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ABSTRACT

This paper establishes asymptotic lower bounds which provide
limits, in various contexts, as to how well one may select the bandwidth
of a kernel density estimator. Earlier results are of this type are
extended to the important case of different smoothness classes {for the
underlying density), and it is also seen that very useful bounds can be
obtained even in the presence of parametric knowledge of the density.

An important feature of the results is that while the lower bound is

-1/1 . . .
unacceptably large (i.e. of order n O)when the error criterion is

Integrated Squared Error, it can be quite acceptable (often of order

n_l/z) when the error criterion is Mean Integrated Squared Error. We
feel this indicates that the latter should become the benchmark for this

problem.
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1. Introduction
The density estimation problem is that of estimating a probability

density f using a random sample, X .,Xn, from f. Given a bandwidth

N
h, and a kernel function K, the kernel density estimator is

p _ .~1 _.n _
fh(x) = n zi=1Kh(x Xi)'

where Kh(~) = K(-/h)/h. The bandwidth controls the smoothness of the
resulting curve estimate, with the result that bandwidth choice is
crucial to performance of the estimator (see for example Devroye and
Gyorfi (1985) er Silverman (1986)).

Widely considered means of assessing the performance of f include

the Integrated Squared Error,

-~

A = { -
4(h,£) j (fh £),
and the Mean Integrated Squared Error.
M(h,f) = E d(h,f).

(See Devroye and Gyorfi (1985) for another viewpoint.) The minimizers
of these criteria, denoted ﬁf and hf. are both reasonéble choices of
"optimal bandwidth”. There is some controversy concerning which one is
preferred. In particular, hf seems appropriate for the same reasons
that risk (as opposed to loss) is the main focus of decision theory. On
the other hand, in the specific context of curve estimation, a case can
be made for ﬁf being the most suitable target, because it is the
bandwidth choice which makes the resulting estimator as close as

possible to f for the set of data at hand, as opposed to the average

over all possible data sets. See Haerdle, Hall and Marron (1988) and



Marron(1988) for further discussion concerning which should be called

the "optimal” bandwidth.

The fact that there is a very substantial difference between h

f
and hf has been demonstrated by Hall and Marron (1987a)., who have
shown that the relative difference between these is (under common
technical assumptions, such as those stated below) of the order n_l/lo.

David Scott and Hans-Georg Mueller have expressed (in personal

correspondence) the viewpoint that hf may be a more reasonable goal,

-

simply because it may be expected to be easier to estimate than hf. In

this paper. it is seen that this intuition is substantially correct. In

particular, it will be demonstrated in Section 2.2 that the relative

rate of convergence to hf. of any data driven bandwidth, can never (in

-1/10
n

a minimax sense) be faster than (the theorem in Section 2.2 is a

generalization of the related results of Hall and Marron (1987b) which .

made use of much more stringent assumptions than those used there). On
the other hand, Hall and Marron (1987c) (see their Remark 4.6), have

shown that, under strong enough smoothness assumptions, much faster

rates, even up to n_l/z. are attainable when hf is accepted as the

~

target. We believe this demonstrates conclusively that hf. while

intuitively attractive, is just too difficult to attain, and hence hf

should be the goal of data-based bandwidth selection methods.
In view of this, it makes sense to investigate how well one may
choose the bandwidth hf. See Marron (1988) for a survey of proposed

methods of using the data, X ..Xn, to objectively choose the

1

bandwidth. To explore the best possible performance of not only these
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bandwidth selectors, but also any that may subsequently be proposed, h
will be thought of as a bandwidth selector, but it is allowed to be an
arbitrary measurable function of the data. Under such an assumption on
the data-driven bandwidth, in order find lower bounds on how close ﬂ
may be to hf (or in Section 2.2 to ﬂh), it is necessary to consider
more than one underlying density. A convenient means of doing this is
through a minimax structure., where one considers suprema over a class of
alternative densities (see the Theorems in Sections 2 and 3 for a
precise formulation).

The results in Section 2 are connected to each other by the fact
that, for each n, only two alternative densities need be considered.
In addition to the bound obtained on the rate of convergence to ﬂf
discussed above, it will be shown in Section 2.3 that a two-alternative
class is sufficient to show that the relative rate of convergence to h

can be no faster than n—l/z, regardless of the smoothness of the

£

densities under consideration. The surprising fact that these bounds
require only two-alternative classes is explored further in Section 2.4,
through considering the interesting special cases of scale and location

change alternatives. In particular it will be shown that the same

n-l/10 for hf and n_l/2 for hf). even when one

has parametric knowledge about the underlying density.

An interesting question is when this bound of n_l/2 can be

bounds hold (i.e.

achieved. In Remark 4.6 of Hall and Marron (1987c) it is seen that this
bound can be achieved when one makes strong enough smoothness

assumptions on the underlying density. However, this relies strongly on



having enough smoothness of the underlying density avaliable, and so one

might suspect that, when not enough smoothness is available, the lower
bound could be sharpened. The fact that this is indeed the case will be
demonstrated in Section 3.2, where we obtain a lower bound on the
relative rate of convefgence of any data driven bandwidth to hf, that
is better than n—l/2 when densities which are not too smooth are
considered. The price for this improved result is that the
two-alternative class is replaced by a much larger class which grows
rapidly as the sample size increases. Our class of alternatives is
similar to that developed by Stone (1982) and used by Hall and Marron
(1987b) .

Another application of larger alternative classes will be given in

Section 3.3, where this idea will be used for some technical improvement

of the results of Section 2. .

All proofs may be found in Section 4

2. Bounds Involving Two Alternatives
2.1 Introduction and Summary

To obtain the lower bounds in the current section, it is enough to
consider (for each n) only two alternative densities. A means of
constructing these (in a way which yields useful lower bounds) is to
start with a fixed density fo(x). and a function «(x), and consider

the alternative density

fl(x) {1 + n_l/%a(x)} fo(x).
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The fact that fo and fl are distant only n * apart (note this

representation entails that most of the usual norms will be of the order
n_l/2 when a is reasonable, as assumed below) means that our bounds
will apply even in a parametric setting, not solely to nonparametric
classes of densities. This will emerge particularly clearly in Section
2.4, where the case of a normal N(y,cz) target density f will be
discussed. In a parametric context, where f1 represents a version of

£ with "nuisance parameters" replaced by their estimates, f and f

0 0 1
. . -1/2

are indeed distant n apart.
To ensure that f1 is a proper density (for n large enough),

assume

(2.1.1) ﬁ:fo = 0 and fl > 0.

Also assume

(2.1.2) f0 and [alfo are bounded,

(2.1.3) fo and afo have five bounded derivatives,

(2.1.4) 02 = ]azfo and j{(afo")zfo are nonzero and finite.

Convenient technical assumptions concerning the estimator are:

(2.1.5) K is nonnegative and symmetric, with [K = 1,
(2.1.6) K is compactly supported with a Hoelder-continuous second
derivative.

Assumption (2.1.5) is important to the effective behavior of the kernel
estimator. It implies that K 1is a "second order kernel". Versions of
our results for higher order kernels will be presented in Remarks 2.2.4,
2.3.5, and 3.2.4. Assumption (2.1.6) is made more for convenience. It

is straighforward to weaken this assumption through the use of various



truncation arguments, but this is not done explicitly because the
increased complexity of proof would detract from the main points.

Further useful notation is,

p 1 - ¢(o/2),
where ¢ denotes the standard normal cumulative distribution function.
Sections 2.2 and 2.3 will provide lower bounds to convergence rates

of general estimators of h and h_, respectively. Section 2.4 will

£ f

illustrate the main features of these results by considering density
estimation in pararmetric problems where either scale or location is
unknown. In particular the fact that the bounds obtained in Sections

2.2 and 2.3 apply even in the prescence of parametric knowledge is

underscored.

2.2 Bounds in the Case of ISE
In addition to the technical assumptions made in Section 2.1, also

assume that the alternative densities, f0 and fl, are distinct in the

sense that
(2.2.1) J(0/d0) % (0 () (x)dx # 0.
The implications of this condition will be made clear in Section 2.4.

The following theorem shows that it is impossible to find a data-based

bandwidth which is closer to hf. the minimizer of the Integrated
-1/10
n

Squared Error 4(h,f), than in a relative error sense.

Theorem 2.2: Under the assumptions (2.1.1) - (2.1.6) and (2.2.1), for h

any measurable function of the data,




(2.2.2) lim liminf max P.(ih - hfi/hf > 6n—1/10)

40 nwe  fe(f . f ) £
4(h,f) - A(hf.f)

} -1/5

(2.2.3) lim liminf max Pf({ | > €en }

e-+0 n-wo fe{fo.fl} A(hf.f)

The proof of Theorem 2.2 will be given in Section 5.1.

Remark 2.2.1: If ﬂ is taken to be the bandwidth chosen by
cross-validation then the convergence rates in (2.2.2) and (2.2.3) are
achieved: see Hall and Marron (1987a). Therefore the convergence rates
described by Theorem 2.2 are best possible. Theorem 2.2 is a
substantial strengthening of Theorems 2.1 and 4.1 of Hall and Marron
(1987b). Although the bound is the same, the class of alternatives is
much smaller and simpler here.

Remark 2.2.2: The probability p may be increased to 1 if more than

just the two alternatives fO and f1 are considered. A method of

doing this will be described in Section 3.3.

Remark 2.2.3: If there were really only two densities fo and fl

-

"

under consideration, then "> p" would become "= p" if one took h to

-~

be the "likelihood ratio bandwidth", which chooses between hf and
0

-~

hf depending on whether the likelihood ratio is bigger or smaller than
1

one. In fact the proof of the theorem is based on the fact that no

discrimination rule can distinguish between fo and f1 more

effectively than the likelihood ratio rule.

Remark 2.2.4: If the kernel function K is allowed to take on negative

values, then the rate of convergence of fh to f may be improved



(see, for example, Section 3.6 of Silverman 1986). In particular the

kernel function K is said to be of order r when
1 if j =0

jij(x)dx = 20 if 1¢ ]

I K # 0 if j=r

2.

Assumption (2.1.5) ensures that K is of order

< r-1

The advantage of K

being of order r is that, when f is assumed to have r continuous

. n-l/(2r+1y

derivatives and h both 4(h,f} and M(h,f) are of size

n—2r/(2r+1)’ Theorem 2.2 continues to hold under this type of
assumption, with the rates of n_l/10 and n_l/s replaced by
n_1/2(2r+1) and n‘l/(2r+1), respectively. The differential operator

(d/dx)% in (2.2.1) should be replaced by (d/dx)C.

2.3 Bounds in the Case of MISE

In this case, the assumption (2.2.1) concerning the difference
between the alternative densities, fo and fl' should be replaced by
(2.3.1) fta/anae () (xidx = 0, = 2,4,
See Section 2.4 for an investigation of the implications of this
condition. Our next result shows that it is impossible to use a
data-based bandwidth which is closer to hf, the minimizer of the Mean
Integrated Squared Error M(h,f), than nﬁl/2 in a relative error

sense.

Theorem 2.3: Under the assumptions (2.1.1) - (2.1.6) and (2.3.1), for h

any measurable function of the data,




(2.3.2) lim liminf max Pf((‘h - hfl/hf > 6n-1/2) 2 D,

€+0 nwo fe(fo.fl}

M(h,f) - M(h..f)
(2.3.3) lim liminf max pf{i
e-+0 nowo fe{fo,fl} M(hf,f)

P> en_l} > p.

The proof of Theorem 2.3 will be given in Section 5.2.

Remark 2.3.1: For sufficiently large, but finite, values of v (Hall
and Marron (1987c) need v = 4.5), this bound is known to be best
possible, in the sense that there is a bandwidth selector whose relative

rate of convergence to h is n—l/z.

f
Remark 2.3.2: Note that the lower bounds obtained here , n_l/2 and

1 . . .
n , go to zero much more rapidly than the corresponding bounds in

Theorem 2.2, n_l/lo and nﬁl/o.

This demonstrates a fundamental
difference between the error criteria, Integrated Squared Error 4(h,f)
and Mean Integrated Squared Error M(h,f). This is what provides
motivation for acceptance, as discussed above, of M(h,f) as the more
reasonable measure of error, on the grounds that 4(h,f) appears to be
simply too difficult to optimize in a reasonable fashion.

Remark 2.3.3: As in Section 2.2, the probability p may be increased
to 1 if more than just the two alternatives f0 and f1 are
considered. A method of doing this will be given in Section 3.3.
Remark 2.3.4: Also as in Section 2.2, the likelihood ratio bandwidth
(adapted for M instead of 4) gives equality in (2.3.2) and (2.3.3).
Remark 2.3.5: There is a version of Theorem 2.3, with exactly the same

rates n_l/2 and n_1 in (2.3.2) and (2.3.3) respectively, for higher
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order kernels.

2.4 Example: Scale and Location Changes
Additional insight into the structure of the minimax bounds of
Theorems 2.2 and 2.3 can be gained by consideration of some specific

choices of the alternative densities fo and fl' Particularly

interesting features are emphasized if & is chosen to make f1

approximately a scale or location change of fo. Of course in such a

context, one should never consider estimating a density with a kernel
estimator, but this is worth studying because of the interesting
implications for the bandwidth selection problem.

In the scale-change case, fl(x) may be represented as

(2.4.1) (1 + n'l/z)fo{(l fn 2%

-1/2

= £y« 0 e (x) ¢ xE ) (0)) o(n ).

0
Thus define «a(x) =1 + x{fo'(x)/fo(x)}. Note that, under reasonable
assumptions on fo. conditions (2.2.1) and (2.3.1) are satisfied for
this fl' and so this "scale alternative" may be used in Theorems 2.2
and 2.3.

In this context, Theorems 2.2 and 2.3 are perhaps most vividly
illustrated by considering the problem of estimating a normal N(y,oz)
density using a nonparametric density estimator, as follows. Suppose wu
is known, but 02 is unknown. Estimate 02 using the sample variance
52, and take E to be the N(p.éz) density. Note that n—l/2 is the
order of magnitude of the distance between ;2 and 02, SO we are

-~

essentially in the context of the previous paragraph. Take h; (the
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bandwidth which minimizes d4(h,f)) as our estimate of h (the

f

bandwidth which minimizes 4(h,f)). Likewise, let h} be our estimate
of h_,. Then (h} - hf)/hf is of precise order n_l/lo. as indicated

f £
-1/2

by Theorem 2.2, and (h; - hf)/hf is of precise order n as

indicated by Theorem 2.3. This simple example brings home strikingly

the fact that, even in the presence o arametric knowledge about f, we

cannot hope to estimate hf with a relative error of less than n_l/lo.

The goal of estimating h is clearly much different, because in the

f
presence of such parametric knowledge we can achieve the usual
parametric rate of n_l/z.

However, the situation changes markedly if the unknown parameter is

one of location rather than scale. In the location-change case, fl(x)

may be represented as

1/2 1/

- -1/2 . , -1

fo(x + N ) = fo(x) +n fo (x) + O(n 7).

Hence, define a(x) = fo'(x)/fo(x). Note that conditions (2.2.1) and
(2.3.1) are not satisfied by this choice of «. Indeed, not only are

these assumptions not valid, but the conclusions of Theorems 2.2 and 2.3

fail. In particular, h may be chosen so that for any e > 0,

max  P.(|h - hy|/h, > en /10 4o
fe{fo,fl}
and
- -1/2
max Pf(lh - hf|/hf > en ) - 0.

€
f {fo.fl}

Again, these features are perhaps best brought out by considering
the problem of estimating a normal N(p,oz) density. On this occasion,

suppose p is unknown and az is known. Estimate p using the sample
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-~ -~

mean 4, and take f to be the N(u,oa) density. Then n Y2 s the

-~ .

order of magnitude of the distance between ux and p, and so we are in

~

the context of the previous paragraph. Let h;, hE be our parametric

-

estimates of hf, hf, respectively. Then hE = hf. so that our

estimate of h is error-free. However, it may be shown that

f
C - , . ~-3/5 , . ,
(hf*hf)/hf is of precise order n , which is considerably better

than the error of the order n—l/10 encountered in the scale-change

problem, and even better than the error n—l/2 which might have been
expected, but not quite error-free. It turns out that a relative error
of n—3/D is intrinsic to bandwidth selection for the ISE problem in

this setting, as the following result shows.

Theorem 2.4: Under the assumptions (2.1.1) - (2.1.6) and (2.3.1), for h

any measurable function of the data, .

—3/5) > D,

(2.4.2) lim liminf max Pf(]h - hfl/hf > en
e~+0 nwo  fe{f ,f_ )}
0’1
4(h,f) - 4(h. . f)

> en 875

(2.4.3) lim liminf max Pf{l -
€20 neo fe{fo,fl} A(hf,f)

o2

The proof of Theorem 2.4 is so close to the proof of Theorem 2.2
that it will not be given explicitly.

Finally we should mention the scale-change and location-change
versions of « discussed above may not be proper densities, since they
may violate the nonegativity part of condition (2.1.1). This in no way
invalidates our conclusions - a correction for positivity is of order

n 1, and could be included, if one wishes, by simply incorporating a
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term of order n-l. as in (2.4.1).

3 Bounds Involving Multiple Alternatives
3.1 Introduction and summary

There are two points at which deeper insight can be gained by
replacing the above two-alternative minimax results, by results which
make use of multiple alternatives. The first point is in establishing a
better bound on how well a bandwidth selector ﬁ may approximate hf,
the minimizer of the Mean Integrated Squared Error M(h,f), in
situations where the underlying density is not too smooth. The second
point is in strengthening Theorems 2.2, 2.3 and 2.4 by replacing p by
1 on the right hand sides of (2.2.2), (2.2.3), (2.3.2), (2.3.3),
(2.4.2) and (2.4.3).

When the underlying density is not too smooth, the lower bounds of
Theorem 2.3 may be sharpened. In such cases, the rates of convergence
depend on the amount of smoothness of the underlying density. To
quantify this in a form convenient for minimax lower bound results,
consider smoothness classes indexed by a parameter v 2 0. In
particular, given B > 0, let ¢ be the largest integer strictly less
than 2 + v, and define GU(B) to be the set of all probability
densities which vanish outside of (-B,B), have ¢ derivatives, and
satisfy

sup |f(c)(x) - f(e)(y)l / |x - y|2+u-e { B.

X,y

A minimax lower bound for the relative rate of convergence of h
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to hf, in terms of the smoothness index v, will be stated in Section

3.2. The issue of increasing p to 1 will be treated in Section

3.3.

3.2 Bounds in the Case of MISE
The minimax lower bound of Theorem 2.3 may be sharpened, when the

underlying density is not too smooth, to:

Theorem 3.2: Under the assumptions (2.1.5) and (2.1.6), for v > 0.

B >0 and h any measurable function of the data,

(3.2.1)  lim liminf sup P.(|h - b f/h. >en®) = 1,
€+0 nw  feG (B)
(24

M(a,f) - M(h_.,f)
f >en ®y - 1,

(3.2.2) lim liminf  sup Pf{i
€50 n-wo feGU(B) M(hf.f)

where

i}

fe) (1+4v) / 2(5+2v).

The proof of Theorem 3.2 will be given in Section 5.3.

Remark 3.2.1: It is important to note that Theorem 3.2 and Theorem 2.3
each provide useful information for different values of v, with v = 2
being the boundary point. In particular, for v > 2 we have p > 1/2,
and then the lower bound of Theorem 2.3 is more informative. On the
other hand, for v < 2 we have p < 1/2, so the present bound is more
useful.

Remark 3.2.2: In the case v = 0, the relative error bound of n_l/10
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for ﬁ, provided by Theorem 3.2, is known to be best possible (i.e. both
an upper and a lower bound). It is achieved by the window selected by
cross-validation (Hall and Marron 1987a).

Remark 3.2.3: The class of densities Gu(B) is actually far bigger
than is required to obtain the bound stated in the theorem. In
particular, in the proof a much smaller class (finite for each n) of
alternatives is constructed, and this is all that is necessary. The
more general result is not stated here because it involves the
introduction of considerably more notation, which has a tendency to
obscure the main point of this section.

Remark 3.2.4: If the kernel K 1is of order r (as discussed in Renark
2.2.4), then Gu(B) should denote a class of densities with r + v
"derivatives", instead of 2 + v as above. Then the only change to

Theorem 3.2 is that p becomes (1+4v)/2(2r+1+2v).

3.3 Probability One Bounds
In Theorems 2.2, 2.3 and 2.4 the probabilities p may all be
sharpened to 1 if a larger class of alternatives is used. A simple
way of constructing such a larger class is to consider all convex
combinations of the fo and f1 described above. In particular define
C(fO'fl) = {wfo + (14»)f1 :w e [0,1]).

Then, if the set of alternatives, (f f,}, is replaced by C(fO'fl)’

0’ "1
the values of p in Theorems 2.2, 2.3 and 2.4 may all be taken to be

1.
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This is intuitively clear, because the minimax bounds calculated in
these theorems come from the difficulty in using Xl....,Xn to choose

among the various possible density functions. If the class {fo, fl) is
enlarged by including convex combinations, then p, which is the
smallest probability of misclassifying the underlying density, becomes

larger. The limit of this process is the class C(fo, f.), and p = 1.

1

We do not include a specific proof of this fact, because the idea is the

same as that used to verify (1.2} in Stone (1980).

4. Proofs
4.1 Proof of Theorem 2.2

We prove only (2.2.2), since the extension to (2.2.3) may be

~

accomplished as in Hall and Marron (1987b, p. 171). Let h = hg be an

element of {hf » he } which minimizes |h - h| over those elements.
0 1

If f 1is either or f then

f0 1
-h

ln-hg] ¢ |h-h| + |h-h | < 2|n-ng).
Therefore result (2.2.2) will follow if we prove that
(4.1.1)  lim lim inf max pf(|h—ﬁf| > e n 310

€0 n—wo fe{fofl}

Define L(z) = -z K'(z) and
1

gh(x) {nh) ; L((x—Xi)/h}.

1

Arguing as in Hall and Marron (1987b, p. 169) we may deduce that

~

~ - T (2),*
(4.1.1) hf -h = 2¢(h,f)/hd (h ,f),

where ¢(h,f) = f(fh—gh)(f—f). where 4(2)(h,f) denotes the second

*
derivation of 4(h,f) with respect to h, and where h . lies between
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~

h and h_. It is relatively easy to prove, as in Lemmas 4.2, 6.1 and

f
6.2 of Hall and Marron (1987b), that
lim 1im inf min Pf(an‘l/5 Chy . hy ¢ bn %) - 1,
a+0,bwo o fe{fo,fl} 0 1
and for all 0 < a < b < o,
lim lim sup max  P.{ min |A(2)(h.f)| > A H—Z/s} = 0.
A0 n—° fe{fo,fl} he(an—l/o,bnnl/a)
Therefore result (4.1.1) will follow if we show that
(4.1.2) Llim lim inf max P.{ min le(h, £)] > en 910,
€0 n-¢° fe{fo,fl} hE(an—l/S.bn_l/s)
> p.
If £ # f then
leh.£)] = |F(f g ) (f-6)] = n YZ|0(f g )af |
’ h ®h h ®h ol

And by the Neyman-Pearson lemma,

max  PL(f £ £) > (1/2){P. (f=f.) + P, (£=f.)}
fe(f,.f ) f fo 1 ], o

2 (1/2){Pfo(f=f1) + Pfl(f=f0)}.

where f is the likelihood ratio rule for deciding between f and

0
fl' Now,
Py -1/2
P, (f=f.) = P_. [Z log{l + n a(X.)} > 0]
f 1 f . i
0 0i
=P {n_l/2 Z a(X,) - 1 n_1 z a(X.)2 + 0 (1) > 0}
f ) i 2 . i p
0 i i
- 1 - ¢(a/2) = P,
and similarly Pf (f—fo) -+ p. Therefore
1
(4.1.2') lim inf max Pf(f#f) > p,

Nwo fe{fo,fl}

and so (4.1.2) will follow if we prove that
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(4.1.3)1im lim inf max  P.{ min |I(Eh—éh)af0| > e n—2/5}
€0 n—»o fE{fO.fl} he(an—l/s,bnﬂl/s) ‘
= 1. )
Put A = K-L. Then
(4.1.3") S = S(h) = f(fh—gh)afo
= (nh:_1 z fA{(x—Xi)/h}a(x)fo(x)dx
i
- atlszy A(Y)a(X +hy)f (X +hy)dy.
i
Now
(4.1.3'") Ef(S) = f A(y)dy [ a(x+hy)fo(x+hy)f(x)dx
= 02(5 y3a(y)dy} [f{(d/dx)z(a(x)fo(x)}fo(x)dx] + o(h3n?n V3

- n% + o(n®+n®n71/2)

say, where ¢ # 0. (Here we have used (2.2.1) and the fact that
IylA(y)dy =0 for j =0,1.) By an inequality for sums of independent

random variables (Burkholder, 1973, p. 40),

max max  E ([s(h)-Es(m)]*} ¢ c(a.b.r)n’” .

he(an-l/s.bn_l/s) fe{fo,fl}
for all r > 1. Therefore if ﬂn is any set of elements of

-1/5 -1/5
n , bn

b } containing no more than nd elements for any fixed

(a

d > 0, we have for large n,

min Pf{min [s(h)]| > (1/3)a2|c]n_2/5}
fFe{f,.f,} hex
2, , -2/5
> 1 - Z max Pe{|S(h)-ES(h)| > (1/3)a%|c|n }
hex ~fe{f .t }
> 1 - o(nd(n?/5n71/2y2ry |

as n - «, provided we choose r > 5d. Result (4.1.3) now follows via

the continuity argument of Hall and Marron (1987b, p. 175). This
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completes the proof of Theorem 2.2

4.2 Proof of Theorem 2.3

Let S be as at (4.1.3'). If (2.3.1) holds then, noting that
f yjA(y)dy =0 for j =0,1,3, we deduce from (4.1.3'') that
E. (S) = 0(h°) = 0(n ') and

. (5) = ninTVRUyBarydy) F(d/dn) Pa(xf (x)ha(x) £ (x)dx

. O(h°+h4n_1/2)
- 020 V2 2ry3R(v)dy) T ((@/ana (0 (x))2ax « o).
Also, since
2,. 2 . 3
J A(y)a(x+hy)f,(x+hy)dy = h Uy K(y)dy}(af )" (x) + o(h™),
then by the central limit theorem for sums of independent random
variables,
P_(S-ES ¢ hzn—l/zz) - P(z/7)
f
for f = fo or f1' where
2 2 2 2
77 =2 {§ yK(y)dy} J faf )t (x)}7 £ (x)dx

We may deduce from these results and the continuity argument of Hall and

Marron (1987b, p. 175) that

lim lim inf min P { min [s(h)] > e n—9/10} = 1.
€0 N-yo fe{fo,fl} he(an_l/s,bn—l/s)
This establishes (4.1.3), with n~2/5 replaced now by n %1% rracing

through the argument preceding that result we deduce (2.3.2), and we may
obtain (2.3.3) by arguing as in Hall and Marron (1987b, p. 171). This

completes the proof of Theorem 2.3
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4.3 Proof of Theorem 3.2

As for Theorems 2.2 and 2.3, we prove only (3.2.1). The
circumstance v = 0 is similar in all essential details to v > 0, so
we assume VvV > 0.

The first step is to construct a class of densities which are "hard
to distinguish”, yet at the same time "far apart”. Following the ideas
of Stone (1982), let ¥ be a symmetric, six times differentiable
function on (-%,®), vanishing outside (-1/4,1/4). Put m = n_l/(5+2u).
let r = {rv: v=1,...,m} be a sequence of O0's and 1's, let g, be
a density which is constant at a nonzero value on (-1/2,3/2) and
vanishes outside (-1,2), and define
, = B mxov/m)y, o

m

f(x) = f(x|r) = go(x) + Z rvvv(x),
v=1

5

and
F = {f(x]r): 7 is a sequence of O0's and 1's}.

Note that for large n, ¥ is a set of densities vanishing outside
(-1,2) and having uniformly continuous bounded (2+v)'th derivatives.
Note that many related constructions are possible here. We choose this
one, because it contains the necessary features with as little overhead,
in terms of notation and length of proof, as possible.

Let h = hZ minimize |ﬁ—h;] over all f e ¥, Then

f
|h—hf| < 2|h—hf| for all f € ¥, and so it suffices to prove that
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-(1/5)-(1+4v)/2(5+2v)

(3.1.1) lim lim inf max Pf(lh - hf[ > en ) = 1.

€0 n—o fe¥

Our next step in establishing (3.1.1) is to develop an analogue of
(4.1.1%).

Let f, g be densities, and observe that

M(h.g) = Eg(%h—g)2
- f Eg(%h—f)2 .2 I(EgEh~f)(f-g) v I(f-g)?
- W(h£) - J(EE)(£,-0)7 + 2T (E S -0 (£-g) ¢ J(E-p)%.
Differentiating with respect to h we obtain
y g = P - 2h"1f(Ef~Eg)(§h—éh)(Eh—f)
2 nTUE (8, g (g-6),

where M(j)(h,g) denotes the jth derivative of M(h,g) with respect to

h and where gh was defined in Section 4.1. Therefore with

q(h.f.g) = S ((E<E)(f g )(f,-f) + E(f, g )(g-f)}.
we have
WY gy = ¥ he) + 2n7 g, e.g).
Taking (h,f.,g) = (hf 'f'fl) for fl € ¥, we find that
1
o = MV, ey = wPn, 6y« 20, T, Le£)
f 1 f f f 1
1 1 1 1
- vVm ey = P, 1)+ (mn ) P T,
f f f°f
1 1
where h+ lies between hf and hf . In consequence,
1
h, -h, = 27(h, ,£.f.)/h, M3 ("),
f t f 1 f
1 1 1
whence
(4.3.2) h, - h = 2an(h,£,£)/mM 3 (0", £),
where h+ lies between h and h,. This is the desired analogue of

4
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(4.1.1).
o

Arguing as in the proofs of Lemmas 4.2, 6.1 and 6.2 of Hall and

Marron (1987b) we may show that for sufficiently large n,.
0 < inf nl/shf < sup nl/shf < o,
nzno,fe¥ nZnO,fe¥

and for any 0 < a < b < and some A = A(a,b) > 0,

2) -2/5
n .

sup IM( (h,£)] < A

he(an_l/o,bn_l/o),fe?

In view of these results and (4.3.2) we see that {4.3.1) will follow if
we prove that for each 0 < a < b < ¢,

(4.3.3) lim lim inf max P{ min |7(h,£.£)] >

¥ -1/5 __-1/53
e=0 n—«e fe he (an l/a,bn 1/0)

(4/5)-(1+4v)/2(5+2v)

en } = 1.

The next step is to simplify q(h.f,fl). Write

f=Z7 v and f =2 71_ 17 ,
v Vv 1 1v v

. ’ o

and let A be as in Section 4.1. Define

J FPI-n"Y) £F AMWR(X) ${y + hn(w+x) }dwdx

[}

- J A(w)P(y+hmw)dw]dy,

not depending on v. Then:

-1
LEMMA. 7(h.£,£) =n " J i(rv—rlv)
PROOF OF LEMMA. Observe that
P 2.-1
Eg{fh(fh-gh)} = (nh") Eg[K{(x-X)/h}A(X-X)/h}]

-1 - ~ -~
¢ (1m0 ) (B £ )E () g, ).

Therefore
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(4.3.4) n(h,£.£) = ! ((Ef-Efl)(fh-gh)(fh-f) + Efl(fh—gh)(fl-f)}

! [(nhz)'l(sf-af ) K{(x-X)/h}A{(x-X)/h}
1

1 1
S (B (£ BT ¢ (£, (8]

-1 ~ - - ~
f [(1-n )((Ef—Efl)fh Ef(fh Ef(fh—gh)

r(BpBp )(fy B (F)) = (Eg*Bp )£,y )f
P (£ 08, (f7g,)]
)m—(3+V)I

= Z(r -7
( v 1lv v

v

where

3+v
J

y =M c T WU [
\

- A(x-y)/h) B, (£,)(0)) - b1 A{(x-y)/h}E(x) Jdx
1

) R((x-9) /RE (£, -, ) (x)

(4.3.5) 1

- Efl(fh-gh(y))dy

Ry (0 [0 ) KE (£ g ) (n 1y + hx)

+ A(X) Ef (Eh)(m_ly + hx)} - A(x)f(m—ly + hx)]dx
1

Eflifh—gh)(m_lv))dy.

If ye€v+ (-1/4, 1/4), if K vanishes outside (-1/4,1/4), and

if x 1is in the support of K, then for n so large that hm < 1/4,

ntly A{(m-ly + hx-w)/h}f(w)dw
-1

N -1
Ef(fh—gh)(l y + hx)

P Tu fc
u u
T, fcv A((m_ly + hx-w)/h}y (w)dw

A{(m—ly + hx-w)/h}7 (w)dw

= h‘l

n(3*Y) Ty I A(w) P{y-v + hm(x-w))}dw .



Similarly,

E, (f,(n 'y + hx) n V) R(w) Ply-vehm(x-w)}dw,

1 1lv
f(m‘ly + hx) n~(27V)

m—(2+v)

1]

rv?(y—v+hmx),

Ee (£,-g,)(m y) =

T J A(wW)P(y-v-hmw)dw.
1 v

Substituting into (4.3.5) we obtain

B, = n 2T o) (T (e K(x) T AGP(y+hm(x-w) ) dw

STy A(x) [ K{w)?(y+hm(x-w))dw}

- T, A(X)P{y+hmx)]dx - Ty J A(w)J(y-hmw)dw

= m_(2+v)(rv + rlv)J,

where J is as defined prior to the statement of the lemma. We may now

deduce from (4.3.3) that
-1 2 .2 -1
q(h.f.fl) = n "~ J i (rv-rlv) = n "~ J i (TV T, ),

completing the proof of the lemma.

Arguments in Hall and Marron (1987b, pp. 172-176) now provide the

following analogue of their Lemma 4.1: for each el > 0 there exists

(n)} with f( ) € ¥ such that, for large n,

e2 > 0 and a sequence ({f

(4.3.6) Pf { min [q(h.f( f)| > e n IJ|m } o> 1 - e,
(n) he(an—l/s bn—1/5)

Now,

(4.3.7) J = fe(y)(1-n Y

15 A(OK(x) (4(hm)2(w+x) % (y) + (1/24) (hm)(wex) (4 (y) }dwdx

- £ AGw) (%(hm) 2w (y) + (1/24) (hm) Wt (D) (y)}dwldy + of(hm)5)

t, (J ##") (hm) 2 + (1/24)t,(J 2y am)? + of(m)® + n Y m) %)
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where

5J A(w)K(x)(w+x)2dwdx -J A(w)wzdw = 0,

(ad
1]

If A(w)K(x)(w+x)4dwdx -7 A(w)w4dw

cr
H

6 {fsz(w)dw}{fsz(x)dx} 2 0.

In consequence,
3= enegen?mm? «ogm),
and so the desired result (4.3.3) follows from (4.3.6). This completes

the proof of Theorem 3.2.

Remark 4.3.1: To extend this proof to the case of a kernel of order r,
as discussed in Remark 3.2.4, the only changes required in the above

proof are

n-l/(2r + 1 + ZU)'

and the consequences of this.



References

Burkholder, D. L. (1973), "Distribution function inequalities for
martingales," Annals of Probability, 1, 19-42.

Devroye, L. and Gyorfi, L. (1984). ANonparametric Density Estimation:
The Ll View. Wiley, New York.

Hardle, W., Hall, P. and Marron, J. S. (1988), "How far are
automatically chosen regression smoothers from their optimum?," to
appear with discussion, Journal of the American Statistical
Association.

Hall, P. and Marron, J. S. (1987a), "Extent to which least-squares
cross-validation minimises integrated square error in nonparametric
density estimation," FProbabilily Theory and Related Fields, 74,
567-581.

Hall, P. and Marron, J. S. (1987b), "On the amount of noise inherent in
bandwidth selection for a kernel density estimator, " Annals of
Statistics, 15, 163-181.

Hall, P. and Marron, J. S. (1987c), "Estimation of integrated squared
density derivatives", Statistics and Probability Letters, 6,
109-115.

Marron, J. S. (1988), "Automatic smoothing parameter selection: A
survey", North Carolina Intstitute of Statistics, Mimeo Series
#1746,

Silverman, B. W. (1986), Density Estimation for Statistics and Data
Analysis, Chapman and Hall, New York.

Stone, C. J. (1980), "Optimal convergence rates for nonparametric
estimators," Annals of Statistics, 8, 1348-1360.

Stone, C. J. (1982), "Optimal global rates of convergence of
nonparametric regression," Annals of Statistics, 10, 1040-1053.



