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Lower Bounds for Comparison Based Evolution Strategies using

VC-dimension and Sign Patterns∗

Hervé Fournier† Olivier Teytaud‡

January 4, 2010

Abstract

We derive lower bounds on the convergence rate of comparison based or selection based
algorithms, improving existing results in the continuous setting, and extending them to
non-trivial results in the discrete case. This is achieved by considering the VC-dimension
of the level sets of the fitness functions; results are then obtained through the use of
the shatter function lemma. In the special case of optimization of the sphere function,
improved lower bounds are obtained by an argument based on the number of sign patterns.

Keywords: Evolution Algorithms; Convergence Speed; VC-dimension; Sign Patterns; Sphere
Function.

1 Introduction

Evolution strategies (ES), defined by Rechenberg [21], are a family of optimization algorithms
with nice robustness properties [11]. They are often termed “order 0” methods as, in the
continuous domain, they do not use gradients or Hessians. Interestingly, most ES are in
fact a special case of order 0 methods: in addition to not using gradients, they only use
comparisons between fitness values and not the fitness values themselves. Using comparisons
only makes an important difference since it is known that, even without gradient, a super-
linear convergence can be obtained when using fitness values – see e.g. [3], using surrogate
models for a super-linear convergence rate.

Comparisons allow the selection of a subset of the points, but they can also be used for
ranking either these selected individuals or the whole population. Examples of algorithms
using more information than just the selection of a subset are some roulette-wheel algorithms
(stochastic sampling [5] and rank-based fitness assignment [4, 29]), evolution strategies using
weighted recombination [13, 1] or breda [11].

Hence, the wide family of order 0 methods can be divided into (i) algorithms using fitness
values; (ii) algorithms using the full ranking of all the population; (iii) algorithms using the
full ranking of selected points; (iv) algorithms using only the set of selected points. In cases

∗A preliminary version of this paper appeared in PPSN 2008 [27].
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(ii) to (iv), the branching factor of the algorithm, i.e., the number of possible outcomes for
the information extracted from the population in one iteration, is finite and bounded.

This fact has been used in [26] in order to provide lower bounds that match some upper
bounds known for evolutionary algorithms [9, 2, 23]. The optimality of this comparison-
based principle for some robustness criterion was shown in [11] – see also [4, 29, 5]. The tools
provided in [26] for proving lower bounds for evolutionary algorithms are interesting, but, as
pointed out by the authors, the bounds for the (µ, λ)-ES are far too small for µ > 1 and λ
larger than the dimension, while the discrete case provides essentially trivial results. In this
work, we present improved lower bounds on the convergence rate of evolution strategies of
type (µ +, λ)-ES in terms of the VC-dimension of level sets of the fitness functions. In the
special case of optimization of the sphere function, improved lower bounds on the convergence
rate of evolution strategies are presented; they are obtained by bounding the number of sign
patterns realized by a system of equations.

We now give some elements of comparison with existing results. As explained above, the
present work builds on [26], where the branching factor was introduced for the analysis of
evolutionary algorithms; results obtained here are improved in the case of families of fitness
functions with bounded VC-dimension. The first lower bounds for some evolutionary algo-
rithms in continuous domains were provided in [17, 15, 16]. The present paper extends these
results by considering a wider family of evolutionary algorithms – our analysis encompasses
all (µ, λ)-ES and (µ + λ)-ES. We also generalize existing results in the discrete case by con-
sidering arbitrary values of parameters λ and µ, and improve previous results from [10] in
the special cases of (1 + λ)-ES or (µ + 1)-ES – a detailed comparison with state of the art is
provided within the paper regarding these cases. We also remark that [25, Theorem 2], which
is a complexity lower bound for a variant of particle swarm optimization, is included in the
main theorem of [26].

The paper is organized as follows. Basic definitions and terminology of evolution strategies
we consider are described in Section 2. Lower bounds on (µ +, λ)-ES based on the branching
factor, obtained in [26], are recalled in Section 3. Improved lower bounds on (µ +, λ)-ES in
terms of the VC-dimension are presented in Section 4. The special case of the sphere function
is studied in Section 5. In the case of full ranking algorithms, we show that an argument
based on the number of sign patterns can yield better bounds than the one obtained by
VC-dimension arguments. We also present a simple algorithm based on full ranking, which
permits an almost linear speed-up when the size of the offspring is linear in the dimension.
Final remarks are presented in Section 6.

Notations. In all the paper, log(x) denotes the logarithm with basis 2, i.e. log(2) = 1.
The set of integers {1, 2, . . . , n} is denoted by [[1, n]]. The notation | · | is used to denote both
the cardinal of a set and the length of a vector (i.e., |(x1, . . . , xn)| = n). At last, ‖x‖2 denotes
the Euclidean norm of the vector x: that is, ‖(x1, . . . , xn)‖2 = (x2

1 + . . . + x2
n)1/2.

2 Evolution Strategies of type (µ +, λ)

This section is devoted to a formal definition of algorithms of type (µ +, λ) – evolution strate-
gies of type (µ +, λ), or (µ +, λ)-ES – considered in this paper. We refer the reader to Beyer
and Schwefel [7] for a comprehensive introduction to evolution strategies.

The aim of (µ +, λ)-ES is to find the minimum of a real function f , called the fitness
function, defined over a domain D. These algorithms work with comparisons only: given
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two points x, y ∈ D, they use only the sign of f(x) − f(y). More precisely, given some
points z1, . . . , zp ∈ D, these algorithms are given (possibly partial) information on the signs
of f(zi) − f(zj), for all 1 6 i < j 6 p. The exact information on this sign vector these
algorithms have access to depends on the specific type of algorithms considered. Of course
these algorithms are not required to work for a single fitness function, but for a whole family
of fitness functions. In the following, we denote by F this set of fitness functions.

In the rest of the paper, unless otherwise explicitly stated, we assume equality of fitness
values f(x) = f(y), for two points x and y generated at any epoch, never occurs. This is a
reasonable hypothesis in the continuous setting (e.g., when D = [0, 1]d) where this assumption
almost surely holds for many combinations of algorithms and fitness functions. We present a
way of handling the general case in Section 4.6.

Let λ and µ be two integers. A Selection Based (SB-(µ +, λ)-ES) is a randomized algorithm
working as follows. Its outcome is a sequence of approximations of the optimum, as proposed
by the proposal function. There is a set I of internal states. The algorithm starts in the initial
state I0 ∈ I returned by the function initial state. At each iteration, the algorithm consists
of the following three successive steps. First generate a set of λ points, called the offspring.
Then select only the µ best ones, i.e. the µ points with lowest fitness values; in the case of
an SB-(µ, λ)-ES, the points generated at previous stages are forgotten and this selection is
performed only among the offspring, while an algorithm of type SB-(µ + λ)-ES selects the µ
best points among the offspring and the points selected at the previous step (hence these µ
selected points are always the µ points with lowest fitness values found so far). Finally, the
internal state In is updated. (Notice that µ 6 λ must hold in the case of an SB-(µ, λ)-ES.)

Algorithm 1 Selection Based (µ, λ)-ES (resp. Selection Based (µ + λ)-ES). Framework for
evolution strategies based on selection, working on a fitness function f . The random variable
ω is a random seed. An algorithm matching this framework is obtained by specifying the
distribution of ω, the space of states, and the functions initial state, generate, update and
proposal.

Initialization: I0 ← initial state(ω); S0 ← ∅; n← 0
while true do

n← n + 1
Generation step : On ← generate(In−1) (i.e. generate an offspring On of λ distinct points)
En ← On (resp. En ← On ⊕ Sn−1)
ℓ← min(µ, |En|)
Selection step: vn ← select(En, f)

The vector vn = (i1, . . . , iℓ) is defined by:

{

1 6 i1 < i2 < · · · < iℓ 6 |En|
for all j and k, if j ∈ vn and k 6∈ vn, then f(En,j) < f(En,k)

Update the internal state: In ← update(In−1, En, vn)
Sn ← (En,i1 , . . . , En,iℓ

)

x
(f)
ω,n ← proposal(In)

end while

General outline of SB-(µ, λ)-algorithms (resp. SB-(µ + λ)-algorithms) is summarized in
Algorithm 1. In this algorithm (and Algorithm 2), the concatenation of the two vectors
x = (x1, . . . , xk) and x′ = (x′

1, . . . , x
′
ℓ) is denoted by x⊕ x′ = (x1, . . . , xk, x

′
1, . . . , x

′
ℓ); we also

use the shortcut v ∈ (x1, . . . , xk) to express that there exists i ∈ [[1, k]] such that xi = v.
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Let us detail how the selection step is performed. If En = (z1, . . . , zp) is the vector of
points considered at step n (either En = On in the case of SB-(µ, λ)-ES or En = On ⊕ Sn−1

in the case of SB-(µ + λ)-ES), the function select returns a vector of µ distinct integers
vn = (i1, . . . , iµ) such that:

{

i1 < . . . < iµ
for all j ∈ {i1, . . . , iµ} and k ∈ [[1, p]] \ {i1, . . . , iµ}, f(zj) < f(zk)

Notice that the length of the vector vn is equal to µ except maybe during the first few
iterations of the algorithm in the case λ < µ: This explains the use of the auxiliary variable
ℓ in Algorithm 1.

Algorithms with the “+” are usually termed elitist ; this means that we always keep the
best individuals. Algorithms with the “,” are termed non-elitist.

Finally, we would like to explain a generalization of SB-(µ +, λ)-ES, called Full Ranking
(µ +, λ)-ES. Instead of just giving the best µ points (i.e., the µ points with the lowest fitness
values), we can consider a selection procedure which returns the best µ points ordered with
respect to their fitness: the algorithm knows which selected point is the best, which point is
the second best, and so on.

Algorithm 2 Full Ranking (µ, λ)-ES (resp. Full Ranking (µ + λ)-ES). Framework for evolu-
tion strategies based on full ranking, working on a fitness function f . The random variable ω
is a random seed. Compared to Algorithm 1, the vector of integers vn obtained at the selec-
tion step is now ordered with respect to the fitness values of points from En; this framework
is thus more general.

Initialization: I0 ← initial state(ω); S0 ← ∅; n← 0
while true do

n← n + 1
Generation step : On ← generate(In−1) (i.e. generate an offspring On of λ distinct points)
En ← On (resp. En ← On ⊕ Sn−1)
ℓ← min(µ, |En|)
Selection step: vn ← select(En, f)

The vector vn = (i1, . . . , iℓ) is defined by:







i1, . . . , iℓ ∈ [[1, |En|]]
f(En,i1) < f(En,i2) < · · · < f(En,iℓ

)
for all j 6∈ vn, f(En,iℓ

) < f(En,j)

Update the internal state: In ← update(In−1, En, vn)
Sn ← (En,i1 , . . . , En,iℓ

)

x
(f)
ω,n ← proposal(In)

end while

The outline of these algorithms is summarized in Algorithm 2. More precisely, the selection
step described in this algorithm works as follows. Given the vector of points En = (z1, . . . , zp)
considered at step n, the function select returns a vector of µ distinct integers vn = (i1, . . . , iµ)
such that:

{

f(xi1) < . . . < f(xiµ)
for all j ∈ [[1, p]] \ {i1, . . . , iµ}, f(ziµ) < f(zj)

(Once again, the length of the vector vn may not be equal to µ at the beginning of the
algorithm.)
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Note that both Algorithms 1 and 2 define a class of algorithms: in order to obtain an
algorithm, one has to specify the distribution of ω, how the offspring is generated (function
generate), the space of states I as well as the functions initial state and update, and finally
the function proposal. Throughout the paper, we assume that all functions involved in these
algorithms are measurable. A typical case is retrieved when the offspring is randomly and
independently drawn according to a Gaussian distribution, with parameters (mean, variance
and covariances) depending on the internal state of the algorithm.

Finally, let us remark that the whole source of randomization in the class of algorithms
defined in this section is given by ω. Functions involved in these algorithms, such as the one
generating the offspring, do not explicitly depend on the random seed ω in our presentation;
this is because the whole source of randomization can be held in the random state I. Let us
also notice that ω is not necessarily a real random variable: for example, ω can be chosen to be
a countable sequence of independent random variables uniform in [0, 1]. Hence, randomized
algorithms which draw a finite number of real numbers at each step of computation, as it
happens in the Gaussian case discussed above, are easily seen to fall into the setting presented
here.

3 Branching factor and convergence rate

We consider a (possibly discrete) domain D ⊂ Rd and a norm ‖·‖ on Rd. For ε > 0, we define
N(ε) to be the maximum integer n such that there exist n distinct points x1, . . . , xn ∈ D
with ‖xi − xj‖ > 2ε for all i 6= j. In particular, N(ε) = |D| when ε is small enough in the
case of a finite domain D, and log N(ε) ∼ d log(1/ε) when ε→ 0 if the domain D is bounded
with non-empty interior.

If each function f ∈ F has one and only one optimum f∗ = arg minx∈D f(x), for any
given optimization algorithm as in Algorithm 2, and for ε > 0 and δ > 0, we define nε,δ be
the minimum number n of iterations such that with probability at least 1− δ, an optimum is
found at the n-th iteration within distance ε; i.e., nε,δ is minimal such that for all n > nε,δ

and for all f ∈ F ,
Pω[‖x(f)

ω,n − f∗‖ < ε] > 1− δ

where Pω is the probability operator on ω and x
(f)
ω,n is the n-th point given by the proposal

function in Algorithms 1 and 2.
In order to state lower bounds on the convergence rate of evolution strategies obtained

in [26], we first need to introduce a couple of definitions. Consider an algorithm of type
(µ +, λ)-ES working over a set of fitness functions F . Let us define Ln(ω), the number of
different paths followed by the algorithm on the random seed ω after n steps of computation
when the function f runs over F . More precisely,

Ln(ω) = |{(I0, I1, . . . , In) : f ∈ F}| ,

where the states Ii in the sequence above implicitly depend on both the function f and the
random seed ω.

The branching factor K of this algorithm is defined as

K = sup
E
|{select(E, f) : f ∈ F}|,

where the supremum holds for:

5



• E any set of λ points from D in the case of SB-(µ, λ)-ES or Full Ranking (µ, λ)-ES;

• E any set of µ+λ points from D in the case of SB-(µ+λ)-ES or Full Ranking (µ+λ)-ES.

Of course the branching factor implicitly depends on the algorithm and on the set of fitness
functions F .

Notice that the number of different paths followed by some algorithm can be bounded in
terms of the branching factor as follows: Ln(ω) 6 K ·Ln−1(ω) for all n > 0. Since the number
of different points proposed after n steps of computation, when f runs over F , satisfies

|{x(f)
w,n : f ∈ F}| 6 Ln(ω),

the algorithm converges slowly if Ln(ω) is small. This is formally quantified by the following
result from Teytaud and Gelly [26], restricted here to our purpose, relating the convergence
rate to the branching factor of a (µ +, λ)-algorithm.

Theorem 1 (Lower bound on the convergence rate of (µ +, λ)-ES.) Consider a Full
Ranking (µ, λ)-ES or (µ + λ)-ES, as defined in Algorithm 2, and a set F of fitness functions
on domain D, i.e. F ⊂ RD, such that any fitness function f ∈ F has only one min-argument
f∗, and such that {f∗ : f ∈ F} = D. Let ε > 0 and 0 6 δ < 1. Let Ln(ω) be the number of
different paths (when the function f runs over F) followed by the algorithm on the random
seed ω. Then

Eω[Lnε,δ
(ω)] > (1− δ)N(ε).

In particular, if K denotes the branching factor of the algorithm, then

nε,δ >
log(1− δ)

log K
+

log N(ε)

log K
.

The assumption {f∗ : f ∈ F} = D simply means that the algorithm can’t assume that the
optimum of the fitness function is in a restricted subdomain of D. This is a natural assumption
since it is satisfied as soon as the set of fitness functions is closed under translations. However,
cases where {f∗ : f ∈ F} ( D can also be considered by defining N(ε) to be the maximum
number of optima of fitness functions with mutual distances at least 2ε.

The convergence rate is defined as

CR(µ,λ)
ε = exp

(

− log N(ε)

dnε, 1
2

)

.

The constant 1
2 used here is arbitrary; results are essentially preserved with other constants

(see the dependency in δ in Theorem 1). The faster the algorithm, the lower the convergence
rate. Therefore, Theorem 1 provides a lower bound on the computational cost, and a lower
bound on the convergence rate.

Theorem 1 can be reformulated as follows. Consider a (µ +, λ)-ES satisfying the hypothesis
of Theorem 1. Let α(ε) = (1 − 1/ log N(ε))−1. (We shall use this notation throughout the
paper.) Then

nε, 1
2

>
log N(ε)

log K · α(ε)
. (1)
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In terms of the convergence rate, this gives

CR(µ,λ)
ε > exp

(− log K · α(ε)

d

)

. (2)

At last, please note that the expected runtime for reaching approximation error ε is at least
1
2nε, 1

2

; therefore, results on nε, 1
2

also provide lower bounds on the expected runtime.

4 Bounds on the convergence rate using VC-dimension

Lower bounds on the convergence rate of evolution strategies can be obtained from Equation 2
(Section 3) as soon as an upper bound on the branching factor K is known. Therefore,
bounding the branching factor K is crucial.

The first solution for bounding the branching factor has been published in Teytaud and
Gelly [26], using the fact that the number of subsets of size µ of a set of λ points (and thus
the branching factor K) is at most

(λ
µ

)

6
( λ
⌊λ/2⌋

)

.
This surely holds, but it is a worst case on all possible selections. If we have the additional

hypothesis that the fitness functions are reasonable, many subsets of size µ of a subset of size
λ cannot be realized by a selection step. As an example, consider the case of a selection
based algorithm with λ = 6 and µ = 3, optimizing the set of sphere functions F = {x 7−→
‖x−x0‖2 : x0 ∈ R2} in the plane. Consider the offspring O = {a, b, c, d, e, f} ⊂ R2 as shown
in Figure 1. The subset {a, b, c} cannot be selected: indeed, it should correspond to the
three points among O with the smallest fitness values with respect to some fitness function
x 7−→ ‖x − x0‖2. This means there should exist a disk D centered on x0 in the plane such
that D ∩ O = {a, b, c}: this is not possible since d lies in the convex hull of {a, b, c}. Other
triplets such as {a, c, f} cannot be selected either for the same reason. Of course this is not
specific to the configuration of points presented in Figure 1: taking this effect into account
gives a smaller bound on the branching factor.

D

a
e

f

d

c

b

Figure 1: The set {a, b, c} cannot be selected when optimizing sphere functions.

The phenomenon depicted on the example above is precisely quantified in the general
case by the theory of VC-dimension and the shatter function lemma (also known as Sauer’s
lemma). In this section, we show how a VC-dimension hypothesis on the fitness functions
permits improved lower bounds on the convergence rate of (µ +, λ)-ES.

This section is organized as follows. We first recall basic facts on VC-dimension in Sec-
tion 4.1. The VC-dimension hypothesis we need on fitness functions is stated in Section 4.2,
where a summary of results obtained in this section is given. Next three subsections are
devoted to the proofs of the main results. In Section 4.3, we use the VC-dimension argu-
ments in order to obtain lower bounds on the convergence rate of Selection Based (µ, λ)-ES.
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Section 4.4 is devoted to the case of non-elitist full ranking strategies. We explain how these
bounds can be adapted to the case of elitist algorithms in Section 4.5. Finally, a method to
handle the case of equality (i.e., when it is possible for two generated points x and y to satisfy
f(x) = f(y)) is presented in Section 4.6.

4.1 VC-dimension and the shatter function lemma

We now briefly recall the definition of VC-dimension and the shatter function lemma [28, 24]
– our presentation is based on [18]. A set system on a set A is a family S of subsets of A. For
B ⊆ A, we define the restriction of S to B as S|B = {S ∩ B : S ∈ S}. The VC-dimension
of the set system S defined over A is defined as sup{|B| : S|B = 2B} where 2B denotes the
power set of B; in other words, it is the size of the largest subset B of A such that any subset
of B can be obtained by intersecting B with an element of S. Given a set system S over A,
the shatter function πS is defined by

πS(m) = max

{∣

∣

∣

∣

S|B
∣

∣

∣

∣

: B ⊆ A, |B| = m

}

.

Thus πS(m) is the maximum number of different subsets of A which can be obtained by
intersecting a single subset of size m of A with all elements of S. We next recall the following
lemma which gives an upper bound on πS in terms of the VC-dimension of S.

Lemma 2 (Shatter function lemma) For any set system S of VC-dimension d, then for
all integer m, it holds that πS(m) 6

∑d
i=0

(

m
i

)

.

At last, let us recall the following classical bound [8] which is valid whenever d > 3:

d
∑

i=0

(

m

i

)

6 md. (3)

Note that the trivial bound
∑d

i=0

(m
i

)

6 2m is tight when m 6 d. The interesting case happens
when m is large with respect to the VC-dimension d: the bound stated in Equation 3 becomes
polynomial in m in this case.

4.2 The VC-dimension hypothesis on fitness functions

Given a function f defined over a domain D and r > 0, let

Bf,r = {x ∈ D : f(x) < r}.

We define the level sets LF of a set of functions F defined over D as

LF = {Bf,r : f ∈ F , r > 0}.

In this section, we establish lower bounds on the convergence rate of algorithms optimizing
F in terms of the VC-dimension of the level sets LF .

The intuitive idea in the case of selection based algorithms is the following. The set of
points selected from the offspring O at some step is necessarily the trace on O of some level
set, i.e. it belongs to {O ∩ B : B ∈ LF}. If the VC-dimension of LF is finite, the shatter
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function lemma provides a bound on the possible number of subsets selected, and thus on the
branching factor, which improves on the näıve combinatorial bound.

Lower bounds on the convergence rate of evolution strategies obtained in this section are
summarized in Figure 2. (We recall that α(ε) = (1− 1/ log N(ε))−1 – see Section 3.) In the
rest of this section, we shall state bounds for set systems of VC-dimension at least 3. However,
the case of VC-dimension smaller than 3 can be handled in a similar way: the bound stated
in Equation 3 has to be replaced with

∑d
i=0

(

m
i

)

6 md + 1.

Lower bound on CR
(µ,λ)
ε

Selection Based (µ, λ)-ES exp
(

−V
d log λ · α(ε)

)

Selection Based (µ + λ)-ES exp
(

−V
d log(µ + λ) · α(ε)

)

Full Ranking (µ, λ)-ES exp
(

−V
d (4µ + log λ) · α(ε)

)

Full Ranking (µ + λ)-ES exp
(

−V
d (4µ + log(µ + λ)) · α(ε)

)

Figure 2: Lower bound on the convergence rate when the level sets of fitness functions have
finite VC-dimension V in Rd.

We now give a couple of applications based on classical set systems of bounded VC-
dimension in Rd [8]. Axis-parallel hyper-rectangles have a VC-dimension bounded by 2d.
Sphere functions in Rd (for the Euclidean norm) have a VC-dimension equal to d + 1. The
VC-dimension of ellipsoids in Rd is bounded by d(d + 1)/2 + d. More generally, subsets of Rd

defined by polynomial inequalities involving a finite number of real parameters, and Boolean
combinations of these, have a finite VC-dimension [18, Chapter 10.3]. Hence, any algorithm of
type (µ +, λ)-ES optimizing a set of fitness functions with these level sets on a domain D ⊂ Rd

has a convergence rate which satisfies the bounds given in Figure 2. Let us remark that the
sphere functions, i.e., the set of fitness functions F = {fc : c ∈ Rd} where fc(x) = ‖x− c‖2,
are a special case of functions with spheres as level sets, but are not the only ones (the same
remark applies to hyper-rectangles and ellipsoids, see Figure 3).

Figure 3: Left: level sets of a quadratic positive definite form: the level sets are ellipsoids.
Right: an exemple of function with ellipsoids as level sets, without being quadratic. The
VC-dimension bound given in the text holds in both cases.
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4.3 Selection based non-elitist strategies

In this section, we give a lower bound on the convergence rate of Selection Based (µ, λ)-ES
(strategies matching the framework described in Algorithm 1). The following lemma provides
an upper bound on the branching factor in terms of the VC-dimension of the level sets of the
fitness functions F .

Lemma 3 Consider an SB-(µ, λ)-ES as described in Algorithm 1. Let V > 3 be the VC-
dimension of the level sets of the family F of fitness functions under consideration. Then the
branching factor of this algorithm satisfies K 6 λV .

Proof: Given a set of λ points E = {x1, . . . , xλ} in the domain D, and f ∈ F , let us define
Sf (E) to be the subset S of size µ of E corresponding to the µ points of E with lowest fitness
values with respect to f . Note that the branching factor satisfies

K 6 max
E⊂D, |E|=λ

|{Sf (E) : f ∈ F}|.

Now note that for any E, the set S of the µ points of E with lowest value (with respect to the
fitness function f) can be separated from E \ S by an element from the level sets: in other
words, there exists B ∈ LF such that B ∩ E = S. It follows that

|{Sf (E) : f ∈ F}| 6 πLF
(λ).

If the VC-dimension of LF is at most V , it follows from the shatter function lemma (Lemma 2)
and the bound given in Equation 3 that πLF

(λ) 6 λV . Thus K 6 λV .

Theorem 4 (Selection Based (µ, λ)-ES) Consider an SB-(µ, λ)-ES (Algorithm 1) in a
domain D ⊂ Rd, such that D = {f∗ : f ∈ F}. Let V > 3 be the VC-dimension of the
level sets of F . The convergence rate of this algorithm satisfies

CR(µ,λ)
ε > exp

(

−V log λ

d
· α(ε)

)

.

Proof: Lemma 3 shows that K 6 λV , i.e.

log K

d
α(ε) 6 V

log λ

d
α(ε).

The result follows by substituting this upper bound into Equation 2 from Theorem 1.

Remark. If V = 1 or V = 2, then the bound obtained in Theorem 4 becomes CR
(µ,λ)
ε >

exp
(

−V log(λ+1)
d · α(ε)

)

. The case V < 3 can be handled in a similar way throughout the

paper: V log λ is replaced with V log(λ + 1) in this case.
The bound obtained in Theorem 4 is interesting when λ is large, and µ not too close

to 1 or λ. Otherwise, the näıve combinatorial bound K 6
(

λ
µ

)

leads to a smaller branching
factor than Lemma 3. Combined with Equation 2 as above, it yields better bounds on the
convergence rate when µ is close to 1 or λ.
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4.4 Full ranking non-elitist strategies

We now consider Full Ranking (µ, λ) evolution strategies. That is, we move from Algorithm 1
to the more general setting of Algorithm 2. We study the extent to which lower bounds
obtained for SB-(µ, λ)-ES are modified when we use the full ranking information.

For evolution strategies of type Full Ranking (µ, λ)-ES, an upper bound on the number
of possible outcomes of the selection step (including the ranking of children) is obtained by
multiplying by µ! the number of possible outcomes in the case of selection only. This gives

CR
(µ,λ)
ε > exp (−(V log(λ) + µ log µ)/d · α(ε)). However, a stronger bound can be proved in

the case where µ is large with respect to the VC-dimension V of the level sets of the fitness
functions.

The following lemma provides an upper bound on the number of possible orders of a fixed
set of points with respect to fitness functions f ∈ F , when the level sets of F have a finite
VC-dimension.

Lemma 5 Let F be a set of functions on a domain D. Let V > 3 be the VC-dimension
of level sets of F . Let x1, . . . , xn be distinct points in D. The number of permutations π of
[[1, n]] such that there exists f ∈ F satisfying

f(xπ(1)) < f(xπ(2)) < . . . < f(xπ(n))

is at most 24V n.

Proof: Let γ(n) denote the maximum number of permutations realized by a fixed set of n
points of D with respect to all functions of F . Let p be the integer satisfying 2p−1 < n 6 2p.
Let n′ = 2p.

A possible order on n′ points is completely determined by the n′/2 points with smallest
values with respect to f , multiplied by the number of possible orders on two sets of n′/2
points. Therefore, by Lemma 3, γ(n′) 6 n′V γ(n′/2)2.

By iteratively splitting the original set until we get sets of size 2, we obtain:

γ(n′) 6 n′V
(

n′

2

)2V

. . .

(

n′

2p−1

)2p−1V

.

It follows that

log γ(n′) 6 V

(

p−1
∑

i=0

2i log

(

n′

2i

)

)

.

Of course n′/2i = 2p−i. Moreover,
∑p−1

i=0 2i(p − i) = 2p+1 − p − 2 6 2n′ 6 4n. This gives
log γ(n) 6 4V n.

Theorem 6 (Full Ranking (µ, λ)-ES) Consider a (µ, λ)-ES (Algorithm 2) in a domain
D ⊂ Rd, such that D = {f∗ : f ∈ F}. Let V > 3 be the VC-dimension of the level sets of
F . The convergence rate of this algorithm satisfies

CR(µ,λ)
ε > exp

(

−V (4µ + log λ)

d
· α(ε)

)

.

Proof: The branching factor of this algorithm is bounded by K 6 λV γ(µ) where γ(µ) is the
possible number of orders on the µ selected points with respect to fitness values. Lemma 5
shows that log γ(µ) 6 4V µ. Then, Equation 2 yields the lower bound on the convergence rate
stated above.
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4.5 Elitist strategies

For the sake of completeness, we state the analog of previous results in the elitist setting.

Corollary 7 (Selection Based (µ + λ)-ES and Full Ranking (µ + λ)-ES) Let F be a
set of fitness functions defined in a domain D ⊂ Rd, such that D = {f∗ : f ∈ F}.
Let V be the VC-dimension of the level sets of F . The convergence rate of an algorithm of
type Selection Based (µ + λ)-ES for F satisfies:

CR(µ,λ)
ε > exp

(

−V log(µ + λ)

d
· α(ε)

)

.

For an algorithm of type Full Ranking (µ + λ)-ES, the following holds:

CR(µ,λ)
ε > exp

(

−V (4µ + log(µ + λ))

d
· α(ε)

)

.

Proof: Any algorithm of type SB-(µ + λ)-ES can be simulated by an algorithm of type
SB-(µ′, λ′)-ES with µ′ = µ and λ′ = µ + λ. Indeed, this can be achieved by remembering the
best µ points found at step n, and generate them at step n + 1, together with λ new points.
Bounds stated above on the convergence rate of elitist (µ, λ)-ES are thus obtained easily from
Theorem 4.

In the same way, a Full Ranking (µ+λ)-ES can be simulated by a Full Ranking (µ′, λ′)-ES.
The bound on the convergence rate of elitist (µ + λ)-ES follows by Theorem 6.

4.6 Handling points with equal fitness values

This section explains how to deal with the general case where equality between fitness values
of generated points, at any epoch, is allowed to occur. One must define how Algorithms 1
and 2 behave in this case, since several selection vectors (denoted by vn in the algorithms)
may satisfy the required properties when two points of the considered set E have the same
fitness. We first consider algorithms where the selection procedure returns the smallest vector
vn of length µ with respect to lexicographic order, as formalized below.

We begin with the case of Selection Based (µ, λ)-ES. Consider such an algorithm for a set
of fitness functions F . We assume that the level sets of F have a VC-dimension V > 3. Our
aim is to bound the branching factor K of such an algorithm (i.e., we shall state an analog
of Lemma 3 when equality is allowed).

Consider a fixed vector of points E = (x1, . . . , xλ) ∈ Dλ. For f ∈ F , let σ be the smallest
permutation of {1, . . . , λ} with respect to lexicographic order such that:

f(xσ(1)) 6 f(xσ(2)) 6 . . . 6 f(xσ(λ)). (4)

This means that σ satisfies the inequalities above and obeys the following constraint: for
all j, k ∈ {1, . . . , λ}, if j 6 k and f(xj) = f(xk), then σ(j) 6 σ(k). The selected set is
{xσ(1), xσ(2), . . . , xσ(µ)}.

We shall now give a bound on the branching factor K, i.e. a bound on

sup
E

∣

∣

{

{xσ(1), xσ(2), . . . , xσ(µ)} : f ∈ F
}
∣

∣ .
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Let p ∈ [[1, λ]] be the smallest integer such that f(xσ(p)) = f(xσ(µ)). In the same way, let
q ∈ [[1, λ]] be the greatest integer such that f(xσ(q)) = f(xσ(µ)). Notice that p and q are
uniquely defined from E and f .

Obviously, there exist two level sets A and B of f such that {xσ(1), . . . , xσ(p−1)} = A ∩E
and {xσ(1), . . . , xσ(q)} = B ∩ E.

The set of selected points {xσ(1), xσ(2), . . . , xσ(µ)} is the union of A∩E and the µ−|A∩E|
points with smallest ranges (in the vector E) from (B ∩ E) \ (A ∩ E).

Hence, the number of possible selections is bounded from above by the number of possible
pairs (A ∩ E,B ∩ E), where A and B are arbitrary level sets:

K 6 sup
E
|{(A ∩E,B ∩ E) : f ∈ F}| .

On the other hand, |{A ∩ E : f ∈ F}| 6 πLF
(λ) and |{B ∩ E : f ∈ F}| 6 πLF

(λ). (We
recall that πLF

is the shatter function.) We deduce that the number of possible selections for
this fixed E, when f runs over F , is bounded by πLF

(λ)2. Hence, the branching factor of this
algorithm satisfies:

K 6 πLF
(λ)2. (5)

Under the hypothesis of Theorem 4 and using the same notations, we have shown that the
convergence rate of an algorithm of type Selection Based (µ, λ)-ES optimizing functions from
F satisfies

CR(µ,λ)
ε > exp

(

−2
V log λ

d
· α(ε)

)

(6)

in the general case – that is, when equality is allowed to occur.
If, instead of constraining the selection by the lexicographic order, we decide that the

algorithm is allowed to know both A ∩ E and B ∩ E, then the branching factor still satisfies
the inequality K 6 (πLF

(λ))2. Hence, the bound given in Equation 6 also holds in algorithms
where the selection step is based on this information. This includes the natural case where the
selection at a step is chosen uniformly at random among all valid selections. (We recall here
that, although the generation of points is deterministic in our model, this can be simulated
through the use of the random state I.)

The same technique applies to full ranking algorithms. In this case, we assume the selection
step is performed through the following protocol. First the algorithm is given the (ranges of)
elements of A∩E and B∩E. Then it must choose some subset S′ of (B∩E)\ (A∩E) of size
µ−|A∩E|. Finally, the algorithm is returned the full ranking of the selected points (A∩E)∪S′.
We emphasis here that the algorithm is not given the full ranking of all points of B ∩E. The
upper bound on the branching factor in proof of Theorem 6 becomes K 6 (πLF

(λ))2γ(µ);
that is, K 6 (λV )2 · γ(µ). Hence, the convergence rate is bounded by

CR(µ,λ)
ε > exp

(

−V (4µ + 2 log λ)

d
· α(ε)

)

for Full ranking strategies in the general case.
Finally, the elitist case is deduced from the non-elitist case in the same way as in the proof

of Corollary 7, by a simulation argument. Hence, the four bounds given in Figure 2 are valid
modulo a multiplicative factor 2 in front of log λ (or log(µ + λ) in the elitist cases) in the
general case where equality of fitness values is allowed to occur.
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Applications to discrete domains

We shall consider (µ, λ)-ES for fitness functions defined over a discrete domain. Since many
classical benchmark functions in the discrete case have points with equal fitness values, we
shall use the bounds obtained above when using the VC-dimension argument. As we consider
arbitrary generation and update rules, elitist strategies are indirectly considered as well:
indeed, (µ + λ)-ES can be simulated by (µ, λ′)-ES, with λ′ = µ + λ.

We shall give lower bounds on the number of steps n0, 1
2

needed to solve problems with

approximation error 0 and confidence 1
2 . As usual, the constant 1

2 is somewhat arbitrary;
see Theorem 1 and remarks thereafter for the dependency in the confidence 1 − δ. As al-
ready mentioned, lower bounds on n0, 1

2

can be translated into lower bounds on the runtime

expectation.
We consider below (i) the OneMax function, analyzed with simple combinatorial argu-

ments; (ii) the sphere function on {0, 1, 2, . . . , p−1}d; (iii) the sphere function on permutations
of {1, 2, . . . , p}.

(i) Application to OneMax. Consider the domain D = {0, 1}d. For ε sufficiently small,
the balls are singletons; it follows that N(ε) = N(0) = 2d and α(ε) = α(0) = 1/(1−1/d) when
ε is small enough and d > 2. Let us consider the OneMax function defined by x 7−→∑d

i=1 xi,
and all its symmetries; the set of fitness functions is

F = {fη : x 7−→
∑

i∈[[1,d]]

|xi − ηi|, η ∈ {0, 1}d}.

The aim is to find the point where this function is maximum (hence, the selection step of
an (µ +, λ)-ES keeps µ points with highest fitness values). Notice that no (µ +, λ)-ES can
avoid generating points with equal fitness values in a single step as soon as λ > 3. Indeed,
given three different points of {0, 1}d, there must be two of them x and y such that the
Hamming weight of the symmetric difference of x and y is even; then there exists η such that
fη(x) = fη(y).

Let us discuss the case of Selection Based (µ, λ)-ES. The bound on the convergence rate
obtained above yields the following runtime for solving OneMax in dimension d with prob-
ability 1/2:

n0, 1
2

= Ω (d/λ) for (µ, λ)-ES; (7)

n0, 1
2

= Ω (d/ log λ) for (1, λ)-ES; (8)

n0, 1
2

= Ω (d/ log(λ + 1)) for (1 + λ)-ES. (9)

This is obtained as in [26], using Equation 1 and the bound:

• K 6
(

λ
⌊λ/2⌋

)

for (µ, λ)-ES;

• K 6 λ for (1, λ)-ES;

• K 6 1 + λ for (1 + λ)-ES.

Equation 7 is more general than results established without the branching factor as it is
not limited to (1, λ)-ES or (µ+1)-ES; we will discuss tightness below. Equation 9 corresponds
to a lower bound Ω(dλ/ log λ) on the number of evaluations; this is better than the Ω(d log d)
bound from [10, 30] when λ/ log λ is larger than log d.

Equations 7-9 provide both:
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• improved lower bounds for λ large (e.g. parallel case) for (1 + λ)-ES;

• improved lower bounds on what can be done with (µ, λ)-ES, as our lower bounds are
tighter, for the comparison-based case (which is known optimal for compositions of the
fitness functions with increasing mappings, see [11] for more on this), than the bounds
with no assumption on the algorithm as in e.g. [10, 30].

We can give some elements of tightness for Equation 7 in the model where the algorithm
has access to the whole set of points in B∩E (using the notations introduced at the beginning
of this section). Notice that this is a quite strong model; in particular, |B∩E|might be greater
than µ. More precisely, Equation 7 is tight in this model in the special cases λ = d + 1 and
λ = O(1) (independent of d), as follows.

For λ = d+1, one iteration is enough to compute η (and thus the maximum of the fitness
function fη under consideration). Consider µ = 1; however, as the algorithm has access to
B ∩ E, the selection step may return more than one point. Let ei ∈ {0, 1}d be the vector
with a unique 1 in position i. Generate the set of points E = {(0, . . . , 0), e1, e2, . . . ed}. Let
A and B be two level sets satisfying the conditions stated at the beginning of this section
(transposed into the setting of a maximization problem). If B∩E = {(0, . . . , 0)}, then η = 0.
Otherwise, let {ei1 , . . . , eip} = B ∩E; it is easily seen that η = ei1 + . . . + eip in this case. We
have therefore shown that one iteration is enough for finding the optimum.

Consider now the case λ = O(1). We can perform the algorithm above restricted to a
moving window of λ coordinates, as follows: generate Ep = {e(p−1)λ+1, . . . , epλ} at the p-th
iteration, for 1 6 p 6 ⌈d/λ⌉. (The last step can generate less than λ points.) This algorithm
can compute η with runtime d/λ.

For the sake of parallelization of OneMax solving with ES, this suggests the use of λ
linear in the dimension d. Indeed, for a parallel evaluation of the λ generated points, we
get an almost linear speed-up for λ 6 d – the convergence rate is exp(−O(1)) for λ = d + 1
whereas it is exp(−O(1/d)) for λ = O(1) – while the speed-up is logarithmic in λ for large
values of λ.

(ii) Application to the sphere function on grids. We consider the set of sphere
functions on the domain D = {0, 1, 2, . . . , p− 1}d ⊆ Rd, i.e.

F = {x 7−→ ‖x− x0‖2 : x0 ∈ D}.

We consider the case of (µ, λ)-ES. Since equality might occur, we shall apply Equation 5 to
bound the branching factor. The VC-dimension of the level sets of F is equal to d + 1 which
gives log K 6 2(d+1) log λ. Therefore Equation 1 leads to n0, 1

2

> (d log p)/(α(0)2(d+1) log λ),

where α(0) = 1/(1 − 1/d log p) is close to 1. Hence we have obtained

n0, 1
2

= Ω (log p/ log λ) .

As usual, when λ is small, a better bound can be obtained using K 6
( λ
⌊λ/2⌋

)

. This gives

n0, 1
2

> (d log p)/(α(0) log
(

λ
λ/2

)

). This leads to the alternative lower bound

n0, 1
2

= Ω(d log(p)/λ),

which is better than the previous bound when λ/ log λ < d. This generalizes e.g. [25, Theorem
2] by considering a wider family of algorithms and possibly p > 2.
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(iii) Application to the sphere function on permutations. We now consider the
set of sphere functions on permutations. Let D be the set of permutations of {1, 2, . . . , p} and

F = {x 7−→ ‖x− x0‖2 : x0 ∈ D}.

The domain D is often considered in applications, see e.g. [20, 19], references therein and
variants of the traveling salesman problem (TSP). In many real world cases, the fitness func-
tion is neither the length of a path as in the TSP, nor some other white box function, but
a black box function (otherwise practitioners would certainly not use an evolutionary algo-
rithm, which is suboptimal for white box problems). We will here consider the simple case
of a sphere function on D. We consider again the case of (µ, λ)-ES. This is equivalent to
the sphere function on grids, except that d = p, |D| = p! and α(0) = 1/(1 − 1/ log(p!)). We
obtain the bound n0, 1

2

= Ω(log(p!)/(p log λ)), i.e., by Stirling’s approximation, the runtime

for a (µ, λ)-ES for the sphere function on the set of permutations of {1, 2, . . . , p} is

n0, 1
2

= Ω(log p/ log λ).

5 Sign patterns and the case of the sphere function

We present a technique based on the number of sign patterns to derive lower bounds on the
convergence rate of full ranking algorithms. Applied to the special case of the sphere function,
it shows that the speed-up is asymptotically at most logarithmic in λ. (See Proposition 8.)
This improves on the bounds obtained by VC-dimension arguments in Theorem 6 which did
not forbid a linear speed-up.

Although it is applied to the sphere function, the technique used here applies to any system
where the number of sign patterns can be efficiently bounded, such as quadratic functions
with positive Hessian. In fact, polynomials of bounded degree are amenable to this technique
– we refer the reader to [22] and [18, Chapter 6.2] for further details. However, as opposed to
the previous section, the bound obtained by the sign pattern technique presented here does
not apply to the general case of functions with spheres (or ellipsoids) as level sets.

For the sphere function, we point out in Section 5.2 that λ linear in the dimension pro-
vides an almost linear speed-up. Indeed, the straightforward parallelization performed by
distributing the λ fitness evaluations over λ processors has an almost linear speed-up until at
least λ equal to twice the dimension (while the speed-up is asymptotically at most logarithmic
in λ by Proposition 8.)

5.1 Lower bounds on full ranking strategies via the number of sign patterns

We present an alternative method to obtain improved lower bounds on the convergence rate
of evolution strategies which use full ranking. For a real x, we define its sign to be sign(x) = 0
if x = 0, sign(x) = 1 if x > 0, and sign(x) = −1 if x < 0. Given a fitness function f and a
finite set of points x1, . . . , xλ ∈ D, we define the set of realizable sign conditions as

Signf,(x1,...,xλ) = {sign(f(xi)− f(xj)) : 1 6 i < j 6 λ} .

This method can be applied as soon as the number of sign conditions, i.e. the number of
possible sign vectors, can be efficiently bounded. Indeed, the following inequality on the
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branching factor holds:

K 6 max
{

|Signf,(x1,...,xλ)| : f ∈ F , x1, . . . , xλ ∈ D
}

. (10)

We now apply the above remark to the sphere functions, in order to obtain an improved
lower bound on the convergence rate of full ranking strategies for these functions. We recall
that the set of sphere functions is the the set of fitness functions F = {fc : c ∈ Rd} with
fc(x) = ‖x− c‖2 (where ‖ · ‖2 denotes the Euclidean norm).

Proposition 8 Let d > 3. Consider a Full Ranking (µ, λ)-ES, as in Algorithm 2, optimizing
the sphere function in a domain D ⊂ Rd. Then

CR(µ,λ)
ε > exp (−2 log(λ) · α(ε)) .

Proof: Given two distinct points p and q in Rd, we denote by Hp,q be the mediator
hyperplane of p and q, i.e. Hp,q = {x ∈ Rd : ‖x − p‖2 = ‖x − q‖2}. At each iteration of
the algorithm, an offspring of λ points {x1, . . . , xλ} is generated and the algorithm receives
the sequence of ranges of the µ points with lowest fitness values, ordered with respect to
their fitness values. Obviously the branching factor is maximal when µ = λ, i.e. when
the algorithm is given the full ordering of points with respect to their fitness values. This
information corresponds to giving the sign si,j of f(xi)− f(xj) for each 1 6 i < j 6 λ. Note
that this sign is positive or negative since we assumed equality never occurs. The number
of possible sign vectors s = {si,j : 1 6 i < j 6 λ} in Rd is exactly the number of cells (full
dimensional faces) in the arrangement of hyperplanes {Hxi,xj

: 1 6 i < j 6 λ}. But it is
known that n hyperplanes in Rd define at most nd cells [18, Chapter 6.1]. Since there are
(λ
2

)

6 λ2/2 hyperplanes here, Equation 10 yields K 6
(

λ2/2
)d

. The bound on the convergence
rate is now obtained by applying Equation 2.

Remark. The case of equality (i.e., when it is possible for two generated points x and y
to satisfy f(x) = f(y)) is easily handled in Proposition 8. Indeed, an upper bound on the
number of sign vectors obtained in this case is given by the total number of faces (of any
dimension) of the hyperplanes arrangement considered in the proof. This number of faces is
known to be O(nd) for n hyperplanes Rd, where the constant hidden in the big-O notation
depends on d. From the formula for the maximum number of faces of a given dimension [12],
this constant is bounded by dO(1)2d. The upper bound on the branching factor K follows,

and we obtain CR
(µ,λ)
ε > exp (−(2 log(λ) + O(1)) · α(ε)).

5.2 Fast convergence rate with λ = 2d for optimizing the sphere function

We point out here that for the specific case of the sphere function, a convergence rate of Θ(1)
can be reached with µ = λ = 2d in the domain [0, 1]d by some algorithm of type Full Ranking
(µ, λ)-ES.

This convergence rate is easily obtained with the following algorithm in the spirit of Hooke
and Jeeves Direct Search methods [14]. Let ei denote the vector (0, . . . , 0, 1, 0, . . . , 0) with a
unique 1 in position i. First split [0, 1]d into the 2d cells delimited by the d hyperplanes of
equations xi = 1/2; the full ranking of the 2d points {(1

2 , 1
2 , . . . , 1

2) + η
2ei : 1 6 i 6 n, η ∈

{−1, 1}} allows the algorithm to decide in which of these cells the optimum lies; then the
algorithm proceeds recursively. (See Algorithm 3.)
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Algorithm 3 Fast algorithm of type Full Ranking (µ, λ)-ES for the sphere function in the
domain [0, 1]d in the special case µ = λ = 2d.

x← (1/2, . . . , 1/2); σ ← 1/2
while true do

Generate λ = 2d distinct points equal to x± σei

(ei denotes the vector (0, . . . , 0, 1, 0, . . . , 0) with a unique 1 in position i)
With the ranking information, decide in which octant ∆ of x + [−σ, σ]d is the optimum
Move x to the center of the octant ∆
Set σ ← σ/2

end while

After n iterations, the point xn proposed by this algorithm satisfies ‖xn− f∗‖2 6
√

d/2n.
Moreover, this distance is realized by some fitness function. It follows that nε, 1

2

= log 1
ε +

1
2 log d. On the other hand log(N(ε)) = Θ(d log 1

ε ). Thus, we have obtained an algorithm for
the sphere function in dimension d which satisfies:

CR(2d,2d)
ε = exp (−Θ(1)) . (11)

Notice that for λ = O(1), independent from d, the branching factor of any algorithm satisfies
K = O(1); it follows by Equation 2 that any algorithm optimizing the sphere function in

dimension d satisfies CR
(λ,λ)
ε > exp (−O(1/d)) in this case. Hence, Algorithm 3 achieves an

almost linear speed-up when λ moves from O(1) to 2d.
This means that, with 2d processors, the number of function evaluations required for

halving the approximation error is Θ(d) (as well as for the (1+1)-ES [16]); or, in other words,
with 2d processors, the number of iterations required for halving the error is Θ(1).

On the other hand, the asymptotic speed-up for λ large (and d fixed) is known to be at
most logarithmic by Proposition 8.

6 Final remarks

It could seem to be a weakness that bounds on the convergence rate obtained by VC-dimension
arguments are weaker when the function is more “complex” (i.e., when the VC-dimension of
its level sets is higher). However, it may be possible that these bounds cannot be improved
in the general case. Indeed, one can wonder if it is possible to build ad hoc fitness functions
matching the bounds obtained by VC-dimension arguments. Such constructions were given
in [26] to match lower bounds on the convergence rate of algorithms obtained from the sole
branching factor. On the other hand, we know that the bounds obtained from VC-dimension
can be far from optimal for some specific sets of fitness functions: for the sphere function, the
bound obtained for Full Ranking (µ, λ)-ES is greatly improved by the sign pattern technique
(Section 5).

In the case of evolution strategies based on selection only (algorithms of type SB-(µ, λ)-
ES), the linear speed-up observed in [6] cannot be obtained for λ large enough. Asymp-
totically, the speed-up obtained with such an algorithm is at most logarithmic as shown in
Theorem 4. However, we show that the speed-up is nearly linear for up to 2d processors on
the sphere function in dimension d.

When moving from algorithms of type Selection Based (µ, λ)-ES to Full Ranking (µ, λ)-
ES, lower bounds on the convergence rate obtained here in the general case do not forbid a
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strong improvement asymptotically; essentially, the speed-up that could be achieved moves
from logarithmic to linear in λ. However, we know from Proposition 8 that the speed-up is
at most logarithmic for a Full Ranking (µ, λ)-ES in the special case of the sphere function –
see also the discussion following Proposition 8. This raises the following question: For which
kind of fitness functions is it interesting to keep the full ranking information?

A related intriguing question is what convergence rate can be reached for selection based
algorithms (i.e., without keeping the full ranking information) for the sphere function. In
particular, is it possible to achieve a constant convergence rate with λ linear in the dimension,
as in Equation 11? To the best of our knowledge, this is an open problem.
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[15] Jens Jägersküpper. Analysis of a simple evolutionary algorithm for minimization in
euclidean spaces. In 30th International Colloquium on Automata, Languages, and Pro-
gramming (ICALP 2003), Springer LNCS 2719, pages 1068–1079, 2003.
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