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1. Introduction. If L is a normed linear space and K and F are subsets of L, it
is a general problem of approximation theory to compute the number

(1) D(K, F) = sup inf IIX-.HI,
xeK  yeF

which is the precision to which F approximates K. An instance of classical interest
is that in which L is C([0, 1]), K is A"—i.e. those functions bounded by one, and
whose modulus of continuity is dominated by the modulus of continuity function
o>—and F is the family Pn of polynomials of degree n - 1. For this case it is known
that there are positive constants A and B, independent of to and n, such that

(2) Ato(i¡n) g D(A«, Pn) g Boj(i/n),

that is, D(Aa, Pn) = O(to(ijn)). (See for example [4].) The expression of D in terms of
upper and lower bounds as in (2) is typical of known results.

For arbitrary compact sets K in C([0, 1 ]), the theorem of Weierstrass shows that
D(K, Pn) -*■ 0 as n->ao. With a view to abstracting this result, one can replace
each Pn by an arbitrary linear subspace Gn of dimension n, and can study the
behavior of D(K, Gn) as n -+ oo. In this connection, A. N. Kolmogorov [1] defined
the n-width of any subset K of a normed linear space L to be

(3) Dn(K) = inf D(K,Gn),

where the infimum is over all «-dimensional subspaces Gn of L. In the space
C([0, 1]), with A™ as before, it turns out that Dn(Aa) = 0(to(\ln)) as n -> oo. Thus
in the limit as n -*■ oo, the classical subspaces Pn of polynomials approximate Aa
as well as any sequence {(/„} of linear subspaces.

A. G. Vitushkin has studied D(K, F) for families of sets F more general than
linear manifolds [6]. Specifically, he takes L to be C(X), the real valued continuous
functions, with supremum norm, on a compact metric space A'. The set K is some
compact subset of C(X). Vitushkin chooses F to be of the form

(4) F={P(x):x = (xx,...,xn)eR"}

where P(x) is an algebraic polynomial in the coordinates xx,..., xn of x with
coefficients in C( X). If in (4) the polynomial degree of P is d, F will be said to
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depend polynomially of degree d on n parameters. The n parameters are the co-
ordinates xx,..., x„.

Now for a general normed linear space L and a compact subset K in L, define

(5) 7)n,d(A) = inf7)(A:,£),
F

where the infimum is over all subsets F in L which depend polynomially of degree
d on n parameters. In the case L = C([0, 1 ]), Vitushkin's results state that

^ AUA») = 0(a,(^))

as n and d tend to infinity. (See §36 in [6].)
To show in (6) that for some constant A

™ ^*(AU) * Hink?)
is relatively easy (see §§36 and 29 in [6]). The proof of the corresponding lower
bound for Dnd is intricate and is based on the theory of "variations of sets" as
expounded by Vitushkin in [5] and [6]. The present paper gives lower bounds for
Dnd in general real linear spaces L. Although Vitushkin's results will be included
as special cases, the method of proof is different. In particular, no use is made of
"variations of sets".

The main theorems on Dnd (see §4) will be stated in terms of linear functionals
on L. It will be assumed from now on that L is a linear space over the real numbers.
If Xx,..., Xm are linear functionals on L, the mapping T:L—*Rm given by T(f)
=(A1(/),. •., Am(/)) is also linear. If as in (4) £={P(x) : x e Rn} is a subset of L
which depends polynomially of degree d on n parameters, then p¿x) = A,(P(jc)) is
an ordinary real polynomial of degree d or less in n variables. Moreover,

(8) T(£) = {pix) = iPxix),..., pmix)) : x e *»}.

If the transformation T has norm ^ 1, then for any compact K in L, 7J)(AT, £)
äi)(r(A), TiF)). Using a technique of H. S. Shapiro [3], one can find a lower
bound for DÇTiK), TiF)) by determining an upper bound for the number of sign
sequences s = (sx,..., sm) which have the form sgnpix) = (sgn/>¡(x),..., sgn/;m(jc)).

The number of sign sequences sgn pix) is not greater than the number of topo-
logical components of Rn—(J™=i ix -Piix)=0}. In §§2 and 3 following, a suitable
bound for the number.of these components is given in terms of m, n, and d.

2. Partitions of a topological manifold by submanifolds.

Theorem 1. Let M be a connected topological n-manifold, and let Mx,..., M„
be connected in—\)-manifolds embedded in M so that:

(1) the Mi are topologically closed and locally flat in M;
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1968] APPROXIMATION BY NONLINEAR MANIFOLDS 169

(2) the intersection of any given j of the Mh 1 újÉn, is either empty or is an
(n —j)-manifold that has finitely many components and is locally flat in the inter-
section of any j— 1 of the given Mù

(3) any intersection of more than n of the M¡ is empty.
Let bj be the number of topological components among all intersections of any j of

the Mi with M.
Under these hypotheses the set M—\Jf=x M¡ has at most 2?=o^ topological

components.

I preface the proof of this with two lemmas.

Lemma 1.1. If M is a connected n-manifold and M* is a connected locally flat
submanifold of M of dimension n—i, then M—M* has at most two components.

Proof. One can assume M* is not empty, since otherwise the conclusion is
trivially true. If C¡ is a component of M-M*, put E( = M* n Cl (C¡), where
"Cl" denotes closure. Since M* is locally flat, each point x of M* has a neighbor-
hood N in M for which there is a homeomorphism

(9) h:(MnN,M*r\N,x)-+(Rn,Rn-1,0).

Give Rn rectilinear coordinates xx,...,xn so that Rn~1 = {(xx,..., xn) : x„=0}.
Put Rn+ ={(xx,..., xn) : x„>0}, and R1 ={(xx,..., xn) : xn<0}. Because h is a
homeomorphism (M—M*) n N has exactly two components—namely h'1(Rn+)
and h'^Rl). Since M * n N=h-\Rn-x n Cl (R\)) = h-x(Rn-x n Cl (R1)), both
components of (M—M*) n N contain M* n N in their closure. Because M* n N
is open in M * and because each set Et = M* n Cl (C¡) is a union of sets of the type
M* n N, each Et is open in the relative topology of M*. The sets Et are auto-
matically closed in M* since Cl (C¡) is closed in M. Being both open and closed in
the connected set M*, each Et must be empty or all of M*. If Ex is empty, C¡ is
both open and closed in the connected set M. Hence E{= 0 implies C¡ = M. But
this is a contradiction because Q lies in M—M* which, since M*^ 0, is a proper
subset of M. Consequently every E¡ coincides with M*.

Thus each point x of M* is a limit point of every component of M—M*. But x
is a limit point of only those components which contain one of the two sets h ~ x(Rn+ ),
h~1(Rn.). Hence M-M* has at most two components.

Definition. For b^O let An denote the collection of (b+l)-tuples of manifolds
(M; Mx,..., Mb), where M is an n-manifold and the Mt are (n—X)-manifolds, which
together satisfy the hypotheses of Theorem 1.

Lemma 1.2. If (M; Mx,..., Mb) e An, and if k is the number of components of
M— (J?= ! Mi, k' is the number of components ofM— Uf-í M¡, and k" is the number
of components of Mb — U?= í Mt, then k = k'+k".

Proof. Let {Cf} be the components of M— Uf-i M, and let kf be the number of
components of Mb n C;. Since the M¡ are closed, each Cf is an «-manifold and each
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component of A7„ n Q is a connected (n— l)-manifold which is locally flat in C}
because Mb is locally flat in Af. The components of Mb r> Cy are by definition
disjoint. Removing them one at a time and applying Lemma 1.1 at each step shows
that Mb divides C} into at most k¡ + 1 components.

Since A7b — U?= Í M = Uy (Mb n C,) and since the C, are disjoint, &" = 2, &,•
Hence /t á I, (1 + ifcy) = k' + it'.

Proof of Theorem 1. Finding an upper bound for the number of components of
A7— (J?=i Mi will be referred to as the "problem of (A7; Mx,..., Mb)."

Let bzj be the number of components among all intersections of A7¡ with any y
of A7i + 1,..., Mb. Let the components among all intersections A7( n A7i+1,...,
A7f n Mb be denoted by A7(i, 1),..., A7(i, bi¡x).

Lemma 1.2 reduces the problem of (A/; A71;..., A76) to the problem of
(A7; Mx,..., A76_j) and the problem of (A7„; A7(6, 1),..., A7(¿», bb¡1)). Successive
application of Lemma 1.2 to the problems of (A7; Mx,..., A7¡), i=b,...,\,
reduces the problem of (A7; Mx,..., Mb) to the problem of (A7; 0) and the
problems of (A7¡; M (i, 1),..., M (i, bi¡x)), i=b,..., 2, and iMx; 0). In particular,
if ßi is a bound for the number of components of Mi-{Jbjï\ M(i,j), then the
number of components of A7-lJ?=i M( is at most 1 +2?-i ft.

It is easy to check that (A7¡; A7(i, 1),..., M(i, biA))e4-i, 1=1,..., b. As an
induction hypothesis suppose that the theorem is true for dimensions less than n.
Then in particular the theorem is supposed true for dimension n -1 ; therefore the
number of components of A/t —U*=ai A/(i',y) is at most 2"=o ¿u> i=U---,b.
Since ¿>; + 1 = 2?=i bu, it follows that the number of components of A7— (J?=i Mt is
at most

(10) l+T 2 *M-¿ bP
i=lj=0 i=o

Since the theorem is self-evident in the case n = l, its truth for all dimensions
follows by complete induction. In fact when n=l, M is topologically either a
Euclidean line or a circle and Mx,..., Mb are b distinct points. These b points
divide a Euclidean line into b+l=bx + b0 components; they divide a circle into
b<b+\=bx + b0.

3. Partitions of A"1 by real varieties. In this section p, q, ph and qt will stand for
polynomials in n variables with real coefficients. The set of points x = ixx,..., xn)
in Rn at which p vanishes will be denoted by Nip). The space Rn will be thought of
as embedded in complex Euclidean n-space Cn. The set of z=izx,..., zn) in C at
which p vanishes will be denoted by A/c(/>). By adding an (n + l)-st variable, one
can make p into a homogeneous polynomial on projective n-space in the usual way.
Let Pip) and Pcip) denote the zeros of this homogeneous version of p in real and
complex projective n-space respectively.

An intersection HP= 1 Nipt) will be called regular if at each point z of 0!"= 1 Ncipd
the gradients ofpx,..., pm at z are linearly independent over the complex numbers.
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If the gradients ofpx,..., pm are linearly dependent at z, the point z will be referred
to as a singular point of the intersection. Note that a single N(p) is regular when
Nc(p) has no singular points in the usual algebraic sense. Also if m > n, an inter-
section of sets N(p) is regular if and only if the corresponding complex intersection
is empty.

A number of sets N(px),..., N(pm) are said to form a regular configuration if all
intersections f)k=x N(pHk)), j= 1,..., m are regular.

Lemma 2.1. If Mx,...,Mb are the topological components of the several
N(qx),...,N(qm) which form a regular configuration, then the (b+l)-tuple
(Rn; Mx,..., M„) satisfies the hypotheses of Theorem 1.

Proof. The connectedness conditions are obviously satisfied. For y'=l,..., w,
select any y of the N(qt) in some arbitrary order and let Ek be the intersection of the
first k, k = i,.. .,j. If x is some point of E,-, by the regularity conditions on the
gradients at x of the qt involved, one can apply the implicit function theorem to
produce a neighborhood U of x and a homeomorphism

(11) h:(U, Ur\Ex,..., Un E}, *)-> (A",*»"1,..., Rnl, 0).

The convention in (11) is that Rk corresponds to the points (xx,..., xn) in Rn such
that xk+x=- ■ =xn=0, and 0 = (0,..., 0). This gives the manifold properties and
local flatness. The condition that the intersection of any m of the M¡ be empty for
m > n is plain from the definition of regularity above and the remarks following.
The finiteness condition on the number of components has been proved by H.
Whitney for arbitrary real varieties, see Theorem 3 in [8].

Lemma 2.2. Let p be a real polynomial. If V=(~y?=x N(q¡) is regular or if V=Rn,
then for all but finitely many real numbers a, V(a) = N(p—a) n V is regular.

Proof. Put Kc = nr=i Nc(qt) and VP = f\f= x Pc(qd- If m>n, Vc is empty and
there is nothing more to prove. If m=n, Lemma 2.1 shows that Vc consists of
finitely many points. If a avoids the finite set of values of p at these points,
Nc(p—a) n Vc is empty and V(a) is trivially regular. In the case m<n, or in the
case V=Rn, put VP(a)=Pc(p — a) n VP. Consider the pencil of varieties |FP(a)|,
where now a ranges over the complex projective line. Call a singular if VP(a) has a
singular point in the usual algebraic sense which is neither in the singular subvariety
of VP nor in H« vp(a)- By the strong theorem of Bertini (see for example [7]) the
singular a form a proper subvariety of the projective line and hence are finite in
number.

Since V is regular, the singular subvariety of VP does not intersect Vc. Also
O« Vp(a) l'es at infinity, outside Cn, and in particular does not intersect Vc. It
follows that for all but the finitely many singular a, Vc(a) contains no singular
points and hence that V(a) is regular.
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Lemma 2.3. Let qt,..., qm be given, and put 5=nr=i N(qi). Given any p, there
is a ß>0, such that whenever 0<a<ß, every topological component of the set
E=Rn-Su Nip) contains one of the sets £,=fi"-Su Nip-a) u Nip + a).

Proof. The components C¡ of £ are finite in number, again by H. Whitney [8].
For each i choose a point a¡ in Ct. Put /? = min¡ \pia¡)\, and note that ß>0. A com-
ponent Ct is contained in some component J of Rn — S, and C¡ is the maximal
connected set of points x in J containing a¡ and such that sgn pix) = sgn p(a¡).
For 0<a<j8, there is a component K of J o {x : \pix)\ >a} that contains e¡. This
A is a component of Ea and is contained in C¡.

Lemma 2.4. Given px,.. .,pm, one can choose real numbers ax,..., am such that
the hypersurfaces Nip1—ai), N(px-\-a,) together form a regular configuration and
such that every topological component ofE=Rn — U¡m= i N(pt) contains one of

m
(12) F = R» - U N(Pi - ad u N(Pi + az).i = i

Proof. Choose ß as in Lemma 2.3 withpx in the role ofp and the other p¡ in the
role of the qt. By Lemma 2.2 (with V=Rn), for all but finitely many a, N(px — a)
is regular. Hence we can choose ax between zero and /J so that N(px — ax) and
N(px + ax) are both regular.

If ax,..., ak have been determined, choose ß as in Lemma 2.3 with pk + x in the
role of p and/?, —a¡, pt+at, i= 1,..., k, and pf,j=k+2,..., m, in the role of the
qi. Choose ai + x e (0, ß) so that the hypersurfaces N(pi-ai), N(pi + at), i = 1,...,
k +1, form a regular configuration. Such a choice is~possible, in view of Lemma 2.2,
because the number of intersections to consider is finite, and because all inter-
sections among N(pj — aj), N(pj+aj),j= 1,..., k, are already regular. The lemma
now follows by finite induction.

Lemma 2.5. If the degree ofp is d, the number of topological components ofN(p)
does not exceed 2dn.

Proof. By the result of Whitney already cited, N(p) has finitely many com-
ponents. Suppose first that N(p) is regular.

Let 7ir be the closed ball of radius r about the origin in A"1. Let Sr be the boundary
of Br. Choose r so large that every component of N(p) intersects the interior of
7Jr and, by Lemma 2.2, so that Sr n N(p) is regular. Oleïnik and Petrovskiï have
shown (see [2, Lemma 1]), that a small variation in the coefficients of p does not
change the topology of Br n N(p). In the coefficient space of the general real
polynomial q of degree d, the points giving a variety P(q) with any singularity form
a proper subvariety. One concludes that a small variation of the coefficients ôf p
will insure that the number of components of N(p) will not decrease and that also
P(p) will be nonsingular. Assume that such a variation has been made.

Fory=0,..., n, embed R1 in projective n-space as the points (xx,..., xn + x) with
xn + x = ■ - ■ = x,■+2=0, Xj+j t¿ 0. Call a subset of R1 bounded if it has no limit points
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in Rk for k <j. Since projective «-space is the union of Rn,..., R°, any unbounded
component of N(p) has a bounded component of P(p) n R1 in its closure for some
y'<«. By again varying slightly the coefficients of p, we may assume that the
P(p) n R',j=2,..., n-1, as well as P(p), are nonsingular.

Olelnik and Petrovskii have shown in [2] that a nonsingular algebraic hyper-
surface of degree d in R' has at most (d— l)' bounded components, y'^2. By the
classical theorem of Bezout a curve of order d in projective 2-space intersects the
line at infinity (with multiplicities counted) in at most d real points. It follows that a
plane curve (singular or nonsingular) or order d has at most d unbounded
components in R2.

Since the restriction of P(p) to R' is again a nonsingular variety of order ^d
and at most two topological components of N(p) count against one bounded
component of P(p) n R?, j=n—i,..., 3, or arbitrary component of P(p) n R2,
the number of unbounded components if N(p) does not exceed

(13) 2[(d-iy-x+--+ (d-l)2 + (d-l) + i).

The sum of (13) and (d- l)n is a bound for the number of all components of N(p).
For í/^2 and «^3 this sum does not exceed dn. When « = 2, the number of
bounded components does not exceed (d— l)2, and there are at most d unbounded
components. The sum again is ¿ d2. The case d= 1 is clear. One concludes that a
regular N(p) has at most dn topological components.

In the case of an arbitrary N(p), consider a closed ball Br containing all the
bounded components of N(p) in its interior. By the uniform continuity of p on Br,
there is an e > 0 such that the e-neighborhoods in Rn of the several bounded com-
ponents of N(p) are disjoint, and such that for all small a>0, each of these e-
neighborhoods will contain a bounded component of N(p — a) or N(p + a). By
Lemma 2.2, N(p — a) and N(p+a) will be regular for all small <x>0. Thus the
number of bounded components of N(p) is not more than 2(d— 1)". Similarly,
estimates for the number of unbounded components of N(p) come out to be
double that for the regular case, and the general bound of 2dn follows.

Theorem 2. Let px,.. .,pmbe real polynomials in n variables, each of degree dor
less. The number of topological components of the set Rn — (JJ"= x N(p¡) does not
exceed 2*=o 2(2d)n2kCm¡k ,where C„yk is the usual binomial coefficient, except that
Cm,k = 0form<k.

Proof. By Lemma 2.4 it suffices to bound the number of components of the set
Fin (12). By Lemma 2.1 we may apply Theorem 1 to this case. To compute the
parameters ¿>¡ needed in Theorem 1, note that if qx,..., qk have degrees ^d and
d=ql+ ■ ■ ■ +ql, then p has degree =2d and N(p) = (~)ï*x N(q¡). From this and
Lemma 2.5 we see that any intersection of A: hypersurfaces in the regular configura-
tion cutting out the set F in (12) has at most 2(2d)n topological components.
Since two sets N(pi — a() and N(pt + a,) have empty intersection, the parameter bk
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is bounded above by 2(2d)n2kCmtk, k=0,...,n. If k>n, bk=0, since the con-
figuration of hypersurfaces is regular. Theorem 2 now follows from Theorem 1 and
these bounds for the bk.

4. Lower bounds for DUtd(K).

Theorem 3. Let px,.. .,pm be real polynomials in n variables, each of degree at
most d^l. If m ^ n, the number of sign sequences sgn p(x) = (sgn px(x),..., sgn pm(x))
that consist of terms +1,-1 does not exceed (Aedm¡n)n.

Proof. The sequence valued function sgnp(x) has values with terms +1, —1
only on the set £=A"1 - (J™= i N(px). Since the/>¡ are continuous, sgn p(x) is constant
on topological components of £. Thus the number of distinct values of sgn p(x)
does not exceed the number of components of £, which by Theorem 2 does not
exceed

(14) 2(2dy % 2*Cm„

For n = l,2, one can easily verify that except for m = n=l, (14) is less than
(Aedmjny. When m = n=\, sgnp(x) has at most 2<4eO" values anyway. If n^3,
Stirling's formula shows that 4/n ! < (e/n)n. Thus for m ̂  n ä 3,

2(2d)n 2 2"Cm,k < 2(2d)n 2 2kmklk\
k=o k=o

(15)
n

< 2(2d)n 2 2fcmn/n! < 4(4dm)n/n! < (4eOm/n)n,
fc = 0

and the theorem is proved.

Corollary 3.1. If d^2 and w^8n log2 d, then the number of distinct sequences
of terms +1,-1 taken on by sgnp(x) is less than 2m.

Proof. By Theorem 3 it suffices to show that m/n ^ 8 log2 d implies 4ed(m/n)
< 2mln, or equivalently that f ä 8 log2 d implies log2 (4edt ) < f. In fact, if t ̂  8 log2 d,
then f ̂ 8, since 0*^2, and

log2 (Aedt) = log2 4e+log2 d+\og2 t

< 4f/8 + f/8 + 3f/8 = t.

Corollary 3.2. Ifd^ 2 and m ^ 18n log2 d, there is a sign sequence s=(sx,..., sm),
Si= ±1, which differs in more than m/10 places from any sequence in the range of
sgn pix).

Proof. First, d ̂  2 and m 2; 18n log2 d imply that i4edm/n)n < 2ml2, or equivalently
f ä 18 log2 i/g: 18 implies log2 (4eO"f) < f/2. In fact, under these conditions,

log2 i4edt) = 2+log2 e+log2 d+log2 t

^ f/9 + f(log2e)/18 + f/18 + f(log218)/18 < f/2.
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Consequently the range of sgnp(x) contains fewer than 2m'2 distinct sequences of
terms +1, -1.

The number of sign sequences s which differ from a particular sequence
sgn pix) in at most k places is 1 + Cm>1 H-h Cm>fc, that is, the sum of those which
differ in exactly no place, one place, and so on. Using Stirling's lower estimate for
k !, we see that since m ̂  k, for k ^ 1,

(18) l + Cm>1+---+CmJt < l+kmklkl
< \ + iemlk)kikß-n) < (im¡k)k.

Now if f ̂  10, 3f < 2"2, by an argument like that of (16) and (17). Thus if k g w/10,
the number of sequences s which differ from a particular pix) in at most k places is
less than 2m'2.

Now the corollary follows. For if m 2:18n log2 d, the number of sequences s
which differ from any value of sgn/>(x) in at most m/10 places is less than 2m,2-2m'2
= 2m. But there are in all 2m possible sequences *.

Let L be a real normed linear space with norm || ||. Define the norms || |M
and 1    ||s on Äm by

(19) K*i,...,*«)|jk - Daax|x,|,   |(*i,...,xj\a - |*i| + --- + |jc»|.

For compact subsets K of L, define x(K, m) to be the supremum of all numbers 8
for which there exist linear functionals Xx,..., Am on L such that

(a) the mapping T:L^Rm given by Tf=(Xx(f),..., Xm(f)) has norm g 1 with
respect to the A7-norm on Rm ;

(b) for each sequence (sx,..., sm), st= ±1, there is a g in A'such that

stX¡(g) ̂ 8,       i = \,...,m.

Theorem 4. 7/ A is a compact subset of the real normed linear space L, then for
d^2,
(20) Dn,d(K) ̂  XÍK, -[-in log2 d]).

Proof. Let m be the integer — [-8n log2 d]. The case x(AT, m)=0 is trivial.
Otherwise, let 8 be any positive number <x(A, m). Choose linear functionals
A1;..., Am satisfying (a) and (b) above, and form the mapping Jas in (a).

Let F={P(x) : x e Rn} be, as in (4), a subset of L depending polynomially of
degree don« parameters. Since P has degree d, each of the functions pt(x) = X,(P(x))
is a real polynomial in n variables of degree d or less. Because m^8n log2 d,
by Corollary 3.1, there is a sign sequence s = (sx,..., sm), ¿¡=±1, such that
s/(sgn Pi(x),..., sgn pm(x)) for any x in Rn. Choose g e Kas in (b) above such that
stXi(g) ̂  8, i= 1,..., m. Now for each x e Rn, Tf and TP(x) differ in at least one
coordinate in sign and hence differ in that coordinate by at least 5. Therefore,

(21) D(K, F) ^ D({f}, F) ^ D({Tf), T(F)) = inf \\Tf-TP(x)\\M ̂ 8.
X

Since 8 can approach x(^> w) from below, the theorem follows.
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Define ¡p(K, m) to be the same as x(K, m) except replace "Af-norm" in condition
(a) above by "S-norm".

Theorem 5. If K is as in Theorem 4 and m = l%n log2 d, then for d^2,

(22) Dn,d(K) ̂  (mliO)4>(K, m).

Proof. Proceed as in the proof of Theorem 4. However, choose the sequence s
such that, as in Corollary 3.2, ¿ differs from each (sgn px(x),..., sgn pm(x)) in
more than m/10 places. Instead of (21) one has

(23) D(K, F) ^ inf ||7jr-77»(x)||s > (w/10)S,
X

and the theorem follows.

5. Approximation in the uniform norm. Let A" be a set and let B(X) be the
Banach space, with uniform norm, of the bounded real valued functions on X.
Point evaluation is a linear functional on B(X). In fact, if «i,..., xm are points in
X, the mapping T: X-^ Rm defined by Tf=(f(xx),.. .,f(xm)) has norm one with
respect to the Af-norm on Rm. This observation leads as follows to a practical
method of estimating x(K, m) for a compact subset K of B(X).

For any m points xx,..., xmin X put

(24) £l(K; xx,..., xm) = min sup min Sig(x{).
S(= ±1 geK lgiSm

Q. measures the extent to which A' contains functions of arbitrary oscillation about
zero on {xx,..., xm}.

Theorem 6. If K is a compact subset ofB(X), then

(25) x(K, m) > sup Q(K; xx,..., xn),

where the supremum is over all sets of points xx,..., xm in X.

Proof. Ignoring a trivial case, we may assume that the supremum in (25) is
positive. Let 8 be any number less than this supremum. There are then points
xx,..., xm in X such that £l(K; xx,..., xm)> 8. For i— 1,..., m, define the linear
functional A, on B(X) by Xl(f)=f(xi). The mapping Tf=(Xx(f),.. .,Xm(f)) has
norm one with respect to the M-norm on Rm. By the definition of Q. and the choice
of the Xi, for every sequence (sx,...,sm), ¿(=±1, there is a geK such that
¿(A¡(g)^ 8, / = 1,..., m. Hence x(K, ni)^ 8. Let S approach sup Q(K; xx,..., xm) to
finish the proof.

Corollary 6.1. Let Aa be as in §1. Then in B([0, 1])

w ^A^iM«Tob)
for d=2.
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Proof. Let m= - [-8n log2 d] and put xt = (i— l)/(/n — 1), i= 1,..., m. Clearly
0(Am; xx,..., xm) = o,(ll(2m-2)). By the subadditivity of w and the definition of
m, tu(l/(2w-2))ä(l/16)ü)(l/(n log2 d)). Now (26) can be read off from Theorems
4 and 6.

Note that (26) holds a fortiori if we compute Dntd(Aa) in the subspace C([0, 1])
of77([0,l]).

6. Approximation in the L^norm. This section illustrates the use of Theorem 5.
Let Ik be the ^-dimensional cube [0, 1 ] x ■ ■ ■ x [0, 1 ] (k factors). Let | || denote
the Euclidean norm on Ik. Let Aa¡k be the real valued functions/on Ik which satisfy
\f(x+t)-f(x)\ ^ If ||a for all x and x+t in Ik (0<ag 1) and which are bounded
by one. Let Lx(Ik) be the usual Banach space of real Lebesgue integrable functions
on Ik.

Theorem 7. 7n Lx(Ik),for d^2,
4-oMg-a/kjM

(27) Dn,d(K,k)<Z(n\og2d)-°'k 10(A: + a)-••(!+«)

Proof. Let r be the least integer such that rk^ 18n log2 d. Put m-rk. Divide Ik
into m disjoint cubes A¡ each of side 1/r. Define linear functionals Af on £1(7*) by
A((/) = j¡K¡ fdp, where p is Lebesgue product measure on Ik. Note that the mapping
Tf= (Xx(f),..., Xm(f)) has norm one with respect to the 5-norm on 7?m.

Given any sign sequence (sx,...,sm), í¡=±1, define g on 7" by g(x)
=if(dist(x, dKi))" for x in Kx, where dKt is the boundary of Kx and "dist" is
Euclidean distance. It is straightforward to check that g e Ae>fc. For 1= 1,..., m,

SiX(gt) = f  (dist (x, dKi))a dp
JKi

x"kdxk--dxx
0     Jo       Jo

= m-V-a2-aA:!/[(A: + a)- ■ (1+«)1-

Thus <P(Aak,m) is bounded below by (28).  Since r^2,  l/r^2-1l(r-l), and
r-c^2-a(lSn log2 d)'alk. Now (27) follows from Theorem 5.
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