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Abstract. In the setting of concurrent self composition, a single pro-
tocol is executed many times concurrently by a single set of parties. In
this paper, we prove that there exist many functionalities that cannot be
securely computed in this setting. We also prove a communication com-
plexity lower bound on protocols that securely compute a large class of
functionalities in this setting. Specifically, we show that any protocol that
computes a functionality from this class and remains secure for m con-
current executions, must have bandwidth of at least m bits. Our results
hold for the plain model (where no trusted setup phase is assumed), and
for the case that the parties may choose their inputs adaptively, based
on previously obtained outputs. While proving our impossibility result,
we also show that for many functionalities, security under concurrent
self composition (where a single secure protocol is run many times) is
actually equivalent to the seemingly more stringent requirement of se-
curity under concurrent general composition (where a secure protocol is
run concurrently with other arbitrary protocols). This observation has
significance beyond the impossibility results that are derived by it for
concurrent self composition.

1 Introduction

In the setting of two-party computation, two parties with respective pri-
vate inputs x and y, wish to jointly compute a functionality f(x, y) =
(f1(x, y), f2(x, y)), such that the first party receives f1(x, y) and the second party
receives f2(x, y). This functionality may be probabilistic, in which case f(x, y) is
a random variable. Loosely speaking, the security requirements are that nothing
is learned from the protocol other than the output (privacy), and that the out-
put is distributed according to the prescribed functionality (correctness). These
security requirements must hold in the face of an adversary who controls one
of the parties and can arbitrarily deviate from the protocol instructions (i.e., in
this work we consider malicious, static adversaries). Powerful feasibility results
have been shown for this problem, demonstrating that any two-party proba-
bilistic polynomial-time functionality can be securely computed, assuming the
existence of trapdoor permutations [21,11].
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Security under concurrent composition. The feasibility results of [21,11]
relate only to the stand-alone setting, where a single pair of parties run a single
execution. A more general (and realistic) setting relates to the case that many
protocol executions are run concurrently within a network. Unfortunately, the
security of a protocol in the stand-alone setting does not necessarily imply its
security under concurrent composition. Therefore, it is important to re-establish
the feasibility results of the stand-alone setting for the setting of concurrent
composition, or alternatively, to demonstrate that this cannot be done.

The notion of protocol composition can be interpreted in many ways. A very
important distinction to be made relates to the context in which the protocol is
executed. This refers to the question of which protocols are being run together
in the network, or in other words, with which protocols should the protocol in
question compose. There are two contexts that have been considered, defining
two classes of composition:

1. Self composition: A protocol is said to be secure under self composition if it
remains secure when it alone is executed many times in a network. We stress
that in this setting, there is only one protocol that is being run many times.
This is the type of composition considered, for example, in the entire body
of work on concurrent zero-knowledge (e.g., [9,20]).

2. General composition: In this type of composition, many different protocols are
run together in the network. Furthermore, these protocols may have been de-
signed independently of one another. A protocol is said to maintain security
under general composition if its security is maintained even when it is run
along with other arbitrary protocols. This is the type of composition that
was considered, for example, in the framework of universal composability [4].

We stress a crucial difference between self and general composition. In self com-
position, the protocol designer has control over everything that is being run in
the network. However, in general composition, the other protocols being run
may even have been designed maliciously after the secure protocol is fixed. We
note that this additional adversarial capability has been shown to yield practical
attacks against real protocols [13].

Another distinction that we will make relates to the number of times a se-
cure protocol is run. Typically, a protocol is expected to remain secure for any
polynomial number of sessions. This is the “default” notion, and we sometimes
refer to it as unbounded concurrency. A more restricted notion is that of bounded
concurrency. In this case, a fixed bound on the number of concurrent executions
is given, and the protocol need only remain secure when the number of concur-
rent execution does not exceed this bound. (When the bound is m, we call this
m-bounded concurrency.) Note that the protocol may depend on this bound.

Feasibility of security under composition. The notion of concurrent gen-
eral composition was first studied by [19] who considered the case that a secure
protocol is executed once concurrently with another arbitrary protocol. (A defi-
nition and composition theorem were presented in [19], but no general feasibility
results were demonstrated.) The unbounded case, where a secure protocol can
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be run any polynomial number of times in an arbitrary network, was then con-
sidered in the framework of universal composability [4]. Informally speaking, a
protocol that is proven secure under the definition of universal composability is
guaranteed to remain secure when run any polynomial number of times in the
setting of concurrent general composition. This setting realistically models the
security requirements in modern networks. Therefore, obtaining protocols that
are secure by this definition is of great interest. On the positive side, it has been
shown that in the case of an honest majority, essentially any functionality can
be securely computed in this framework [4]. Furthermore, even when there is no
honest majority, it is possible to securely compute any functionality in the com-
mon reference string (CRS) model [8]. (In the CRS model, all parties have access
to a common string that is chosen according to some distribution. Thus, this as-
sumes some trusted setup phase.) However, it is desirable to obtain protocols in
a setting where no trusted setup phase is assumed. Unfortunately, in the case of
no honest majority and no trusted setup, broad impossibility results for univer-
sal composability have been demonstrated [5,4,7]. Recently, it was shown in [16]
that these impossibility results extend to any security definition that guarantees
security under concurrent general composition (including the definition of [19]).

Thus, it seems that in order to obtain security without an honest majority
or a trusted setup phase, we must turn to self composition. Indeed, as a first
positive step, it has been shown that any functionality can be securely computed
under m-bounded concurrent self composition [14,18]. Unfortunately, however,
these protocols are highly inefficient: The protocol of [14] has many rounds of
communication and both the protocols of [14] and [18] have high bandwidth.
(That is, in order to obtain security for m executions, the protocol of [14] has
more than m rounds and communication complexity of at least mn2. In con-
trast, the protocol of [18] has only a constant number of rounds, but still suffers
from communication complexity of at least mn2.) In addition to the above pos-
itive results, it has also been shown that there exist functionalities so that any
protocol that securely computes one of them under m-bounded concurrent self
composition, and is proven secure using black-box simulation, must have more
than m rounds of communication [14]. These works still leave open the following
important questions:

1. Is it possible to obtain protocols that remain secure under unbounded con-
current self composition, and if yes, for which functionalities?

2. Is it possible to obtain efficient protocols that remain secure under un-
bounded, or even m-bounded, concurrent self composition? (By efficient, we
mean that at least, there should be no dependence on the bound m.)

As we have mentioned, these questions are open for the case that no trusted setup
phase is assumed and when there is no honest majority, as in the important two
party case.

Our results. In this paper, we provide negative answers to the above two
questions. More precisely, we show that there exist large classes of functionalities
that cannot be securely computed under unbounded concurrent self composition.
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We also prove a communication complexity lower bound for protocols that are
secure under m-bounded concurrent self composition. This is the first lower
bound of this type, connecting the communication complexity of a protocol with
the bound on the number of executions for which it remains secure.

Theorem 1 (impossibility for unbounded concurrency – informal): There exist
large classes of two-party functionalities that cannot be securely computed under
unbounded concurrent self composition, by any protocol.

In order to prove this result, we show that for many functionalities, obtaining
security under unbounded concurrent self composition is actually equivalent to
obtaining security under concurrent general composition (that is, a protocol is
secure under one notion if and only if it is secure under the other). This may
seem counter-intuitive, because in the setting of self composition, the protocol
designer has full control over the network. Specifically, the only protocol that is
run in the network is the specified secure protocol. In contrast, in the setting of
general composition, a protocol must remain secure even when run concurrently
with arbitrary other protocols. Furthermore, these protocols may be designed
maliciously in order to attack the secure protocol. Despite this apparent differ-
ence, we show that equivalence actually holds.

The above-described equivalence between concurrent self and general com-
position is proven for all functionalities that “enable bit transmission”. Loosely
speaking, such a functionality can be used by each party to send any arbitrary
bit to the other party. Essentially, any non-constant functionality that depends
on both party’s inputs, and where both parties receive output, has this property;
see Section 2.3. We note that in a model where the parties can play different
roles in the computation (e.g., if zero-knowledge is being computed, then in
some executions a party plays the prover and in others it plays the verifier),
then any functionality with the property that one party’s output depends on
the other party’s input actually enables bit transmission. In Section 3, we prove
the following theorem:

Theorem 2 (equivalence of self and general composition – informal): Let f be
a two-party functionality that enables bit transmission. Then, f can be securely
computed under unbounded concurrent self composition if and only if it can be
securely computed under concurrent general composition.

The above equivalence holds for any functionality that enables bit transmission.
In the full version of this paper, we show that an analogue of Theorem 2 does not
hold for functionalities that do not enable bit transmission. In the full version,
we also show that in the above-mentioned model where the parties can play
different roles in the computation, then concurrent self composition is equivalent
to concurrent general composition, for all functionalities.

Returning back to the proof of Theorem 1, impossibility is derived by com-
bining the equivalence between concurrent self and general composition as stated
in Theorem 2 with the impossibility results for concurrent general composition
that were demonstrated in [16]. This answers the first question above, at least
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in that it demonstrates impossibility for large classes of functionalities. (It is
still far, however, from a full characterization of feasibility.) Regarding the sec-
ond question, we prove the following theorem that rules out the possibility of
obtaining “efficient” protocols for m-bounded concurrency:

Theorem 3 (communication complexity lower bound – informal): There exists
a large class of two-party functionalities so that any protocol that securely com-
putes a functionality in this class under m-bounded concurrent self composition,
must have communication complexity of at least m.

Theorem 3 is essentially proven by directly combining the proof of Theorem 2
with proofs of impossibility from [16] and [7]; see Section 5.

Remarks. We stress that the above results are unconditional. That is, im-
possibility holds without any complexity assumptions. Furthermore, we assume
nothing about the simulation, and in particular do not assume that it is “black-
box”. We also note that although Theorems 1 and 3 are stated for two-party
functionalities, they immediately imply impossibility results for multi-party func-
tionalities as well. This is because secure protocols for multi-party functionalities
can be used to solve two-party tasks as well.

It is important to note that our definition of security under concurrent self
composition is such that honest parties may choose their inputs adaptively, based
on previously obtained outputs. This is a seemingly harder definition to achieve
than one where the inputs to all the executions are fixed ahead of time. We
stress that allowing the inputs to be chosen adaptively is crucial to the proof
of our impossibility results. Nevertheless, we believe that this is also the desired
definition (since in real settings, outputs from previous executions may indeed
influence the inputs of later executions).

Other related work. The focus of this work is the ability to obtain secure
protocols for solving general tasks. However, security under concurrent compo-
sition has also been studied for specific tasks of interest. Indeed, the study of
security under concurrent composition was initiated in the context of concur-
rent zero knowledge [10,9], where a prover runs many copies of a protocol with
many verifiers. Thus, these works consider the question of security under self
composition. This problem has received much attention; see [20,6,1] for just a
few examples. Other specific problems have also been considered, but are not
directly related to this paper.

2 Definitions

In this section, we present definitions for security under concurrent self compo-
sition and concurrent general composition, and we define the notion of functions
that enable bit transmission. We denote the equivalence of distributions by ≡,
computational indistinguishability by

c≡, and the security parameter by n. The
adversary always runs in time that is polynomial in n.



208 Y. Lindell

2.1 Concurrent Self Composition of Two-Party Protocols

We begin by presenting the definition for security under concurrent self composi-
tion. The basic description and definition of secure computation follows [12,2,17,
3]. Due to lack of space in this abstract, we present a slightly abridged definition
and refer to the full version of this paper and [14] for full definitions. (Note that
our definition here actually differs from [14] in that here the honest parties may
adaptively choose their input to a session as a function of previously obtained
outputs.)

Two-party computation. A two-party protocol problem is cast by spec-
ifying a random process that maps pairs of inputs to pairs of outputs (one
for each party). We refer to such a process as a functionality and denote it
f : {0, 1}∗ × {0, 1}∗ → {0, 1}∗ × {0, 1}∗, where f = (f1, f2). That is, for ev-
ery pair of inputs (x, y), the output-pair is a random variable (f1(x, y), f2(x, y))
ranging over pairs of strings. The first party (with input x) wishes to obtain
f1(x, y) and the second party (with input y) wishes to obtain f2(x, y). We often
denote such a functionality by (x, y) �→ (f1(x, y), f2(x, y)). Thus, for example,
the zero-knowledge proof of knowledge functionality for a relation R is denoted
by ((x, w), λ) �→ (λ, (x, R(x, w))). In the context of concurrent composition, each
party actually uses many inputs (one for each execution), and these may be
chosen adaptively based on previous outputs. We consider both concurrent self
composition (where the number of executions is unbounded) and m-bounded
concurrent self composition (where the number of concurrent executions is a
priori bounded by m and the protocol design can depend on this bound).

Adversarial behavior. In this work we consider a malicious, static adversary
that runs in time that is polynomial in the security parameter. Such an adversary
controls one of the parties (who is called corrupted) and may then interact with
the honest party while arbitrarily deviating from the specified protocol. Our
definition does not guarantee any fairness. That is, the adversary always receives
its own output and can then decide when (if at all) the honest party will receive
its output. The scheduling of message delivery is decided by the adversary.

Security of protocols (informal). The security of a protocol is analyzed by
comparing what an adversary can do in the protocol to what it can do in an
ideal scenario that is trivially secure. This is formalized by considering an ideal
computation involving an incorruptible trusted third party to whom the parties
send their inputs. The trusted party computes the functionality on the inputs
and returns to each party its respective output. Unlike in the case of stand-alone
computation, here the trusted party computes the functionality many times, each
time upon different inputs. Loosely speaking, a protocol is secure if any adversary
interacting in the real protocol (where no trusted third party exists) can do no
more harm than if it was involved in the above-described ideal computation.

Concurrent executions in the ideal model. In an ideal execution, the par-
ties P1 and P2 interact with a trusted third party, sending it inputs and receiv-
ing back outputs. Party P1 and P2’s inputs are determined by polynomial-size
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input-deciding circuit families X = {Xn}n∈N and Y = {Yn}n∈N, respectively.
The circuits Xn and Yn are polynomial in n and output exactly n bits. These
circuits determine the length-n input values to be used, based on the current
session number and previous outputs. Note that the number of previous outputs
ranges from zero (for the case that no previous outputs have yet been obtained)
to some fixed polynomial in n (that depends on the number of session initiated
by the adversary).1 Now, the ideal execution proceeds as follows. Whenever the
adversary wishes to initiate a new session, it sends a start-session message to the
trusted party. The trusted party then sends (start-session, i) to the honest party,
where i is the index of the session (i.e., this is the ith session to be started).
Upon receiving (start-session, i) from the trusted party, the honest party applies
its input-deciding circuit to (i) and its previous outputs, and obtains a new input
vi for this session. The honest party then sends (i, vi) to the trusted party.

Whenever it wishes, the adversary can then send a message (i, wi) to the
trusted party, for any wi ∈ {0, 1}n of its choice. Upon sending this pair, it
receives back its output from the trusted party, computed upon inputs (vi, wi).
Following this, but again whenever it wishes, the adversary can instruct the
trusted party to send the honest party its ith output; the adversary does this by
sending a (send-output, i) message to the trusted party. Finally, at the conclusion
of the execution, the honest party outputs the vector of outputs that it received
from the trusted party, and the adversary may output an arbitrary (probabilistic
polynomial-time computable) function of its auxiliary input z, the corrupted
party’s input-deciding circuit and the outputs obtained from the trusted party.

Let f : {0, 1}∗ × {0, 1}∗ �→ {0, 1}∗ × {0, 1}∗ be a functionality, and let S be
a non-uniform probabilistic polynomial-time machine (representing the ideal-
model adversary). Then, the ideal execution of f (on input-deciding circuits
(Xn, Yn) and auxiliary input z to S), denoted idealf,S(Xn, Yn, z), is defined
as the output pair of the honest party and S from the above ideal execution.

(We note that the definition of the ideal model does not differ for the case
that unbounded concurrency or m-bounded concurrency is considered. This is
because this bound is relevant only to the scheduling allowed to the adversary
in the real model; see below.)

Execution in the real model. We next consider the real model in which a
real two-party protocol is executed (and there exists no trusted third party). Let
f be as above and let ρ be a polynomial-time two-party protocol for computing
f . (We say that a protocol is polynomial-time if the running-time of the honest
parties in a single execution is bound by a fixed polynomial.) In addition, let
A be a non-uniform probabilistic polynomial-time machine that controls either
P1 or P2. Then, the real concurrent execution of ρ (with input-deciding circuits
(Xn, Yn) and auxiliary input z to A), denoted realρ,A(Xn, Yn, z), is defined as
the output pair of the honest party and A, resulting from the following process.
The parties run concurrent executions of the protocol, where the ith session is
initiated by the adversary by sending a start-session message to the honest party.
1 By convention, if the number of previously obtained outputs is greater than the

maximum input length to the circuit, then we define the next input to be ⊥.
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The honest party then applies its input-deciding circuit on (i) and its previous
outputs in order to obtain the input for this new session. (As in the ideal model,
if the length of all previous outputs is greater than the maximum input length
to the input-deciding circuit, then the next input is taken as ⊥.) The scheduling
of all messages throughout the executions is controlled by the adversary. That
is, the execution proceeds as follows. The adversary sends a message of the form
(i, α) to the honest party. The honest party then adds the message α to the view
of its ith execution of ρ and replies according to the instructions of ρ and this
view. The adversary continues by sending another message (j, β), and so on. We
note that there is no restriction on the scheduling allowed by the adversary. (We
sometimes refer to this as unbounded concurrency, in order to distinguish it from
m-bounded concurrency that is defined next.)

In addition to the above setting where no restriction is placed on the schedul-
ing, we also consider m-bounded concurrency, where the scheduling by the ad-
versary must fulfill the following condition: for every execution i, from the time
that the ith execution begins until the time that it ends, messages from at most
m different executions can be sent. (Formally, view the schedule as the ordered
series of messages of the form (index,message) that are sent by the adversary.
Then, in the interval between the beginning and termination of any given exe-
cution, the number of different indices viewed can be at most m.) We note that
this definition of concurrency covers the case that m executions are run simulta-
neously. However, it also includes a more general case where many more than m
executions take place, but each execution overlaps with at most m other execu-
tions. In this setting, the value m is fixed ahead of time, and the protocol design
may depend on the choice of m. We denote the output of the adversary and
honest party in the setting of m-bounded concurrency by realm

ρ,A(Xn, Yn, z).

Security as emulation of a real execution in the ideal model. Having
defined the ideal and real models, we can now define security of protocols. Loosely
speaking, a protocol is secure if for every real-model adversary A there exists an
ideal model adversary S such that for all polynomial-size input-deciding circuits,
the outcome of an ideal execution with S is computationally indistinguishable
from the outcome of a real protocol execution with A. One important technical
issue which arises here is due to the fact that the same S must work for all
polynomial-size input-deciding circuits. In particular, this means that the honest
parties (who compute their inputs in every execution from these circuits) may
run longer than S can run (specifically, the size of the input-deciding circuits
may be greater than S’s running time).2 This is an “unfair” requirement on
S and we therefore allow a different ideal-model adversary S for every “size”
circuit. That is, we require that for every real adversary A and polynomial q(·)
there exists an ideal adversary S that works for all input-deciding circuit families
X = {Xn} and Y = {Yn} of size O(q(n)). We stress that any protocol that is
secure when S must work for all polynomial-size input-deciding circuits is also

2 We note that the number of executions is not a problem because this is determined
by A, and S comes after A in the order of quantifiers.
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secure under this relaxation. This modification therefore only strengthens our
impossibility results.3 We now present the definition:

Definition 1 (security under concurrent self composition): Let f and ρ be as
above. Protocol ρ is said to securely compute f under concurrent self composition
if for every real-model non-uniform probabilistic polynomial-time adversary A
controlling party Pi for i ∈ {1, 2} and every polynomial q(·), there exists an
ideal-model non-uniform probabilistic polynomial-time adversary S controlling
Pi, such that for all families of input-deciding circuits X = {Xn}n∈N and Y =
{Yn}n∈N of size at most O(q(n)), and every auxiliary input z ∈ {0, 1}∗,

{
idealf,S(Xn, Yn, z)

}
n∈N

c≡
{
realρ,A(Xn, Yn, z)

}
n∈N

Let m = m(n) be a fixed polynomial. Then, we say that ρ securely computes f
under m-bounded concurrent self composition if

{
idealf,S(Xn, Yn, z)

}
n∈N

c≡
{
realm

ρ,A(Xn, Yn, z)
}

n∈N

Non-trivial protocols. Notice that by the definition of security in the ideal
model, the honest party is never guaranteed to receive output. Therefore, the
“real” protocol that just hangs and does not provide output to any party is
actually secure by definition (and so our impossibility results cannot apply to
all protocols). We therefore introduce the notion of non-trivial protocols. Such a
protocol has the property that if the real-model adversary instructs the corrupted
party to act honestly (i.e., follow the protocol specification), then both parties
receive output.

2.2 Concurrent General Composition of Two-Party Protocols

Informally speaking, concurrent general composition considers the case that a
secure protocol ρ runs concurrently with an arbitrary other protocol π. Further-
more, the inputs to ρ can be influenced (or actually determined) by protocol π.
In the formalization of this setting, π is a “controlling protocol” that among
other things, contains ideal calls to a trusted party that computes a functional-
ity f . When these calls are replaced by executions of ρ, we denote the composed
protocol by πρ. We stress that, in addition to representing a “controlling proto-
col”, π can also represent arbitrary protocols that are running concurrently with
ρ in the network. Therefore, by requiring that ρ remains secure for every calling
protocol π, we derive that ρ remains secure when executed in any network with
any set of protocols running. See [16] for more discussion.
3 The reason that we insist on allowing a different S for every q(·) is due to the fact

that, otherwise, it would turn out that concurrent general composition does not
imply concurrent self composition. This would be absurd. We stress that our proof
that concurrent self composition implies concurrent general composition holds in any
case.
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Let ρ be as above and assume that it computes a functionality f . Then,
the security of ρ when composed with π in the real model is formalized by
comparing the πρ composition to a hybrid execution where π uses ideal calls to
a trusted party computing the functionality f . If the results of the hybrid and
real executions are indistinguishable, then this means that a real execution of ρ
behaves like an ideal call to f , even when run concurrently with π.

The hybrid model. Let π be an arbitrary polynomial-time protocol that uti-
lizes ideal interaction with a trusted party computing a two-party functionality
f . This means that π contains two types of messages: standard messages and
ideal messages: A standard message is one that is sent between the parties that
are participating in the execution of π; an ideal message is one that is sent by
a participating party to the trusted third party, or from the trusted third party
to a participating party. This trusted party computes f and associates all ideal
messages with f . Notice that the computation of π is a “hybrid” between the
ideal model (where a trusted party carries out the entire computation) and the
real model (where the parties interact with each other only). Specifically, the
messages of π are sent directly between the parties, and the trusted party is
only used in the ideal calls to f .

The interaction with the trusted party is exactly according to the description
of concurrent executions in the ideal model, as described in Section 2.1. In con-
trast, the standard messages are dealt with exactly according to the description
of the real model, as described in Section 2.1. More formally, computation in the
hybrid model proceeds as follows. The computation begins with the adversary
receiving the input and random tape of the corrupted party. Throughout the
execution, the adversary sends any standard and ideal messages that it wishes
in the name of this party (where the format of the ideal messages is as defined in
the ideal execution in Section 2.1). The honest party always follows the specifi-
cation of protocol π. Specifically, upon receiving a message (from the adversary
or trusted party), the party reads the message, carries out a local computation
as instructed by π, and sends standard and/or ideal messages, as instructed by
π. At the end of the computation, the honest party writes the output value
prescribed by π on its output tape and the adversary outputs an arbitrary func-
tion of its view. Let n be the security parameter, let S be an adversary for the
hybrid model with auxiliary input z, and let x, y ∈ {0, 1}n be the parties’ re-
spective inputs to π. Then, the hybrid execution of π with functionality f , denoted
hybridf

π,S(x, y, z), is defined as the output of the adversary S and of the honest
party from the above hybrid execution.

The real model – general composition. Let ρ be a polynomial-time two-
party protocol for computing the functionality f . Intuitively, the composition
of protocol π with ρ is such that ρ takes the place of the interaction with the
trusted party that computes f . Formally, each party holds separate probabilistic
interactive Turing machines (ITMs) that work according to the specification of
protocol ρ for that party. When π instructs a party to send an ideal message α
to the trusted party, the party writes α on the input tape of a new ITM for ρ
and invokes the machine. Any message that it receives that is marked for this
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execution of ρ, it forwards to this ITM, and all other messages are answered
according to π. (The different executions of ρ are distinguished with indices,
as described in Section 2.1. Furthermore, π-messages are distinguished from ρ-
messages with a unique index/symbol for π.) Finally, when an execution of ρ
concludes and a value β is written on the output tape of an ITM, the party
copies β to the incoming communication tape for π, as if β is an ideal message
(i.e., output) received from the trusted party. This composition of π with ρ is
denoted πρ and takes place without any trusted help. Let n be the security
parameter, let A be an adversary for the real model with auxiliary input z, and
let x, y ∈ {0, 1}n be the parties’ respective inputs to π. Then, the real execution
of π with ρ, denoted realπρ,A(x, y, z), is defined as the output of the adversary
A and of the honest party from the above real execution.

Security as emulation of a real execution in the hybrid model. Having
defined the hybrid and real models, we can now define security of protocols.
Loosely speaking, the definition asserts that for any context, or calling protocol
π, the real execution of πρ emulates the hybrid execution of π which utilizes ideal
calls to f . The fact that the above emulation must hold for every protocol π that
utilizes ideal calls to f , means that general composition is being considered.

Definition 2 (security under concurrent general composition): Let ρ be a poly-
nomial-time two-party protocol and f a two-party functionality. Then, ρ securely
realizes f under concurrent general composition if for every polynomial-time proto-
col π that utilizes ideal calls to f and every non-uniform probabilistic polynomial-
time real-model adversary A for πρ, there exists a non-uniform probabilistic
polynomial-time hybrid-model adversary S such that for all inputs x, y ∈ {0, 1}n

and all auxiliary inputs z ∈ {0, 1}∗,
{
hybridf

π,S(x, y, z)
}

n∈N

c≡ {
realπρ,A(x, y, z)

}
n∈N

Note that non-trivial protocols are also defined for general composition. Once
again, the requirement is that if A instructs the corrupted party to act honestly
in the execution of ρ, then the honest party receives its output from ρ.

2.3 Functionalities That Enable Bit Transmission

Informally speaking, a functionality enables bit transmission if it can be used by
the parties to send bits to each other. For example, the “equality functionality”,
where both parties receive the output, enables bit transmission as follows. The
party who wishes to receive a bit inputs a predetermined value, say 1. Then, if
the sending party wishes to send a bit 0, it inputs 0 (in this case, the inputs are
not equal and so the output of the computation is 0). On the other hand, if the
sending party wishes to send the bit 1, then it inputs 1 (thus, the inputs are
equal and the output is 1). Notice that a functionality enables bit transmission
only if both parties are able to send bits to each other. Therefore, functional-
ities like oblivious transfer and zero-knowledge do not enable bit transmission,
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because only one party receives output. Nevertheless, by considering a more
general setting where both parties can play both roles in the functionality (e.g.,
both parties can prove statements in zero-knowledge and both parties can play
the sender in the oblivious transfer), we obtain that any functionality with the
property that one party’s output depends on the other party’s input actually
enables bit transmission. This generalization is dealt with in the full version of
this paper. We now present the formal definition:

Definition 3 (functionalities that enable bit transmission): A deterministic
functionality f = (f1, f2) enables bit transmission from P1 to P2 if there exists an
input y for P2 and a pair of inputs x and x′ for P1 such that f2(x, y) �= f2(x′, y).
Likewise, f = (f1, f2) enables bit transmission from P2 to P1 if there exists an
input x for P1 and a pair of inputs y and y′ for P2 such that f1(x, y) �= f1(x, y′).
We say that a functionality enables bit transmission if it enables bit transmission
from P1 to P2 and from P2 to P1.

We note that the notion of enabling bit transmission can be generalized to prob-
abilistic functionalities in a straightforward way.

3 Self Composition versus General Composition

In this section we show that if a functionality f enables bit transmission, then a
protocol ρ securely computes f under (unbounded) concurrent self composition if
and only if it securely computes f under concurrent general composition. Thus,
the difference between self and general composition no longer holds for such
functionalities. We stress that there is nevertheless a difference between these
notions when bounded composition is considered. Specifically, security under
bounded-concurrency can be achieved for self composition [14,18], but cannot be
achieved for general composition [16]. (By bounded concurrency in the setting
of general composition, we mean that the number of executions of the secure
protocol is a priori bounded, exactly like in self composition. In contrast, there
is no bound on the calling protocol π.)

Theorem 4 Let f be a two-party functionality that enables bit transmission,
and let ρ be a polynomial-time protocol. Then, ρ securely computes f under
(unbounded) concurrent self composition if and only if ρ securely computes f
under concurrent general composition.

Intuitively, security under general composition implies security under self com-
position because in both cases, many copies of the secure protocol are run; the
only difference is that in the setting of general composition, other protocols may
also be run. The other, more interesting direction, is proven as follows. Loosely
speaking, the parties use the “bit transmission property” of f in order to emulate
an execution of πρ, while only running copies of ρ (recall that πρ denotes the
concurrent general composition of a secure protocol ρ with an arbitrary other
protocol π). This can be carried out by sending the messages of π one bit at
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a time, via executions of the protocol ρ that computes f . Thus, it is possible
to emulate the setting of concurrent general composition, within the context of
concurrent self composition. The proof of Theorem 4 appears in the full version
of this paper. As we have mentioned, we also show that in a model where the
parties can play different roles in the computation, full equivalence holds between
concurrent self composition and concurrent general composition.

In the full version of this paper, we also show a separation between concur-
rent self composition and concurrent general composition, for functions that do
not enable bit transmission. Specifically, we show that the zero-knowledge proof
of knowledge functionality (for an NP-complete language) can be securely com-
puted under concurrent self composition. However, in [16], it has been shown
that this cannot be achieved under concurrent general composition.

4 Impossibility for Concurrent Self Composition

An important ramification of Theorem 4 is that known impossibility results for
concurrent general composition apply also to unbounded concurrent self com-
position, as long as the functionality in question enables bit transmission. As we
will see, this rules out the possibility of obtaining security under concurrent self
composition for large classes of two-party functionalities. We stress that the im-
possibility results are unconditional. That is, they hold without any complexity
assumptions and for any type of simulation (in particular they are not limited
to “black-box” simulation).

Impossibility for concurrent general composition. The following impos-
sibility results for concurrent general composition were shown in [16]:

1. Let f :{0, 1}∗×{0, 1}∗ →{0, 1}∗ be a deterministic functionality. If f depends
on both parties’ inputs,4 then the functionality (x, y) → (f(x, y), f(x, y))
cannot be securely computed under concurrent general composition by any
non-trivial protocol. (Recall that a protocol is non-trivial if it generates
output when both parties are honest.)

2. Let f : {0, 1}∗ × {0, 1}∗ → {0, 1}∗ × {0, 1}∗ be a deterministic functionality
and denote f = (f1, f2). If f is not completely revealing,5 then the func-
tionality (x, y) → (f1(x, y), f2(x, y)) cannot be securely computed under
concurrent general composition by any non-trivial protocol.

Impossibility results for concurrent self composition. Let Φ be the set
of functionalities described above, that cannot be securely realized under con-
current general composition and let Ψ be the set of all two-party functionalities
that enable message transmission. Applying Theorem 4 to the results of [16], we
obtain the following corollary:
4 Formally, a functionality f depends on both inputs if there exist x1, x2, y and x, y1, y2

such that f(x1, y) �= f(x2, y) and f(x, y1) �= f(x, y2).
5 The definition of completely revealing functionalities can be found in Section 5.
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Corollary 5 Let f be a functionality in Φ∩Ψ . Then, f cannot be securely com-
puted under unbounded concurrent self composition by any non-trivial protocol.

The set of functionalities Φ ∩ Ψ contains all the functionalities ruled out in
[16] that also enable bit transmission. For example, Yao’s famous millionaires’
problem (i.e., the computation of the “less than” functionality), where both
parties receive the output, is included in this set.

5 Communication Complexity Lower Bound

In this section we prove that for a class of functionalities F , if a protocol ρ
securely computes a functionality f ∈ F under m-bounded concurrent composi-
tion, and f enables bit transmission, then ρ must have bandwidth of at least m
bits. We prove this for one class of functionalities F , although the proof can be
extended to other classes of functionalities that suffer from the impossibility re-
sult stated in Corollary 5. The proof of our lower bound combines ideas from [7]
and [16], together with the proof of Theorem 4.

Functionalities that are completely revealing. We prove the lower bound
for one class of functionalities: those that do not “completely reveal P1 or P2’s
input”, and enable bit transmission. In order to state this, we need to formally
define what it means for a functionality to be “completely revealing”. Loosely
speaking, a (deterministic) functionality completely reveals party P1’s input, if
party P2 can choose an input that will enable it to completely determine P1’s
input (no matter what P1’s input is). That is, a functionality f completely reveals
P1’s input if there exists an input y for P2 so that for every x, it is possible to
derive x from f(x, y). For example, let us take the maximum functionality for a
given range, say {0, . . . , n}. Then, party P2 can input y = 0 and the result is
that it will always learn P1’s exact input. In contrast, the less-than functionality
is not completely revealing because for any input used by P2, there will always
be uncertainty about P1’s input (unless P1’s input is the smallest or largest
in the range). For our lower bound here, we will consider functionalities over
finite domains only. This significantly simplifies the definition of “completely
revealing”. However, our proof holds for the general case as well; see the full
version of [7] for a complete definition.

We begin by defining what it means for two inputs to be “equivalent”: Let
f : X×Y → {0, 1}∗×{0, 1}∗ be a two-party functionality and denote f = (f1, f2).
Let x, x′ ∈ X. We say that x and x′ are equivalent with respect to f2 if for every
y ∈ Y it holds that f2(x, y) = f2(x′, y). Notice that if x and x′ are equivalent
with respect to f2, then x can always be used instead of x′ (at least regarding
P2’s output). We now define completely revealing functionalities:

Definition 6 (completely revealing functionalities over finite domains): Let f :
X×Y → {0, 1}∗×{0, 1}∗ be a deterministic two-party functionality such that the
domain X × Y is finite, and denote f = (f1, f2). We say that the functionality
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f2 completely reveals P1’s input if there exists a single input y ∈ Y for P2, such
that for every pair of values x, x′ ∈ X that are not equivalent with respect to
f2, it holds that f2(x, y) �= f2(x′, y). Complete revealing for P2’s input is defined
analogously. We say that a functionality is completely revealing if f1 completely
reveals P2’s input or f2 completely reveals P1’s input.

If a functionality completely reveals P1’s input, then party P2 can set its own
input to be y from the definition, and then P2 will always obtain the exact input
used by P1, or one that is equivalent to it. Specifically, given y and f2(x, y), it
can traverse over all X and find the unique x that must be P1’s input (or one
equivalent to it). Thus we see that P1’s input is completely revealed by f2. In
contrast, if a functionality f2 does not completely reveal P1’s input, then there
does not exist such an input for P2 that enables it to completely determine P1’s
input. This is because for every y that is input by P2, there exist two non-
equivalent inputs x and x′ such that f2(x, y) = f2(x′, y). Therefore, if P1’s input
is x or x′, it follows that P2 is unable to determine which of these inputs were
used by P1. Notice that if a functionality is not completely revealing, P2 may still
learn much of P1’s input (or even the exact input “most of the time”). However,
there is a possibility that P2 will not fully obtain P1’s input. As we will see, the
existence of this “possibility” suffices for proving the lower bound. Note that we
require that x and x′ be non-equivalent because in such a case, x and x′ are
really the same input and so, essentially, both x and x′ are P1’s input.

The statement of the theorem below refers to the bandwidth of a protocol ρ.
This is defined to be the total number of bits sent by both parties in a protocol
execution. We are now ready to state the lower bound:

Theorem 7 Let f = (f1, f2) be a deterministic two-party functionality over a
finite domain that is not completely revealing and enables bit transmission. If
a non-trivial protocol ρ securely computes f under m-bounded concurrent self
composition, then the bandwidth of ρ is greater than or equal to m.

Proof: As a first step, we note that the proof of Theorem 4 actually proves
something stronger than the theorem statement. Before showing this, we first
define the bandwidth of a hybrid-model protocol π that utilizes ideal calls to f
to equal the total number of bits sent by the parties to each other, plus a single
bit for each call to f .6 Now, let π be a hybrid-model protocol that utilizes ideal
calls to f , and has bandwidth at most m. Then, in the proof of Theorem 4, we
actually showed that if f enables bit transmission, then m invocations of ρ suffice
for perfectly emulating πρ (one invocation for each bit of π and one invocation
for replacing each ideal call to f). In other words, for any protocol π of bandwidth
at most m, an execution of πρ can be emulated using m concurrent executions of
ρ. Furthermore, this yields a simulator for the hybrid-model execution of π with
f . Thus, security under m-bounded concurrent self composition implies security
6 This may seem to be a strange way to count the bandwidth of a hybrid-model pro-

tocol. However, what we are really interested in is the bandwidth of a real protocol;
this is just a tool to reach that aim and defining it in this way simplifies things.
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under concurrent general composition for protocols π of bandwidth at most m.
We conclude that the following claim holds:

Claim 8 Let f be a two-party functionality that enables bit transmission, and let
ρ be a polynomial-time protocol. If ρ securely computes f under m-bounded con-
current self composition, then for every hybrid-model polynomial-time protocol π
of bandwidth at most m that utilizes ideal calls to f and for every non-uniform
probabilistic polynomial-time real-model adversary A for πρ, there exists a non-
uniform probabilistic polynomial-time hybrid-model adversary S such that for all
x, y ∈ {0, 1}n and all z ∈ {0, 1}∗,

{hybridf
π,S(x, y, z)}n∈N

c≡ {realπρ,A(x, y, z)}n∈N (1)

We now proceed with the actual proof of Theorem 7. Let f = (f1, f2) be a
deterministic two-party functionality over a finite domain, such that f is not
completely revealing and enables bit transmission. We prove the theorem for the
case that f2 does not completely reveal P1’s input; the other case is analogously
proven. Assume, by contradiction, that there exists a protocol ρ that securely
computes f under m-bounded concurrent self composition, and has bandwidth
less than m. We then show that in such a case, it is possible to construct a
protocol π that utilizes ideal calls to f and has bandwidth at most m, such
that π has the following property: There exists a real-model adversary A for πρ

such that no hybrid-model adversary/simulator S can cause Eq. (1) of Claim 8
to hold. This thereby contradicts Claim 8, and we conclude that if ρ securely
computes f under m-bounded concurrent self composition, then it must have
bandwidth of at least m.

Protocol π of bandwidth m: Protocol π works as follows. Party P2 receives for
input two uniformly chosen values x ∈R X and y ∈R Y . (Note that since security
must hold for all inputs, it must also hold for uniformly chosen inputs.) Then,
P2 sends the input y to the trusted party for an ideal call to f . In addition, P2
runs the instructions of P1 in ρ with input x. At the conclusion, P2 outputs 1
if and only if the output that it receives from the trusted party is f2(x, y). This
completes the instructions for P2. Regarding the instructions for Party P1, it
actually makes no difference because this party will always be corrupted in π.
Nevertheless, in order for π to make sense, one can define P1 in an analogous
way to P2. This completes the description of π. Note that by the assumption
that ρ has bandwidth of less than m, the protocol π has bandwidth less than or
equal to m (if ρ has bandwidth m−1, then π will have bandwidth m by adding 1
for the single ideal call to f).

We stress that P2’s instructions in protocol π are not equivalent to its in-
structions in ρ. This is because in π, party P2 follows the instructions of P1 in ρ.
However, such behaviour may not be in accordance with ρ, because P1’s instruc-
tions in ρ may not be symmetric with P2’s instructions (e.g., see the protocols
of [15,18] that use asymmetrical instructions in an inherent way). Nevertheless,
by Claim 8, protocol ρ must remain secure for all protocols π of bandwidth at
most m, and in particular, for the protocol π above.
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Real-model adversary A for πρ: Let A be an adversary who controls the corrupted
party P1. Before describing A, notice that the composed protocol πρ essentially
consists of two executions of ρ: in one of the executions, each party plays its
designated role (these are the ρ-messages) and in the other, the parties play
reversed roles (these are the π-messages). Adversary A works as follows. When
P2 sends the first ρ-message to P1,7 adversary A forwards this same message
back to P2 as if it is P1’s first π-message to P2. Then, when P2 answers this
π-message (according to P1’s instructions in ρ and with input x), A forwards it
back to P2 as if it is a ρ-message from P1.

Since party P2 runs the ρ-instructions of P1 in π, the execution of πρ with
adversary A amounts to P2 playing both roles in a single execution of ρ, where
input x is used for P1’s role and input y is used for P2’s role. Furthermore, P2
plays both roles honestly and according to the respective instructions of P1 and
P2. Therefore, the transcript is identical to the case that two honest parties P1
and P2 run ρ with respective inputs x and y. By the security of ρ and the fact
that it is a non-trivial protocol, we have that except with negligible probability,
P2 receives the P2-output from this execution of ρ, and that this output must
equal f2(x, y). (This follows from the guaranteed behaviour of such a protocol
when two honest parties participate.) Now, since P2 outputs 1 in π if and only
if it receives f2(x, y) from the trusted party, we have that it outputs 1 in the
πρ execution with A, except with negligible probability (recall that in πρ, the
output from ρ is treated by P2 as if it was received from the trusted party).

Hybrid-model adversary S for π: By the assumption that ρ is secure under m-
bounded concurrent self composition and from Claim 8, we have that there exists
a probabilistic polynomial-time hybrid-model adversary S such that:

{hybridf
π,S(λ, (x, y), λ)} c≡ {realπρ,A(λ, (x, y), λ)} (2)

Notice here that P2’s input is (x, y) as described above and we can assume that
P1’s input and the adversary’s auxiliary input are empty strings.

We now make an important observation about the hybrid-model simulator S
from Eq. (2). In the ideal execution, with overwhelming probability, S must send
the trusted party an input x̃ ∈ X such that for every ỹ ∈ Y , f2(x̃, ỹ) = f2(x, ỹ),
where x is from P2’s input to π. In other words, S must send the trusted party
a value x̃ that is equivalent to P2’s input x. Otherwise, P2’s output from the
hybrid and real executions will be distinguishable. In order to see this, recall that
in a real execution with A, party P2 outputs 1 except with negligible probability.
Therefore, the same must be true in the hybrid execution. However, if S sends
an input x̃ for which there exists a ỹ so that f2(x̃, ỹ) �= f2(x, ỹ), then with
probability 1/|Y | party P2 will output 0; specifically when P2’s input y equals
this ỹ (note that since Y is finite, this is a constant probability). This argument
works because P2 does not use y in any messages sent to S in the hybrid-model
execution of π. Thus, S works independently of the choice of y.

Until now, we have shown that the hybrid-model adversary S can “extract”
an input x̃ that is equivalent to x. However, notice that S does this while essen-
7 We assume without loss of generality that the first message in ρ is sent by P2.
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tially running an on-line execution of ρ with party P1. (Of course, the interaction
is actually of π-messages with P2. Nevertheless, P2 just plays P1’s role in ρ for
this interaction, so this makes no difference.) This means that S could actually
be used by an adversary who has corrupted P2 and wishes to extract the honest
P1’s input, or one equivalent to it. Since f is not completely revealing, this is a
contradiction to the security of ρ. We proceed to formally prove this.

A different scenario: We now change scenarios and consider a single execution of
ρ with an honest party P1 who has input x ∈R X, and a real-model adversary A′

who controls a corrupted P2. The strategy of A′ is to internally invoke the hybrid-
model adversary S, and perfectly emulate for it the hybrid-model execution of
π with ideal calls to f . Adversary A′ needs to emulate the trusted party for the
ideal call to f that is made by S, as well as the π-messages that S expects to
receive. Notice that in the setting of a hybrid-model execution of π, these π-
messages are sent by P2. However, they are exactly the messages that an honest
P1 would send in a single real-model execution of ρ, with input x. Therefore, A′

forwards S the messages that it receives from P1 in its real execution of ρ, as if
S received them from P2 in a hybrid-model execution of π. Likewise, messages
from S are sent externally to P1. At some stage of the emulation, S must send
a value x̃ to the trusted party. A′ obtains this x̃, outputs it and halts.

The view of S in this emulation by A′ (until A′ halts) is identical to its view
in a hybrid-model execution of π. Therefore, by the above observation regarding
S, it holds that x̃ must be such that for every y ∈ Y , f2(x̃, y) = f2(x, y), except
with negligible probability. That is, in a single real execution of ρ between an
honest P1 and an adversary A′ controlling P2, we have that A′ outputs a value
x̃ that is equivalent to P1’s input x (except with negligible probability).

It remains to show that in an ideal execution of f , for every ideal-model
simulator S ′ controlling P2, the probability that S ′ outputs a value x̃ that is
equivalent to P1’s input x is less than 1 − 1/p(n), for some polynomial p(·).
This suffices because the real-model adversary A′ does output such an x̃; this
therefore proves that there does not exist a simulator for A′, in contradiction to
the (stand-alone) security of ρ. Now, in an ideal execution, S ′ sends some input
ỹ to the trusted party and receives back f2(x, ỹ). Furthermore, S ′ sends ỹ before
receiving any information about x. Therefore, we can view the ideal execution as
one where S ′ first sends some ỹ to the trusted party and then P1’s input x ∈R X
is chosen uniformly from X. Now, since f2 is not completely revealing, we have
that for every ỹ ∈ Y , there exist two non-equivalent inputs x1, x2 ∈ X such
that f2(x1, ỹ) = f2(x2, ỹ). Since x ∈R X, we have that with probability 2/|X|,
party P1’s input x is in the set {x1, x2}. Thus, with probability 2/|X|, party P2’s
output (and so the value received by S ′) is f2(x1, ỹ) = f2(x2, ỹ). Given that this
event occurred, S can output a value that is equivalent to x with probability at
most 1/2. (Recall that x1 and x2 are not equivalent. Therefore, S ′ cannot output
a value that is equivalent to both x1 and x2. Furthermore, the probability that
x = x1 equals the probability that x = x2. In other words, S ′ must fail with
probability 1/2 in this case.) We conclude that in the ideal execution, S ′ outputs
a value that is not equivalent to P1’s input with probability at least 1/|X|.
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Thus, the real and ideal executions can be distinguished with advantage that
is at most negligibly smaller than 1/|X|. Since X is finite, 1/|X| is a constant
probability and so this contradicts the security of ρ, completing the proof.
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