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Abstract. If K is an algebraic number field with ri real and 2r2

complex conjugate fields, n = n + 2r2 is the degree of the field, and D is
absolute value of the discriminant of K, then we show

D1/n ^ (Q0)ri/n(22)2r^/n + o(l) , n -> oo .

If the zeta function of K has no zeros β + iγ with β > 1/2 and 0 < | γ \ < 3,
then we show

DUn ^ (188)ri/n(41)27V« + o(l) , n -+ oo .

Let K be an algebraic number field of degree n = nκ, with rx real
and 2r2 complex conjugate fields, and let D = Dκ be the absolute value
of the discriminant of K. Until recently the best bound for D (at least
for large n) was the one due to Rogers [4] and Mulholland [1]:

( 1 ) DUn ^ (32.561. .)ri/%(15.775. )2 r 2 / % + o(l) , w -^ oo .

Their proofs depended on geometry of numbers methods.
The above bound was improved recently in [2], where some applica-

tions of lower bounds for discriminants were also discussed. It was
shown there that

(2 ) D1/n ^ (55)ri/%(21)2r2/* + o(l) , n -> oo ,

and that if ζκ(s), the zeta function of K, has no zeros β + %Ί with

β > 1/2 and (1 - β)/2 < | τ | < 10, then

( 3) DUn ^ (136)r i/w(34.5)2r^ + o(l) , n — «> .

These bounds were proved by a new analytical method, based on an

identity of Stark [5] expressing D in terms of the zeros of ζκ(s).

In this paper we will obtain even better bounds for D by employing

a slight variant of the method of [2]. Let

Z(s) = --£<«) ,
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Since for σ = Re (s) > 1 we have

Z{8) ~ * (NPY - 1 '

where P runs through the prime ideals of K, we see that Z(σ) > 0,
Zj{o) > 0 for σ > 1. With this notation we can now state our main
results.

THEOREM 1. If

fi = UK) = 2Z(1.01) + 1.015^(2) + 0.0564^,(1.2)

+ 1.974^,(2.3) + 1.246Z8(1.7) + 0.2776^(2)

+ 2.588^(2.5) + 0.007532Z4(1.2) + 0.0865Z4(1.4)

+ 0.2Z4(1.6) + 2.946^(2.25) + 0.234^4(2.5)

+ 1.464Z4(2.75)

) + 1.184^(2) + 0.298Z,(1.2)
+ 2.04Z2(2.3) + 1.076Z,(1.7) + 2.946^,(2.5)
+ 0.0884Z4(L6) +

( 4 ) D^ (60.1) ri(22.2)2r2e/ l

(5) D ^ (58.6)pi(21.8)lr«e/*-ί0 .

THEOREM 2. // ζx(s) Λ-αs wo zeros p = β + iΊ with β > 1/2 and
0 < |7| < 3, then

( 6 ) D ^ (188.3)r>(41.6)2'V3-3.7xio8 f

Λ = /aW = 2Z(1.001) + 0.995^(2) + 2.448Z2(2.5)

+ 8.662Z3(2.5) + 1.902Z4(1.75) + 16.276Z4(2)

+ 300^β(4.25) + 0.0228Z.(l.l) + 0.03423,(1.1)

+ 473^9(2.1) + 12,6603,(3.1) + 3,340^9(4.1)

+ 85,000Z9(4.6) + 9.16310(1.55) + 7,090^14(2.3)

+ 3,460,000^14(3.5) .

Before proceeding to the proof we should make a few comments
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about these results. In general we cannot say anything about flf /2, and
/3 except that they are positive. In those cases in which K is known to
have many prime ideals with small norms, the contributions of the ft

can be used to obtain significantly better estimates. For example, if 2
splits completely in K, then by bounding the Zt from below by the sums
over the n prime ideals P which divide 2 we obtain

(4') D > (495)ri(183)2^-2" ,

(5') D > (472)^(175)2^e-70 ,

and if ζκ has no zeros β + %Ί with β > 1/2 and 0 < 171 < 3, then

(6') D > (4,696)ri(l,037)2r2<r3 7xl°3 .

If 3 splits complely, we obtain

(4") D > (351)ri(129)2r^-254 ,

(5") D > (335)^(124)2^"70 ,

(6") D > (3,326)^(734)2r*e-3-7x108 ,

and if both 2 and 3 split completely, the corresponding bounds are

(4'") D > (2,890)ri(l,070)2r2<Γ254,

(5'") D > (2,700)ri(l,000)2r2ίΓ70,

and

(6'") D > (82,900)ri(18,300)2r2e-3 7 x l 0 S .

These results are interesting in that they relate the arithmetic properties
of a field to the size of the discriminant. We should note that, as is
shown in [2], there exist infinitely many fields with discriminants smaller
than the bound (5'"), say.

The estimate (6) can be obtained on the assumption of a smaller
zero-free region than the one of Theorem 2. Furthermore, it can be
seen from the proof of Theorem 2 that there exists a positive constant
c such that if Dκ does not satisfy (6), then ζκ(s) has ^ cnκ zeros p =
β + %Ί with β > 1/2 and 0 < |7 | < 3.

The very large size of the error term 3.7 x 108 in (6) is due to
the fact that since Theorem 2 assumes an unproved hypothesis, no
attempt was made to obtain a small error term. However, by choosing
the variables in the proof somewhat differently one could obtain an
estimate which would be non-trivial even for small n (although the main
term would probably have to be decreased). Similarly, (4) and (5) are
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but two of an infinite family of estimates that can be derived by our
method. Unfortunately, in most cases each estimate of this type requires
a separate proof. However, in [3] a simple version of the method of
this paper is used to derive a very flexible result, which although not
as good as (4) or (5) for large n, is better than they are for moderately
large n (approximately for n ^ 130 if K is totally real and n <̂  210 of
K is totally complex) and gives non-trivial bounds even for very small
n. Furthermore, that estimate is very easy to prove and does not require
the computations needed to establish the theorems of this paper.

PROOF OF THEOREMS 1 AND 2. Let

(7) A = D1/22-r*π-n/2

and

As in [2] and [3], our starting point is an identity of H. M. Stark [5;
Lemma 1], [2; Lemma 1]:

(8) log A = --£*(-£-) - r2ψ(s) - - ^ - - + Z(s)
Δ \ Δ ' S — i. S

+ Σ'Σ
P S — p

valid identically in the complex variable s, where p runs through the
non-trivial zeros of ζκ(s) (i.e., those zeros p = β + %Ί for which 0 <
β < 1), and Σ ' indicates that the p and p terms are to be summed
together. Our main goal will be to obtain a lower bound for the sum over
the zeros that will be independent of D. For this purpose we will use
derivatives of (8), which give relations between the zeros p, the Z^s),
and the derivatives of the digamma function, but do not involve D.

First of all, if p is a non-trivial zero of ζκ, then so are p, 1 — p,
and l — ̂ o. Thus for real σ we can write

p σ - p 2 > ( σ - ρ σ - 1 + ρ

Hence if

E(σ, z) = Re \—L- + ϊ
(σ — z σ — 1 + z

and
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G(p) = ——-ψΊ — ) — fztyip) f

then for real σ we can write (8) as

(9) log A = G(σ) - -λ— - 1 + Z(σ) + i

If for j = 1, 2, •••, we let

and

then by differentiating (9) i — 1 times we obtain (for i ;> 2)

2 p ° ' 3~1 (σ — I)3' σj 3~1

Suppose now that we can find σ > 1 and a positive integer JV together
with σu , σN, each σ{ > 1, as well as positive real numbers al9 , aNf

and integers kl9 , kN9 each &i ^ 2, such that

1 = 1

holds for all non-trivial zeros p of ζκ. Then, combining (9), (11), and
(10), we see that

(12) log A ^ G(σ) + Σ afi^fa) ±— - 1
ι=i σ — 1 σ

4r

which, together with the definition (7) of A, gives us a bound for D of
the desired form.

The main difficulty in applying this method is the proper choice of
σ, N, σlf au and kt. The values of these variables which give us Theorems
1 and 2 are presented in separate tables. These values were found with
the help of linear programming, but as far as the proofs of (4)-(6) are
concerned, we only need to show that these values satisfy (11). In the
case of Theorem 1, to ensure that (11) holds for all non-trivial zeros p,
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we will prove that

(13) E(σ, s) ^ li z)

holds for all complex z = x + iy with 0 < x < 1. Since E and the Ej
are even functions of y, it suffices to prove (13) for y ^ 0. However, it
was pointed out by H. M. Stark that in fact it suffices to prove (13)
just for x = 1, y ^ 0. To see this, note that E and the E5 are harmonic
functions of z and in the strip 0 <: x <; 1 they tend uniformly to 0 as
y —> oo. Hence by the maximum principle for harmonic functions (13)
must hold throughout the strip 0 ^ x <̂  1, y ^ 0 if it holds on the
boundary of that strip. Now for y = 0 and 0 <: x <̂  1 we have E{σ, z) > 0
and 2£y(<τ', 2) < 0 for j ^ 2, so (13) is trivially valid. Also, E and the
Ej are invariant under the transformation x —* 1 — #, so if (13) holds for
x = 1, 2/^0, then it also holds for α; = 0, 7/ ^ 0. Thus we only need
to check (13) for x = 1, y ^ 0.

To prove Theorem 1 it thus remains to prove (13) for x = 1, 2/ ̂  0
for the choices of variables given in the first two tables. For y ^ 40
this can be done by means of very crude estimates, since the terms with
kt > 2 are negligible. For 0 ^ y < 40, the inequality (13) was proved
numerically. If g(u) e C2[a, b], say, and \g"(u)\ <* Q, ue[a, b], then for
x e [a, b], uoe [α, b] we have

Ig(x) - g(uQ) - g'(uQ)(x - uo)\ ^ —Q\x - uQ\2

Li

by Taylor's formula. In particular, if for some u0 e [a, b] we are given
g(uQ) > 0, g'(u0), and Q, then we can determine an interval around u0 on
which g(u) is positive. In our case we have to do this with

g(y) = E{σ, 1 + iy) - Σ aJΞkι(σlf 1 + iy) .Σ
l=ί

Evaluation of g(y) and g'(y) is straightforward. To bound the second
derivative, we use the fact that

and

%-χE(σ, 1 + iy)
dy2

r(r + 1)

N

Σ *
1 = 1

+

- 1 - ia r

\ff — iy\r+2)

\σ - ia\r+2\
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for ye [a, b], α > 0 . These bounds, when applied to several hundred sub-
intervals of [0, 40], show that the choices of variables corresponding to
(4) and (5) satisfy (13) for x = 1, 0 <Ξ y ^ 40, and this proves Theorem 1.

To prove Theorem 2, it is necessary to verify that the choices of
variables corresponding to (6) satisfy (13) for 0 < a; < 1, y = 0; x = 1/2,
0 5j y <* 3; and 0 < x < 1, y ^ 3. The case y = 0, 0 < # < l is again
trivial, while the case x = 1/2, 0 ̂  ?/ ̂  3 can be checked numerically, as
is the case of Theorem 1. In the case 0 < # < 1, 2/^3, the harmonic
functions argument shows that we only need to check when 1/2 <̂  x < 1,
y = 3 and x = 1, # ^ 3. For a? = 1 and y ^ 40 it is easy to check that
(13) is satisfied, since the terms with kt > 2 are negligible. On the other
hand, the two intervals 1/2 <; x < 1, y = 3 and a?. = 1, 3 <; # ^ 40 were
again checked numerically, which completed the proof of Theorem 2.
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Estimate (4): σ = 1.01, N = 12 Estimate (5): σ = 1.1, N = 9
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