()* &!" +, -.

 !

4 Lower Bounds for FPT Algorithms

Once it is established that a parameterized problem is FPT, that is, can be solved

in time f (κ(x)) · |x|O(1), the next obvious goal is to design algorithms where the

function f is as slowly growing as possible. Depending on the type of problem

considered and the algorithmic technique employed, the function f comes in all

sizes and shapes. It can be an astronomical tower of exponentials for algorithms

using Robertson and Seymour’s Graph Minors theory; it can be ck for some nice

small constant c (e.g., 1.2738k for vertex cover [14]); it can be even subexponential

(e.g., 2
√
k). It happens very often that by understanding a problem better or by

using more suitable techniques, better and better fpt algorithms are developed

for the same problem and a kind of “race” is established to make f as small as

possible. Clearly, it would be very useful to know if the current best algorithm

can be improved further or it has already hit some fundamental barrier. Cai and

Juedes [9] were first to examine the existence of 2o(k) or 2o(
√
k) algorithms for

various parameterized problems solvable in time 2O(k) or 2O(
√
k), respectively. They

showed that for variety of problems assuming ETH, there is no 2o(k) or 2o(
√
k)

algorithms possible. In this section, we survey how ETH can be used to obtain

lower bounds on the function f for various FPT problems.

We start with a simple example. We first define the V C problem.

V C
Instance: A graph G, and a non-negative integer k.

Parameter: k.

Problem: Decide whether G has a vertex cover

with at most k elements.

Since k ≤ n, a 2o(k)nc time algorithm directly implies a 2o(n) time algorithm for

V C. However, by Theorem 3.3 we know that V C does not

have an algorithm with running time 2o(n) unless ETH fails. This immediately

implies the following theorem.

Theorem 4.1 ([9]). Assuming ETH, there is no 2o(k)nO(1) time algorithm for V-

 C.

Similarly, assuming ETH, we can show that several other problems parame-

terized by the solution size, such as F V S or L P do not

have 2o(k)nO(1) time algorithms.

Theorem 4.2 ([9]). Assuming ETH, there is no 2o(k)nO(1) time algorithm for F-

 V S or L P.

 !"#$% &' ()* !" "# $% $&'()*%

 !

Similar arguments yield tight lower bounds for parameterized problems on

special graph classes, such as planar graphs. As we have seen in the previous

section, for many problems we can rule out algorithms with running time 2o(
√
n)

even when the input graph is restricted to be planar. If the solution to such a

problem is a subset of the vertices (or edges), then the problem parameterized by

solution size cannot be solved in time 2o(
√
k)nO(1) on planar graphs, unless ETH

fails.

Theorem 4.3 ([9]). Assuming ETH, there is no 2o(
√
k)nO(1) time algorithm for P-

 V C.

Results similar to Theorem 4.3 are possible for several other graph problems

on planar graphs. It is worth to mention that many of these lower bounds on

these problems are tight. That is, many of the mentioned problems admit both

2O(k)nO(1) time algorithms on general graphs and 2O(
√
k)nO(1) time algorithms on

planar graphs.

Obtaining lower bounds of the form 2o(k)nO(1) or 2o(
√
k)nO(1) on parameterized

problems generally follows from the known NP-hardness reduction. However,

there are several parameterized problems where f (k) is “slightly superexponen-

tial” in the best known running time: f (k) is of the form kO(k) = 2O(k log k). Al-

gorithms with this running time naturally occur when a search tree of height at

most k and branching factor at most k is explored, or when all possible permuta-

tions, partitions, or matchings of a k element set are enumerated. Recently, for a

number of such problems lower bounds of the form 2o(k log k) were obtained under

ETH [43]. We show how such a lower bound can be obtained for an artificial

variant of the C problem. In this problem the vertices are the elements of a

k × k table, and the clique we are looking for has to contain exactly one element

from each row.

k × k C
Input: A graph G over the vertex set [k] × [k]

Parameter: k

Question: Is there a k-clique in G with exactly one element from

each row?

Note that the graphG in the k× k C instance has O(k2) vertices at most O(k4)

edges, thus the size of the instance is O(k4).

Theorem 4.4 ([43]). Assuming ETH, there is no 2o(k log k) time algorithm for k × k

C.

 !" #$%%"&'()* &!" +, -.

Proof. Suppose that there is an algorithm A that solves k × k C in 2o(k log k)

time. We show that this implies that 3-C on a graph with n vertices can be

solved in time 2o(n), which contradicts ETH by Theorem 3.2.

Let H be a graph with n vertices. Let k be the smallest integer such that

3n/k+1 ≤ k, or equivalently, n ≤ k log3 k − k. Note that such a finite k exists for

every n and it is easy to see that k log k = O(n) for the smallest such k. Intuitively,

it will be useful to think of k as a value somewhat larger than n/ log n (and hence

n/k is somewhat less than log n).

Let us partition the vertices of H into k groups X1, . . . , Xk, each of size at most

⌈n/k⌉. For every 1 ≤ i ≤ k, let us fix an enumeration of all the proper 3-colorings

of H[Xi]. Note that there are most 3⌈n/k⌉ ≤ 3n/k+1 ≤ k such 3-colorings for every

i. We say that a proper 3-coloring ci of H[Xi] and a proper 3-coloring c j of H[X j]

are compatible if together they form a proper coloring of H[Xi ∪ X j]: for every

edge uv with u ∈ Xi and v ∈ X j, we have ci(u) , c j(v). Let us construct a graph

G over the vertex set [k] × [k] where vertices (i1, j1) and (i2, j2) with i1 , i2 are

adjacent if and only if the j1-th proper coloring of H[Xi1] and the j2-th proper

coloring of H[Xi2] are compatible (this means that if, say, H[Xi1] has less than j1
proper colorings, then (i1, j1) is an isolated vertex).

We claim that G has a k-clique having exactly one vertex from each row if

and only if H is 3-colorable. Indeed, a proper 3-coloring of H induces a proper

3-coloring for each of H[X1], . . . , H[Xk]. Let us select vertex (i, j) if and only if

the proper coloring of H[Xi] induced by c is the j-th proper coloring of H[Xi]. It

is clear that we select exactly one vertex from each row and they form a clique:

the proper colorings of H[Xi] and H[X j] induced by c are clearly compatible.

For the other direction, suppose that (1, ρ(1)), . . . , (k, ρ(k)) form a k-clique for

some mapping ρ : [k] → [k]. Let ci be the ρ(i)-th proper 3-coloring of H[Xi].

The colorings c1, . . . , ck together define a coloring c of H. This coloring c is

a proper 3-coloring: for every edge uv with u ∈ Xi1 and v ∈ Xi2 , the fact that

(i1, ρ(i1)) and (i2, ρ(i2)) are adjacent means that ci1 and ci2 are compatible, and

hence ci1(u) , ci2(v).

Running the assumed algorithmA onG decides the 3-colorability of H. Let us

estimate the running time of constructing G and running algorithm A on G. The

graphG has k2 vertices and the time required to constructG is polynomial in k: for

each Xi, we need to enumerate at most k proper 3-colorings of G[Xi]. Therefore,

the total running time is 2o(k log k) ·kO(1) = 2o(n) (using that k log k = O(n)). It follows

that we have a 2o(n) time algorithm for 3-C, contradicting ETH. �

In [43], Lokshtanov et al. first define other problems similar in flavor to k × k

C: basic problems artificially modified in such a way that they can be solved

by brute force in time 2O(k log k)|I|O(1). It is then shown that assuming ETH, these

problems do not admit a 2o(k log k) time algorithm. Finally, combining the lower

 !"#$% &' ()* !" "# $% $&'()*%

 !

bounds on the variants of basic problems with suitable reductions one can obtain

lower bounds for natural problems. One example is the bound for the C

S problem.

C S
Input: Strings s1, . . . , st over an alphabet Σ of length L each, an

integer d

Parameter: d

Question: Is there a string s of length L such d(s, si) ≤ d for every

1 ≤ i ≤ t?

Here d(s, si) is the Hamming distance between the strings s and si, that is, the

number of positions where s and si differ. Gramm et al. [31] showed that C

S is fixed-parameter tractable parameterized by d: they gave an algorithm

with running time O(dd · |I|). The algorithm works over an arbitrary alphabet Σ

(i.e., the size of the alphabet is part of the input). For fixed alphabet size, single-

exponential dependence on d can be achieved: algorithms with running time of

the form |Σ|O(d) · |I|O(1) were presented in [44, 54, 15]. It is an obvious question if

the running time can be improved to 2O(d) · |I|O(1), i.e., single-exponential in d, even

for arbitrary alphabet size. However, the following result shows that the running

times of the cited algorithms have the best possible form:

Theorem 4.5 ([43]). Assuming ETH, there is no 2o(d log d) · |I|O(1) or 2o(d log |Σ|) · |I|O(1)

time algorithm for C S.

Using similar methods one can also give tight running time lower bounds for

the D problem. Here we are given a graph G and parameter d. The

objective is to determine whether there exists a map f from the vertices of G to N

such that for every pair of vertices u and v in G, if the distance between u and v

in G is δ then δ ≤ | f (u) − f (v)| ≤ dδ. This problem belongs to a broader range of

“metric embedding” problems where one is looking for a map from a complicated

distance metric into a simple metric while preserving as many properties of the

original metric as possible. Fellows et al. [24] give a O(ddnO(1)) time algorithm

for D. The following theorem shows that under ETH the dependence on

d of this algorithm cannot be significantly improved.

Theorem 4.6 ([43]). Assuming ETH, there is no 2o(d log d) · nO(1) time algorithm for

D.

5 W[1]-Hard problems

The complexity assumption ETH can be used not only to obtain running time

lower bounds on problems that are FPT, but also on problems that are known to

 !" #$%%"&'()* &!" +, -.

 !

be W[1]-hard in parameterized complexity. For an example I S and

D S are known to be W[1]-complete and W[2]-complete, respectively.

Under the standard parameterized complexity assumption that FPT , W[1], this

immediately rules out the possibility of having an fpt algorithm for C, I-

 S and D S. However, knowing that no algorithm of the

form f (k)nO(1) exists, that these results do not rule out the possibility of an algo-

rithm with running time, say, nO(log log k). As the best known algorithms for these

problems take nO(k) time, there is huge gap between the upper and lower bounds

obtained this way.

Chen et al. [11] were the first to consider the possibility of showing sharper

running time lower bounds for W[1]-hard problems. They show that lower bounds

of the form no(k) can be achieved for several W[2]-hard problems such as D-

 S, under the assumption that FPT , W[1]. However, for problems that are

W[1]-hard rather than W[2]-hard, such as I S, we need ETH in order

to show lower bounds. Later, Chen et al. [13, 12] strengthened their lower bounds

to also rule out f (k)no(k) time algorithms (rather than just no(k) time algorithms).

We outline one such lower bound result here and then transfer it to other problems

using reductions.

Theorem 5.1 ([11, 13]). Assuming ETH, there is no f (k)no(k) time algorithm for

C or I S.

Proof. We give a proof sketch. We will show that if there is an f (k)no(k) time

algorithm for C, then ETH fails. Suppose that C can be solved in time

f (k)nk/s(k), where s(k) is a monotone increasing unbounded function. We use this

algorithm to solve 3-C on an n-vertex graph G in time 2o(n). Let f −1(n) be

the largest integer i such that f (i) ≤ n. Function f −1(n) is monotone increasing

and unbounded. Let k := f −1(n). Split the vertices of G into k groups. Let us

build a graph H where each vertex corresponds to a proper 3-coloring of one of

the groups. Connect two vertices if they are not conflicting. That is, if the union

of the colorings corresponding to these vertices corresponds to a valid coloring

of the graph induced on the vertices of these two groups, then connect the two

vertices. A k-clique of H corresponds to a proper 3-coloring of G. A 3-coloring

of G can be found in time f (k)nk/s(k) ≤ n(3n/k)k/s(k) = n3n/s(f
−1(n)) = 2o(n). This

completes the proof.

Since a graph G has a clique of size k if and only the complement of G has an

independent set of size k. Thus, as a simple corollary to the result of C, we

get that I S does not have any f (k)no(k) time algorithm unless ETH

fails. �

A colored version of clique problem, called M C has been

proven to be very useful in showing hardness results in Parameterized Complexity.

 !"#$% &' ()* !" "# $% $&'()*%

 !

An input to M C consists of a graph G and a proper coloring of

vertices with {1, . . . , k} and the objective is to check whether there exists a k-

sized clique containing a vertex from each color class. A simple reduction from

I S shows the following theorem.

Theorem 5.2. Assuming ETH, there is no f (k)no(k) time algorithm for M-

 C.

Proof. We reduce from the I S problem. Given an instance (G, k)

to I S we construct a new graph G′ = (V ′, E′) as follows. For each

vertex v ∈ V we make k copies of v in V ′ with the i’th copy being colored with

the i’th color. For every pair u,v ∈ V such that uv < E we add edges between all

copies of u and all copies of v with different colors. It is easy to see that G has an

independent set of size k if and only ifG′ contains a clique of size k. Furthermore,

running a f (k)no(k) time algorithm on G′ would take time f (k)(nk)o(k) = f ′(k)no(k).

This concludes the proof. �

One should notice that the reduction produces instances with a quite specific

structure to M C. In particular, all color classes have the same

size and the number of edges between every pair of color classes is the same. It

is often helpful to exploit this fact when reducing from M C to a

specific problem. We now give an example of a slightly more involved reduction

that will show a lower bound on D S.

Theorem 5.3. Assuming ETH, there is no f (k)no(k) time algorithm for D

S.

Proof. We reduce from the M C problem. Given an instance

(G, k) to M C we construct a new graphG′. For every i ≤ k let Vi

be the set of vertices in G colored i and for every pair of distinct integers i, j ≤ k

let Ei, j be the set of edges in G[Vi ∪ V j]. We start making G′ by taking a copy

of Vi for every i ≤ k and making this copy into a clique. Now, for every i ≤ k

we add a set S i of k + 1 vertices and make them adjacent to all vertices of Vi.

Finally, for every pair of distinct integers i, j ≤ k we consider the edges in Ei, j.For

every pair of vertices u ∈ Vi and v ∈ V j such that uv < Ei, j we add a vertex xuv
and make it adjacent to all vertices in Vi \ {u} and all vertices in V j \ {v}. This

concludes the construction. We argue that G contains a k-clique if and only if G′

has a dominating set of size at most k.

If G contains a k-clique C then C is a dominating set of G′. In the other

direction, suppose G′ has a dominating set S of size at most k. If for some i,

S ∩ Vi = ∅ then S i ⊆ S , contradicting that S has size at most k. Hence for every

i ≤ k, S ∩ Vi , ∅ and thus S contains exactly one vertex vi from Vi for each i, and

S contains no other vertices. Finally, we argue that S is a clique in G. Suppose

 !" #$%%"&'()* &!" +, -.

 !

that viv j < Ei, j. Then there is a vertex x in V(G′) with neighbourhood Vi \ {u} and
V j \ {v}. This x is not in S and has no neighbours in S contradicting that S is a

dominating set of G′.

The above reduction together with Theorem 5.2 imply the result. �

The proof in Theorem 5.3 could be viewed as a fpt reduction from I

S to D S. The first fpt reduction from I S to D

S is due to Fellows [23]. The reduction presented here is somewhat simpler than

the original proof and is due to Lokshtanov [41].

W[1]-hardness proofs are typically done by a parameterized reductions from

C. It is easy to observe that a parameterized reduction itself gives strong

lower bounds under ETH for the target problem, with the exact form of the lower

bound depending on the way the reduction changes the parameter. In the case

of the reduction to D S above, the parameter changes only linearly

(actually, does not change at all) and therefore we obtain the same lower bound

f (k)no(k) for this problem as well. If the reduction increases the parameter more

than linearly, then we get only weaker lower bounds. For an example, Marx [45]

showed the following.

Proposition 5.4 ([45]). Given a graph G and a positive integer k, it is possible to

construct a unit disk graph G′ in polynomial time such that G has a clique of size

k if and only if G′ has a dominating set of size O(k2).

Observe that Proposition 5.4 gives a W[1]-hardness proof for D S

on unit disk graphs, starting from C. The reduction squares the parameter k

and this together with Theorem 5.1 gives the following theorem.

Theorem 5.5 ([45]). Assuming ETH, there is no f (k)no(
√
k) time algorithm for

D S on unit disk graphs.

As D S on unit disk graphs can be solved in time nO(
√
k) [1], Theo-

rem 5.5 is tight.

C S (a generalization of C S) is an extreme example

where reductions increase the parameter exponentially or even double exponen-

tially, and therefore we obtain very weak lower bounds. This problem is defined

as follows:

C S
Input: Strings s1, . . . , st over an alphabet Σ, integers L and d

Parameter: d, t

Question: Is there a string s of length L such that si has a substring

s′i of length L with d(s, si) ≤ d? for every 1 ≤ i ≤ t?

 !"#$% &' ()* !" "# $% $&'()*%

 !

Let us restrict our attention to the case where the alphabet is of constant size,

say binary. Marx [46] gave a reduction from C to C S where

d = 2O(k) and t = 22O(k)

in the constructed instance (k is the size of the clique we are

looking for in the original instance). Therefore, we get weak lower bounds with

only o(log d) and o(log log k) in the exponent. Interestingly, these lower bounds

are actually tight, as there are algorithms matching these bounds.

Theorem 5.6 ([46]). C S over an alphabet of constant size can be

solved in time f (d)nO(log d) or in f (d, k)nO(log log k).

Furthermore, assuming ETH, there are no algorithms for the problem with

running time f (k, d)no(log d) or f (k, d)no(log log k).

As we have seen, it is very important to control the increase of the parameter

in the reductions if our aim is to obtain strong lower bounds. Many of the more

involved reductions from C use edge selection gadgets (see e.g., [25, 27, 45]).

As a clique of size k has Θ(k2) edges, this means that the reduction typically

increases the parameter to Θ(k2) at least and we can conclude that there is no

f (k)no(
√
k) time algorithm for the target problem (unless ETH fails). If we want to

obtain stronger bounds on the exponent, then we have to avoid the quadratic blow

up of the parameter and do the reduction from a different problem. Many of the

reductions from C can be turned into a reduction from S I

(Given two graphs G = (V, E) and H, decide if G is a subgraph of H). In a

reduction from S I, we need |E| edge selection gadgets, which

usually implies that the new parameter is Θ(|E|), leading to an improved lower

bounds compared to those coming from the reduction from C. Thus the

following lower bound on S I, parameterized by the number

of edges in G, could be a new source of lower bounds for various problems.

Theorem 5.7 ([47]). If S I can be solved in time f (k)no(k/ log k),

where f is an arbitrary function and k = |E| is the number of edges of the smaller
graph G, then ETH fails.

We remark that it is an interesting open question if the factor log k in the ex-

ponent can be removed, making this result tight.

While the results in Theorems 5.1, 5.3 are asymptotically tight, they do not

tell us the exact form of the exponent, that is, we do not know what the small-

est c is such that the problems can be solved in time nck. However, assuming

SETH, stronger bounds of this form can be obtained. Specifically, Pǎtraşcu and

Williams [49] obtained the following bound for D S under SETH.

Theorem 5.8 ([49]). Assuming SETH, there is no O(nk−ǫ) time algorithm forD-

 S for any ǫ > 0.

 !" #$%%"&'()* &!" +, -.

 !

Theorem 5.8 is almost tight as it is known that for k ≥ 7, D S can

be solved in time nk+o(1) [49]. Interestingly, Pǎtraşcu and Williams [49] do not

believe SETH holds and state Theorem 5.8 as a route to obtain faster satisfiability

algorithms through better algorithms for D S.

6 Parameterization by Treewidth

The notion of treewidth has emerged as a popular structural graph parameter, de-

fined independently in a number of contexts. It is convenient to think of treewidth

as a measure of the “tree-likeness” of a graph, so that the smaller the treewidth

of a graph, the more tree-like properties it has. Just as a number of NP-complete

problems are polynomial time solvable on trees, a number of problems can be

solved efficiently on graphs of small treewidth. Often, the strategies that work

for trees can be generalized smoothly to work over tree decompositions instead.

Very few natural problems are W[1]-hard under this parameter, and the literature

is rich with algorithms and algorithmic techniques that exploit the small treewidth

of input instances (see e.g., [7, 6, 38]). Formally, treewidth is defined as follows:

Definition 6.1. A tree decomposition of a graph G = (V, E) is a pair

(T = (VT , ET),X = {Xt : Xt ⊆ V}t∈TT
)

such that

1. ∪t∈V(T)Xt = V,

2. for every edge (x, y) ∈ E there is a t ∈ VT such that {x, y} ⊆ Xt, and

3. for every vertex v ∈ V the subgraph of T induced by the set {t | v ∈ Xt} is
connected.

The width of a tree decomposition is
(

maxt∈V(T) |Xt|
) − 1 and the treewidth of

G, denoted by tw(G), is the minimum width over all tree decompositions of G.

It is well known that several graph problems parameterized by the treewidth

of the input graph are FPT. See Table 1 for the time complexity of some known

algorithms for problems parameterized by the treewidth of the input graph. Most

of the algorithms on graphs of bounded treewidth are based on simple dynamic

programming on the tree decomposition, although for some problems a recently

discovered technique called fast subset convolution [52, 4] needs to be used to

obtain the running time shown in Table 1.

An obvious question is how fast these algorithms can be. We can easily rule

out the existence of 2o(t) algorithm for many of these problems assuming ETH.

 !"#$% &' ()* !" "# $% $&'()*%

 !

Problem Name f (t) in the best known algorithms

V C 2t

D S 3t

O C T 3t

P I T 2t

M C 2t

C N 2O(t log t)

D P 2O(t log t)

C P 2O(t log t)

Table 1: The table gives the f (t) bound in the running time of various problems

parameterized by the treewidth of the input graph.

Recall that, Theorem 3.3 shows that assuming ETH, the I S problem

parameterized by the number of vertices in the input graph does not admit a 2o(n)

algorithm. Since the treewidth of a graph is clearly at most the number of ver-

tices, it is in fact a “stronger” parameter, and thus the lower bound carries over.

Thus, we trivially have that I S does not admit a subexponential al-

gorithm when parameterized by treewidth. Along the similar lines we can show

the following theorem.

Theorem 6.2. Assuming ETH, I S, D S and O C

T parameterized by the treewidth of the input graph do not admit an

algorithm with running time 2o(t)nO(1). Here, n is the number of vertices in the

input graph to these problems.

For the problems C N, C P, and D P, the

natural dynamic programming approach gives 2O(t log t)nO(1) time algorithms. As

these problems can be solved in time 2O(n) on n-vertex graphs, the easy arguments

of Theorem 6.2 cannot be used to show the optimality of the 2O(t log t)nO(1) time

algorithms. However, as reviewed in Section 4, Lokshtanov et al. [43] developed a

machinery for obtaining lower bounds of the form 2o(k log k)nO(1) for parameterized

problems and we can apply this machinery in the case of parameterization by

treewidth as well.

Theorem 6.3 ([43, 18]). Assuming ETH, CN, C P, D-

 P parameterized by the treewidth of the input graph do not admit an

algorithm with running time 2o(t log t)nO(1). Here, n is the number of vertices in the

input graph to these problems.

The lower bounds obtained by Theorem 6.2 are quite weak: they tell us that

f (t) cannot be improved to 2o(t), but they do not tell us whether the numbers 2 and

 !" #$%%"&'()* &!" +, -.

 !

3 appearing as the base of exponentials in Table 1 can be improved. Just as we saw

for Exact Algorithms, ETH seems to be too weak an assumption to show a lower

bound that concerns the base of the exponent. Assuming the SETH, however,

much tighter bounds can be shown. In [42] it is established that any non-trivial

improvement over the best known algorithms for a variety of basic problems on

graphs of bounded treewidth would yield a faster algorithm for SAT.

Theorem 6.4 ([42]). If there exists an ǫ > 0 such that

• I S can be solved in (2 − ǫ)tw(G)nO(1) time, or

• D S can be solved in (3 − ǫ)tw(G)nO(1) time, or

• M C can be solved in (2 − ǫ)tw(G)nO(1) time, or

• O C T can be solved in (3 − ǫ)tw(G)nO(1) time, or

• there is a q ≥ 3 such that q-C can be solved in (q− ǫ)tw(G)nO(1)) time,

or

• P I T can be solved in (2 − ǫ)tw(G)nO(1) time,

then SETH fails.

Thus, assuming SETH, the known algorithms for the mentioned problems on

graphs of bounded treewidth are essentially the best possible. To show these

results, polynomial time many-one reductions are devised, and these transform

n-variable boolean formulas φ to instances of the problems in question, while

carefully controlling the treewidth of the graphs that the reductions output. A

typical reduction creates n gadgets corresponding to the n variables; each gad-

get has a small constant number of vertices. In most cases, this implies that

the treewidth can be bounded by O(n). However, to prove a lower bound of the

form O((2 − ǫ)tw(G)nO(1)), we need that the treewidth of the constructed graph is

(1 + o(1))n. Thus we can afford to increase the treewidth by at most one per vari-

able. For lower bounds above O((2− ǫ)tw(G)nO(1)), we need even more economical

constructions. To understand the difficulty, consider the D S problem,

here we want to say that if D S admits an algorithm with running time

O((3 − ǫ)tw(G)nO(1)) = O(2log(3−ǫ)tw(G)nO(1)) for some ǫ > 0, then we can solve SAT

on input formulas with n-variables in time O((2 − δ)n) for some δ > 0. Therefore

by naïvely equating the exponents in the previous sentence we get that we need

to construct an instance for D S whose treewidth is essentially n
log 3

. In

other words, each variable should increase treewidth by less than one. The main

challenge in these reductions is to squeeze out as many combinatorial possibilities

per increase of treewidth as possible.

While most natural graph problems are fixed parameter tractable when param-

eterized by the treewidth of the input graph, there are a few problems for which

 !"#$% &' ()* !" "# $% $&'()*%

 !

the best algorithms are stuck at O(nO(t)) time, where t is the treewidth of the input

graph. Under ETH one can show that the algorithms for several of these problems

cannot be improved to f (t)no(t). Just as for the problems that are FPT parame-

terized by treewidth, the lower bounds are obtained by reductions that carefully

control the treewidth of the graphs they output. We give one such reduction as an

illustration.

L C
Instance: A graph G = (V, E) of treewidth at most t,

and for each vertex v ∈ V , a list L(v) of permitted colors.

Parameter : t.

Problem: Is there a proper vertex coloring c with c(v) ∈ L(v)

for each v?

We show that the L C problem on graphs of treewidth t cannot have

an algorithm with running time f (t)no(t). This means that tre treewidth param-

eterization of L C is much harder than the closely related C

N, which has a 2O(t log t)n time algorithm.

Theorem 6.5 ([25]). Assuming ETH, L C on graphs of treewidth t can-

not be solved in time f (t)no(t).

Proof. We give a reduction from M C to L C where

the treewidth of the graph produced by the reduction is bounded by k, the size of

the clique in the M C instance. This together with Theorem 5.2

implies the result.

Given an instance G of the M C problem, we construct an

instance G′ of L C that admits a proper choice of color from each list

if and only if the source instance G contains a k-clique. The colors on the lists

of vertices in G′ have a one to one correspondence with the vertices of G. For

simplicity of arguments we do not distinguish between a vertex v of G and the

color v which appears in the list assigned to some of the vertices of G′.

Recall that every vertex v in G is given a color from 1 to k as a part of the

input for the M C instance. Let Vi be the set of vertices inG with

color i. The vertices of G′ on the other hand do not get colors assigned a priori -

however a solution to the constructed L C instance is a coloring of the

vertices of G′. The instance G′ is constructed as follows.

1. There are k vertices v[i] inG′, i = 1, . . . , k, one for each color class ofG, and

the list assigned to v[i] consists of the colors corresponding to the vertices

in G of color i. That is, Lv[i] = {Vi}.

 !" #$%%"&'()* &!" +, -.

 !

2. For i , j, there is a degree two vertex inG′ adjacent to v[i] and v[j] for each

pair x, y of nonadjacent vertices in G, where x has color i and y has color j.

This vertex is labeled vi, j[x, y] and has {x, y} as its list.

This completes the construction.

The treewidth ofG′ is bounded by k since (a) removing the k vertices v[i], 1 ≤
i ≤ k, from G′ yields an edgeless graph, (b) edgeless graphs have treewidth 0 and

(c) removing a single vertex from a graph decreases treewidth by at most one. IfG

has a multicolored clique K then we can easily list colorG′. Let K = {c1, c2, . . . ck}
where ci ∈ Vi. Color v[i] with ci, namely the vertex in K from Vi. It is easy to see

that every degree 2 vertex in G′ has at least one color free in its list, as the pair of

colors in the list correspond to non-adjacent vertices inG. For the other direction,

suppose that G′ can be properly colored such that each vertex is assigned a color

from its list. Let K = {c1, . . . , ck} be the set of vertices in G that correspond to the

colors assigned to the v[i]’s in this coloring of G′, such that v[i] is colored with

ci. We prove that K is a clique, and to do this it is sufficient to show that ci and

c j are adjacent for every i , j. However ci and c j can’t be non-adjacent because

then there would be a degree 2 vertex adjacent to v[i] and v[j] which only can be

colored with ci or c j, but can’t be colored with either. This completes the proof of

the theorem. �

The reason why L C is hard is that when doing dynamic program-

ming over the tree decomposition, then (as Theorem 6.5 suggests) the number of

possible colorings that we have to keep track of is nΩ(t). More generally, we en-

counter a similar difficulty when solving constraint satisfaction problems over a

large domain. Constraint satisfaction is a general framework that includes many

standard algorithmic problems such as satisfiability, database queries, graph color-

ing, , etc. A constraint satisfaction problem (CSP) consists of a set V of variables,

a domain D, and a setC of constraints, where each constraint is a relation on a sub-

set of the variables. The task is to assign a value from D to each variable in such a

way that every constraint is satisfied. For example, 3-SAT can be interpreted as a

CSP instance where the domain is {0, 1} and the constraints inC correspond to the

clauses (thus the arity of each constraint is 3). Another example is vertex coloring

or list coloring, which can be interpreted as a CSP instance where the variables

correspond to the vertices, the domain corresponds to the set of colors, and there

is a binary disequality constraint corresponding to each edge. The primal graph

(or Gaifman graph) of a CSP instance is defined to be a graph on the variables of

the instance such that there is an edge between two variables if and only if they

appear together in some constraint. If the treewidth of the primal graph is t, then

CSP can be solved in time nO(t). Since L C can be interpreted as a CSP

problem, Theorem 6.5 immediately implies that we cannot improve the exponent

to o(t).

 !"#$% &' ()* !" "# $% $&'()*%

Theorem 6.6. Assuming ETH, CSP cannot be solved in time f (t)no(t), where t is

the treewidth of the primal graph.

This result seems to suggest that there is no faster way of solving CSP than

using the algorithm based on tree decompositions. However, this result does not

rule out the possibility that there is a class of graphs (say, planar graphs, bounded

degree graphs, expanders, etc.) such that an no(t) algorithm is possible if the primal

graphs is in this class. We would like to have a lower bound that says something

about each particular class of graphs. To make this formal, for a class G of graphs,

let CSP(G) be the class of all CSP instances where the primal graph of the instance

is in G. In [47], Marx showed a lower bound on CSP(G) for every fixed class G.
Theorem 6.7 ([47]). If there is a recursively enumerable class G of graphs with

unbounded treewidth and a function f such that binary CSP(G) can be solved in

time f (G)|I|o(tw(G)/ log tw(G)) for instances I with primal graph G ∈ G, then ETH fails.

Binary CSP(G) is the special case of CSP(G) where every constraint is bi-

nary, that is, it involves two variables. Note that adding this restriction makes the

statement of Theorem 6.7 stronger.

Other structural parameters. If we restrict ourselves to paths rather than trees

in the definition of tree decompositions, then this corresponds to path decomposi-

tion and the minimum width over all path decompositions ofG is called pathwidth

of G, denoted by pw(G). Clearly, pw(G) ≥ tw(G) and actually pathwidth can be

unbounded even for trees. Therefore, it is somewhat surprising that the reductions

in the proof of Theorem 6.4 constrain not only the treewidth of the constructed

graphs but also the pathwidth. It follows that all the lower bounds mentioned in

Theorem 6.4 also hold for problems on graphs of bounded pathwidth.

There are also other kinds of graph decomposition and corresponding width

measures, like cliquewidth and rankwidth, that can be much smaller than treewidth.

Several algorithms for NP-hard problems parameterized by these width measures

have been obtained [16]. For various basic problems like M C and E

D S that are W[1]-hard parameterized by cliquewidth, lower bounds

of form nO(w), where w is the cliquewidth of the input graph, was obtained in [27].

Broersma et al. [8] gave lower bounds for some problems that are FPT parameter-

ized by cliquewidth.

7 Conclusion

In this article we surveyed algorithmic lower bound results that have been obtained

in the field of exact exponential time algorithms and parameterized complexity us-

ing ETH and SETH. For a wide range of problems, these lower bounds give useful

 !" #$%%"&'()* &!" +, -.

 !

information about what kind of algorithms are possible, in many cases even show-

ing the optimality of the current best algorithms. However, all these results have

to be taken with caution: there is no universal consensus about accepting ETH and

especially SETH (compared to say, accepting P , NP or FPT ,W[1]). However,

if one is reluctant to accept these hypotheses, the lower bounds following from

them still carry a very useful message. These lower bounds say that going beyond

these barriers implies an improved algorithm not only for this specific problem at

hand but also for satisfiability. Therefore, the tight lower bounds discussed in this

paper can be interpreted as saying that instead of trying to improve the current

best algorithm, one’s effort is better spent at trying to improve satisfiability algo-

rithms directly. In particular, we cannot expect that some problem-specific idea

related to the concrete problem can help, as we eventually need ideas that improve

satisfiability.

We did not touch all the lower bound results obtained under the assumption

of ETH and SETH. For an example, assuming ETH, it is possible to prove lower

bound on the form of running time of (efficient) polynomial time approximation

schemes ((E)PTAS) for several problems. We refer to [45] for further details. We

conclude the survey with several intriguing questions which remain open.

1. Could we relate ETH and SETH to some other known complexity theory

assumptions?

2. Could we use SETH to obtain lower bound on the base of the exponent of

problems parameterized by the solution size?

3. Could we use ETH to show that running time of the form 2O(k2) ·nO(1) is best

possible for some natural parameterized problem?

4. Could we use SETH to obtain a lower bound of form cn for some fixed

constant c for problems like D S and I S when

parameterized by the number of vertices of the input graph?

5. Could we use SETH to show that the C N of a graph on n

vertices cannot be solved in time (2 − ǫ)n for any fixed ǫ > 0?

References

[1] J. A J. F, Geometric separation and exact solutions for the parameter-

ized independent set problem on disk graphs, J. Algorithms, 52 (2004), pp. 134–151.

[2] N. A, D. L, S. S, Fast fast, in ICALP (1), 2009, pp. 49–58.

[3] R. B, Dynamic programming treatment of the travelling salesman problem,

J. ACM, 9 (1962), pp. 61–63.

 !"#$% &' ()* !" "# $% $&'()*%

 !

[4] A. B̈, T. H, P. K, M. K, Fourier meets möbius: fast

subset convolution, in STOC, 2007, pp. 67–74.

[5] A. B̈, T. H, M. K, Set partitioning via inclusion-

exclusion, SIAM J. Comput., 39 (2009), pp. 546–563.

[6] H. L. B, A tourist guide through treewidth, Acta Cybernet., 11 (1993), pp.

1–21.

[7] H. L. B A. M. C. A. K, Combinatorial optimization on graphs

of bounded treewidth, Comput. J., 51 (2008), pp. 255–269.

[8] H. B, P. A. G, V. P, Tight complexity bounds for FPT sub-

graph problems parameterized by clique-width. Accepted to IPEC 2011.

[9] L. C D. W. J, On the existence of subexponential parameterized algo-

rithms, J. Comput. Syst. Sci., 67 (2003), pp. 789–807.

[10] C. C, R. I, R. P, The complexity of satisfiability of small

depth circuits, in IWPEC, 2009, pp. 75–85.

[11] J. C, B. C, M. F, X. H, D. W. J, I. A. K, G. X,

Tight lower bounds for certain parameterized np-hard problems, Inf. Comput., 201

(2005), pp. 216–231.

[12] J. C, X. H, I. A. K, G. X, On the computational hardness based on

linear fpt-reductions, J. Comb. Optim., 11 (2006), pp. 231–247.

[13] , Strong computational lower bounds via parameterized complexity, J. Comput.

Syst. Sci., 72 (2006), pp. 1346–1367.

[14] J. C, I. A. K, G. X, Improved parameterized upper bounds for vertex

cover, in MFCS, 2006, pp. 238–249.

[15] Z.-Z. C, B. M, L. W, A three-string approach to the closest string prob-

lem. Accepted to COCOON 2010.

[16] B. C, J. A. M, U. R, Linear time solvable optimization

problems on graphs of bounded clique-width, Theory Comput. Syst., 33 (2000), pp.

125–150.

[17] M. C, H. D, D. L, D. M, J. N, Y. O, R. P,

S. S, M. Ẅ, On problems as hard as cnfsat. July 2011.

[18] M. C, J. N, M. P, M. P, J. M. M. R, J. O.

W, Solving connectivity problems parameterized by treewidth in single

exponential time, To appear in FOCS, abs/1103.0534 (2011).

[19] E. D. D, F. V. F, M. H, D. M. T, Subexponential

parameterized algorithms on graphs of bounded-genus and H-minor-free graphs,

Journal of the ACM, 52 (2005), pp. 866–893.

 !" #$%%"&'()* &!" +, -.

 !

[20] E. D. D M. H, Fast algorithms for hard graph problems: Bidi-

mensionality, minors, and local treewidth, in Proceedings of the 12th International

Symposium on Graph Drawing (GD 2004), vol. 3383 of Lecture Notes in Computer

Science, Harlem, New York, September 29–October 2 2004, pp. 517–533.

[21] , Bidimensionality: new connections between fpt algorithms and ptass, in

SODA ’05: Proceedings of the sixteenth annual ACM-SIAM symposium on Dis-

crete algorithms, Philadelphia, PA, USA, 2005, Society for Industrial and Applied

Mathematics, pp. 590–601.

[22] R. G. D M. R. F, Parameterized Complexity, Monographs in Com-

puter Science, Springer, New York, 1999.

[23] M. R. F, Personal communication, 2011.

[24] M. R. F, F. V. F, D. L, E. L, F. A. R, S.

S, Distortion is fixed parameter tractable, in ICALP (1), 2009, pp. 463–474.

[25] M. R. F, F. V. F, D. L, F. A. R, S. S, S. S,

 C. T, On the complexity of some colorful problems parameterized by

treewidth, Inf. Comput., 209 (2011), pp. 143–153.

[26] J. F M. G, Parameterized Complexity Theory, Springer, Berlin, 2006.

[27] F. V. F, P. A. G, D. L, S. S, Algorithmic lower

bounds for problems parameterized with clique-width, in SODA ’10: Proceedings

of the twenty first annual ACM-SIAM symposium on Discrete algorithms, 2010,

pp. 493–502.

[28] F. V. F, F. G, D. K, A measure & conquer approach for the

analysis of exact algorithms, J. ACM, 56 (2009).

[29] F. V. F D. K, Exact Exponential Algorithms, Springer, 2010.

[30] M. R. G, D. S. J, R. E. T, The planar hamiltonian circuit prob-

lem is np-complete, SIAM J. Comput., 5 (1976), pp. 704–714.

[31] J. G, R. N, P. R, Fixed-parameter algorithms for clos-

est string and related problems, Algorithmica, 37 (2003), pp. 25–42.

[32] M. H R. M. K, A dynamic programming approach to sequencing prob-

lems, 10 (1962), pp. 196–210.

33 , 37 mr1894519

[33] T. H, 3-SAT faster and simpler - unique-sat bounds for ppsz hold in general, to

appear in FOCS, abs/1103.2165 (2011).

[34] E. A. H, New worst-case upper bounds for sat, J. Autom. Reasoning, 24 (2000),

pp. 397–420.

[35] R. I R. P, On the complexity of k-sat, J. Comput. Syst. Sci., 62

(2001), pp. 367–375.

 !"#$% &' ()* !" "# $% $&'()*%

 !

[36] R. I, R. P, F. Z, Which problems have strongly exponential

complexity?, Journal of Computer and System Sciences, 63 (2001), pp. 512–530.

[37] R. I, R. P, F. Z, Which problems have strongly exponential

complexity?, J. Comput. System Sci., 63 (2001), pp. 512–530.

[38] T. K, Treewidth, Computations and Approximations, vol. 842 of Lecture Notes

in Computer Science, Springer, 1994.

[39] J. K, A. L, P. R, A fine-grained analysis of a simple inde-

pendent set algorithm, in FSTTCS, vol. 4 of LIPIcs, 2009, pp. 287–298.

[40] E. L. L, A note on the complexity of the chromatic number problem, Inf. Pro-

cess. Lett., 5 (1976), pp. 66–67.

[41] D. L, New Methods in Parameterized Algorithms and Complexity., PhD

thesis, University of Bergen, 2009.

[42] D. L, D. M, S. S, Known algorithms on graphs on bounded

treewidth are probably optimal, in SODA ’11: Proceedings of the twenty second

annual ACM-SIAM symposium on Discrete algorithms, 2011, pp. 777–789.

[43] , Slightly superexponential parameterized problems, in SODA ’11: Proceed-

ings of the twenty second annual ACM-SIAM symposium on Discrete algorithms,

2011, pp. 760–776.

[44] B. M X. S, More effcient algorithms for closest string and substring prob-

lems, SIAM J. Comput., 39 (2009), pp. 1432–1443.

[45] D. M, On the optimality of planar and geometric approximation schemes, in

FOCS, IEEE Computer Society, 2007, pp. 338–348.

[46] , Closest substring problems with small distances, SIAM Journal on Comput-

ing, 38 (2008), pp. 1382–1410.

[47] , Can you beat treewidth?, Theory of Computing, 6 (2010), pp. 85–112.

[48] R. N, Invitation to fixed-parameter algorithms, vol. 31 of Oxford Lecture

Series in Mathematics and its Applications, Oxford University Press, Oxford, 2006.

[49] M. P R. W, On the possibility of faster SAT algorithms, in SODA

’10: Proceedings of the twenty first annual ACM-SIAM symposium on Discrete

algorithms, 2010, pp. 1065–1075.

[50] J. M. R, Algorithms for maximum independent sets, J. Algorithms, 7 (1986),

pp. 425–440.

[51] M. S, Introduction to the theory of computation, PWS Publishing Company,

1997.

[52] J. M. M. R, H. L. B, P. R, Dynamic programming

on tree decompositions using generalised fast subset convolution, in ESA, 2009, pp.

566–577.

 !" #$%%"&'()* &!" +, -.

 !

[53] J. M. M. R, J. N, T. C. D, Inclusion/exclusion meets mea-

sure and conquer, in ESA, vol. 5757 of Lecture Notes in Computer Science, 2009,

pp. 554–565.

[54] L. W B. Z, Effcient algorithms for the closest string and distinguishing

string selection problems, in FAW, 2009, pp. 261–270.

[55] M. X, Algorithms for multiterminal cuts, in CSR, 2008, pp. 314–325.

