
Lower Bounds for High Dimensional Nearest Neighbor Search and
Related Problems

Allan Borodin
Rafail Ostrovsky

Yuval Rabani

Abstract

In spite of extensive and continuing research, for various geometric search problems (such as nearest neighbor
search), the best algorithms known have performance that degrades exponentially in the dimension. This
phenomenon is sometimes called the curse of dimensionality . Recent results [38, 37, 40] show that in some
sense it is possible to avoid the curse of dimensionality for the approximate nearest neighbor search problem.
But must the exact nearest neighbor search problem suffer this curse? We provide some evidence in support
of the curse. Specifically we investigate the exact nearest neighbor search problem and the related problem
of exact partial match within the asymmetric communication model first used by Miltersen [43] to study
data structure problems. We derive non-trivial asymptotic lower bounds for the exact problem that stand
in contrast to known algorithms for approximate nearest neighbor search.

1 Introduction

Background. One of the most intriguing problems concerning search structures in computational geom-
etry is the following: Given n points in a d-dimensional Euclidean space (the database), pre-process the
points so that queries of the form “find in the database the closest point to location x” can be answered
quickly. More generally, we can define this nearest neighbor search (NNS) problem in any vector space,
and with any metric (or even with a non-metric distance function). Recently, theoretical research into this
problem gained some momentum, inspired in part by applications to multimedia information retrieval
and data mining [49, 20, 47, 27, 34, 50, 10, 26].

Trivially, one solution to the problem is to store the raw data, and in response to a query, to compute
the distance from the query to each of the n points. Typically, as in the Euclidean case, this would take
O(nd) storage and O(nd) search time. On the other extreme, if the set of possible queries is finite (e.g.,
in the Hamming cube), one can store the answer to each possible query in a dictionary keyed by the
query. In the Hamming cube (as a typical case), this requires exp(d) storage, but merely O(d) search
time. Thus, the challenge is to find a solution enjoying the good aspects of both trivial solutions; that is,
storage polynomial (preferably linear) in nd (the size of the data set), and search time polynomial (again
preferably linear) in d (the size of the query). This problem is non-trivial in the range1 log n � d � nκ,
for all κ > 0. (In non-discrete spaces, such as the Euclidean case, even smaller values of d are challenging
and for small d we might rephrase the challenge to allow search time polynomial, preferably linear, in
d + log n.)

To date, no such solution is known for arbitrary n and d in any reasonable setting (such as Euclidean
space, or the Hamming cube). The common “wisdom” among researchers is that simultaneously getting
poly(nd) storage and poly(d) search time is impossible. Moreover, it has been conjectured that either
storage or search time must grow exponentially in d (at least for certain values of n). This conjecture is
known as the curse of dimensionality [19]. Consequently, much of the present research emphasizes some
restriction of the problem, such as considering “typical inputs”, or approximate solutions.

1We use f(n) � g(n) to denote that f is asymptotically smaller than g.

1



2 Lower Bounds for High Dimensional Nearest Neighbor Search

Our results. This paper aims at providing some more persuasive evidence for the curse of dimensionality
in a combinatorial setting. We examine NNS in the context of the cell probe model [52]. In the cell probe
model, the database is stored in a data structure consisting of m memory cells, each containing b bits.
A query is answered by probing in sequence t cells (the address of each cell may be a function of the
query and of the contents of previously probed cells). We exploit the connection between asymmetric
communication complexity and the cell probe model [44] to derive tradeoffs between the size m of the
data structure and the number t · b of bits retrieved.

Specifically, consider the d-dimensional Hamming cube Cd = {0, 1}d. We analyze the communication
game between Alice, who gets a query q ∈ Cd, and Bob, who gets a database D ∈ Cn

d (think of D as a set
of n points in Cd). They have to output one iff the minimum Hamming distance from q to a point in D is
at most λ, and otherwise they have to output zero. The threshold λ ∈ {0, 1, 2, . . . , d} is a fixed parameter
of the communication game. Notice that the function that Alice and Bob have to compute is a decision
version of NNS. We refer to it as the λ-neighbor problem. Clearly, the NNS problem is at least as hard
as the λ-neighbor problem. We show that if there is a randomized two-sided error protocol2 to compute
the λ-neighbor problem where Alice sends a bits and Bob sends b bits, then either a = Ω(log n log d) or
b = Ω(n1−ε), for every ε > 0. We derive these bounds using the general richness technique developed
in [46]. In fact, using this richness technique we can prove much stronger lower bounds for randomized
one-sided error protocols (and hence for deterministic protocols) for the complement of the λ-neighbor
problem. Namely, for every ε, there is a δ such that either Alice sends (1− ε)d bits or Bob sends at least
δnd bits. However, as we will show, a “direct application” of this method to the λ-neighbor problem
appears to be impossible.3 Our main conceptual contribution then is a way to restrict the instances of
the λ-neighbor problem to a subset with a nicely structured communication matrix so as to be able to
apply the richness technique to the λ-neighbor problem.

We achieve the restriction by considering a different well studied search problem of significant im-
portance in its own right. In the exact partial match problem, the database consists of n points in the
Hamming cube Cd. A query has 0-1 values assigned to some of the coordinates. The other coordinates
are don’t cares. In reply, we must check if the query matches one of the points in the database, comparing
positions with assigned 0-1 values only. (Notice that the implicit distance function here is not a metric.)
We show an easy reduction from the exact partial match problem to the λ-neighbor problem, for some
value of λ. The reduction produces restricted instances of the λ-neighbor problem. We then proceed to
show lower bounds for the communication complexity of exact partial match. We have to further restrict
the instances to allow for the application of the richness technique.

The bounds on communication complexity imply lower bounds on exact partial match and on NNS
in the Hamming cube. By a simple reduction, we also get similar results for instances of points in `d

p (IRd

with distances measured by the Lp norm), for every 1 ≤ p < ∞. We show that if a nearest neighbor query
is answered in a constant number of probes t, then we either need super-polynomial storage (2Ω(log n log d)

cells), or else we need to retrieve nearly-linear Ω(n1−ε) bits from the database. These lower bounds stand
in contrast with recent positive results on approximate search (see below). Alternatively, if we restrict
ourselves to cells of size poly(d), then a polynomial number of cells is unattainable unless the number of
rounds t = Ω(log d). This improves upon the Ω(

√
log d) randomized two-sided error lower bound claimed

in [46] for the “notoriously difficult” partial match problem. (Our definition of the exact partial match
problem differs from the partial match problem defined in [46]. However, a d-dimensional instance of our
problem can be easily embedded into a 2d dimensional instance of their problem so that our Ω(log d)
lower bound does apply to their problem as well.) We note in passing that deriving strong lower bound
tradeoffs in the unrestricted cell probe model is a well-recognized and fundamental open problem (see

2For definiteness we say that a two-sided error protocol returns the correct answer with probability at least 2/3. A
one-sided error protocol for a decision problem never incorrectly answers YES (=1) and incorrectly answers NO (=0) with
probability at most 1/3.

3As discussed in the related work mentioned below, the known upper bounds for an approximate version of the λ-neighbor
problem use randomization with (depending on the implementation) 1-sided or 2-sided error. A 1-sided error lower bound
for the non λ-neighbor problem does not imply a randomized lower bound for the λ-neighbor problem (although it does
imply a deterministic lower bound). Hence our lower bound for the non λ-neighbor problem does not serve to distinguish
between the exact and approximate versions of the nearest neighbor problem. Of course, a 2-sided error lower bound for
non λ-neighbor implies the same bound for λ-neighbor.



A. Borodin et al. 3

below).

Related work. There is an extensive body of research concerning nearest neighbor problems for small
dimensional (e.g. 2 and 3) Euclidean space (see for example the text by de Berg et al [13]). Dobkin and
Lipton’s seminal paper [21] marks the beginning of work on the Euclidean case of arbitrary dimension.
They achieve a discretization of the problem, so that (super-) exponential storage can be used to answer
queries quickly. Dobkin and Lipton use O

(
n2d+1

)
storage to allow O(2d log n) search time. Clarkson [18]

improves the storage requirement to O
(
n(1+δ)dd/2e), paying dO(d) log n search time. Improvements by

Yao and Yao [53], Matoušek [41], and Agarwal and Matoušek [1] still give exponential in d storage and
search time. Finally, Meiser [42], gives the best result to date (in terms of search time) — O(d5 log n)
search time using O

(
nd+1+δ

)
storage.4

In the approximate nearest neighbor search (approximate NNS) problem, a query is answered by finding
a database point whose distance from the query is within a factor of (1 + ε) of the distance to the closest
database point. Usually, the parameter ε is fixed in the pre-processing phase. (To avoid confusion, we refer
to the version of the problem requiring an exact answer as the exact NNS problem.) For approximate
NNS in Euclidean space, Arya and Mount [6] give O(1/ε)d log n search time using O(1/ε)dn storage.
Clarkson [19] improves the dependence on ε to (1/ε)(d−1)/2. Arya, Mount, Netanyahu, Silverman, and
Wu [7] give O((d/ε)d log n) search time using O(n log n) storage (the pre-processing does not depend on
ε). In comparison with exact search, these results have better storage requirements. Still, their search
time is better than the trivial O(nd) for small d only (as are the results for exact search excluding
Meiser’s).

Kleinberg [38] gives O(n+d log3 n)/ε2 search time using nd logO(1) n/ε2 storage, thus providing asymp-
totic improvement over the trivial search time for all (non constant) d using polynomial storage. Another
algorithm of Kleinberg (in the same paper) gives d2 logO(1) n/ε2 search time using O(n log d/ε2)2d stor-
age. This is better than Meiser’s exact search time, using similar storage. Indyk and Motwani [37] give
improved bounds of d logO(1) n search time using O(1/ε)dn logO(1) n storage. Their result extends to any
Lp norm. They also show that for 1 ≤ p ≤ 2, polynomial (nd)O(1/ε2) storage can be used to answer cor-
rectly most queries in time d logO(1) n/ε2. Independent of [37], Kushilevitz, Ostrovsky, and Rabani [40]
give d2 logO(1) n/ε2 search time (for all queries) using (nd)O(1/ε2) storage. Their result holds for the L1

norm too (in particular for the cube, with somewhat better bounds). With the exception of the first
algorithm of Indyk and Motwani [37] (which is still exponential in d for small ε), all of these approximate
NNS algorithms are randomized algorithms. Of related interest are results on approximate NNS for a
large ε by Bern [14] and Chan [16] (for Euclidean space), and by Indyk [36] (for the L∞ norm).

Thus, approximate NNS does not suffer from the curse of dimensionality,5 at least not from the
point of view of randomized algorithms and asymptotic bounds for fixed ε. In fact, most of the results
mentioned above can be stated in terms of the cell probe model, using a small number of probes. For
example, a λ-neighbor version of the algorithm of Kushilevitz et al. [40] for the cube can be implemented
as a randomized two-sided error one round cell probe algorithm with nO(1/ε2) cells, each containing one
bit.6 Using several such structures (for different distances) an approximate NNS implementation takes
O(log log d) rounds (using binary search on a geometric progression of λ’s). Therefore, the lower bounds
in this paper provide some evidence that in high dimension, exact NNS is indeed far more difficult than
approximate NNS.

4Meiser considers the more general problem of point location in arrangements of hyperplanes and obtains the storage
bound O

`
nd+δ

´
where n is the number of hyperplanes. The nearest neighbor problem with n data points is easily trans-

formed into this general problem by considering the
`n
2

´
hyperplanes constructed by bisecting each pair of data points. To

obtain the stated space bound, the given problem is transformed to a point location query among n hyperplanes in (d + 1)-
space which is obtained by replacing each point (a1, a2, . . . , ad)ad by the hyperplane xd+1 = (x1 − a1)a1 + . . . + (xd − ad)
and replacing the query point (q1, . . . , qd) by (q1, . . . , qd,∞). The hyperplane directly below the transformed query point
corresponds to the original query point’s nearest neighbor.

5However, as one of the referees has pointed out, since the stated complexity bounds are now exponential in 1/ε2, we
might say that the curse of dimensionality has been replaced by a “curse of exactness”.

6Using d bits per cell, it is possible to derive a one-sided error implementation.



4 Lower Bounds for High Dimensional Nearest Neighbor Search

It is easy to see that the exact full match problem (equivalent to 0-neighbor) also does not suffer the
curse of dimensionality. Indeed, one can pre-process the database by using a perfect hashing function
thereby permitting a query search to be performed in one table lookup. Alternatively, one can arrange
the database in a d-depth, n-leaf tree and then perform the query search by a simple search of the tree
in time O(d). We do not know of any analogous results for the partial match problem.

However, to the best of our knowledge, lower bounds for exact NNS (or the partial match query
problem) in high dimensions do not seem sufficiently “convincing” to justify the curse of dimensionality
conjecture. That is, either the models with respect to which lower bounds have been established seem
quite restricted or the bounds are quite weak. One nice example of a well structured model (for both
dynamic and static data structure problems) is Fredman’s [28, 29, 30] semi-group model. The model
is designed for searching problems (e.g., range queries) in which a semi-group value is associated with
each data point and one wants to retrieve the semi-group sum of all data points in some specified set
(e.g., satisfying a partial match or more generally satisfying a range query). The static model allows
pre-processing of sums of arbitrary subsets of database points and Fredman derives strong lower bound
tradeoffs between memory (the number of pre-computed subsets) and search time7 (the number of semi-
group additions on these pre-computed subsets). While this model can be used for decision problems
(by letting the semi-group be the Boolean values under the operation of logical OR) the model is clearly
restrictive in the limited way information can be obtained from the data structure.

In the setting of real Euclidean space (i.e., IRd with the usual L2 metric), an appropriate model is
the algebraic computation tree (or the closely related algebraic decision tree). Simply stated for real
valued inputs, one can compute and test the signs of polynomials of these inputs. The complexity of
such an algebraic computation tree is usually taken as the number of multiplications and tests. The
algebraic computation model was first introduced by Ben-Or [12] (having been preceded by the algebraic
decision tree model where one only counts tests but then restricts the degree of the polynomials allowed).
Following a substantial chain of papers, Grigoriev and Karpinski [32] prove a randomized lower bound
to determine membership in a polyhedron, the lower bound being (roughly speaking) the logarithm of
the number of faces. Since there are instances of n data points x1, . . . , xn in IRd which give rise to a
Voronoi diagram with Θ(ndd/2e) faces, we can apply the polyhedron lower bound to derive an Ω(d log n)
randomized algebraic computation tree lower bound for deciding if a given query q ∈ IRd is closest to a
given data point xi. Computation tree models do not reflect storage usage and indeed this lower bound
holds independent of the storage allowed and hence the bound provides a somewhat matching counter-
part to the d5 log n upper bound of Meiser. In the context of our paper, we note that the model does not
allow modular operations (thereby precluding certain hashing functions), and the analysis used for the
Grigoriev and Karpinski lower bound is not applicable for the case of finite domains such as the Hamming
cube.

A model which does capture hashing and more combinatorial settings is introduced in Rivest [48] and
further developed in Dolev, Harari and Parnas [22] and Dolev, Harari, Linial, Nisan and Parnas [23].
Rivest studies the all partial match problem and Dolev et al. study the all λ-neighbor problem where for
each problem all database points satisfying the query must be found. In this model, each database point
is hashed to a bucket and interesting tradeoffs are established between the number of buckets containing
database points satisfying the query and the maximum size of a bucket. Another lower bound is by
Indyk [36]. He shows a lower bound for approximate NNS under the L∞ norm in the indexing model
of Hellerstein, Koutsoupias, and Papadimitriou [35]. The indexing model tries to capture the cost of
using external memory devices for large data sets, and appears to be computationally more restricted
than the cell probe model. Indyk shows that the superset query problem of Hellerstein et al. reduces to
(1+ε)-approximate NNS under the L∞ norm, for any ε < 1. The lower bound that Hellerstein et al. give
for superset query is weak, unless the storage redundancy is quite small. This does not seem to pose a
serious theoretical restriction on a solution, though it may address important considerations in practice.

The cell probe model was formulated by Yao [52]. It is considered as the most general data structure
model for proving lower bounds. Ajtai [2] and Xiao [51] obtain further lower bounds in this model.

7Associated with each possible query is a straight line program whose operations are either the semi-group addition
vi = vj + vk or the scalar multiplication of a semi-group value vi = c · vj = vj + vj + . . . + vj by a positive integer c.



A. Borodin et al. 5

Miltersen [43, 44, 45] pioneered the connection between the cell probe model and asymmetric communi-
cation complexity. Miltersen, Nisan, Safra, and Wigderson [46] provide general methods for proving lower
bounds for asymmetric communication complexity, including the richness technique used here. For more
information on communication complexity, see the book by Kushilevitz and Nisan [39]. As Miltersen
et al. observe, communication complexity cannot prove strong lower bounds for the cell probe model
without restrictions (say on the number of rounds). Furthermore, they observe that lower bounds for
the general cell probe model imply time-space tradeoffs for branching programs, one of the notoriously
difficult problems in computational complexity. For the best lower bound on branching programs to date,
and additional references, see Beame, Saks, and Thathachar [9], and the two recent papers of Ajtai [3, 4].

As mentioned above, Rivest [48] analyses hashing based algorithms for partial match. (See Bentley
and Sedgewick [11] for a more recent historical account.) Rivest conjectures that any O(nd)-sized data
structure would require Ω(n1−s/d) time to search, where s is the number of exposed coordinates.8 Also
as mentioned above, using a round elimination technique, Miltersen et al. [46] claim a lower bound of
Ω(
√

log d) on the number of probes required to find a partial match in the cell probe model with (nd)O(1)

cells, each containing poly(d) bits. We improve this bound to Ω(log d). Moreover, for the corresponding
communication problem our lower bounds are on the total number of bits transmitted by either side,
irrespective of the number of rounds.

Independent of (and complimentary to) our work, Chakrabarti, Chazelle, Gum and Lvov [15] have
established an Ω(log log d/ log log log d) deterministic lower bound in the cell probe model for finding an
approximate nearest neighbor. The approximation factor here can be as large as 2b(log d)1−εc for any
ε > 0.

Subsequent to our conference publication, Barkol and Rabani [8] established a significantly improved
lower bound for the λ-neighbor problem. They are able to derive a lower bound for two-sided error
randomized asymmetric communication complexity protocols that is quite comparable to our one-sided
error bound in Theorem 2.2. Namely, again assuming some necessary reasonable bounds on the range of
the dimension d, they show:

Let λ = d
2 −

2
ln 2

√
d log n. For every 0 < ε < 1 there exist δ > 0, such that in every two-sided error

protocol for the λ-neighbor problem in Cd, when n is sufficiently large then either the query side sends
at least εd bits, or the database side sends at least nδ bits.

2 A Communication Complexity Lower Bound for the non λ-neighbor
problem

We use the Miltersen et al. [46] richness technique to analyze the asymmetric communication game
between Alice, who gets a query q ∈ Cd, and Bob, who gets a database D ∈ Cn

d .9 For the non λ-neighbor
problem, the players have to output one iff there does not exist a data base point x ∈ D whose Hamming
distance to the query q is at most λ. An [a, b] protocol for a communication problem is a protocol in
which Alice sends at most a bits and Bob sends at most b bits.

For the sake of completeness, we review the Miltersen et al. [46] richness technique (for one-sided
error protocols). We associate a communication matrix Mf with any communication problem f . Namely
we index the rows by the possible inputs for Alice and the columns by the possible inputs for Bob and
the x, y entry of Mf is the value f(x, y). A communication problem f is [u, v]-rich iff its communication
matrix Mf has at least v columns each containing at least u ones. The richness technique is captured by
the following richness lemma:

8The Rivest conjecture was stated without any conditions on s but it seems reasonable to believe that the conjecture
assumes that s is not very small (e.g. s is a constant) or very large (e.g. d− c, c a constant).

9That is, in order to simplify the analysis, we allow repetitions in the database. The results that follow would not change
in any significant way if a database was defined to be n distinct vectors.



6 Lower Bounds for High Dimensional Nearest Neighbor Search

Lemma 2.1 (Miltersen et al. [46]). Let f be [u, v]-rich. If f has a randomized one-sided error [a, b]
protocol, then Mf contains a submatrix of dimension at least u/2a+2×v/2a+b+2 containing only 1-entries.

The richness technique then is to show that a given communication problem is sufficiently rich yet
does not contain large submatrices containing only 1-entries. We now apply this technique to the non
λ-neighbour problem. We wish to derive asymptotic tradeoffs for “large” dimensions. Thus we consider
an infinite sequence of problems for all sufficienlty large values of n, and dimension d = d(n). Here we
assume log n � d.

Theorem 2.2. For every 0 < ε < 1 there exist δ and ν, such that for every n > ν there exists λ for
which in every protocol for non λ-neighbor problem in Cd, either the query side sends at least (1 − ε)d
bits, or the database side sends at least δnd bits.

Let Bd(λ) denote the Hamming ball of radius λ around an arbitrary vector in Cd and let Bd(A, λ)
denote the set of cube points at distance at most λ from a point in A ⊆ Cd. In the proof of this theorem,
we use the following standard inequalities (see, for example, [5]) :

Fact 2.3 (Entropy bound). For 0 < p < 1
2 , |Bd(pd)| ≤ 2(H(p)+o(1))d, where H(p) = −p log p − (1 −

p) log(1− p) is the entropy function.

Fact 2.4 (Harper’s isoperimetric inequality [33]). For A ⊆ Cd, let r > 0 be such that |A| ≥ |Bd(r)|.
Then, for every λ > 0, |Bd(A, λ)| ≥ |Bd(r + λ)|.

Fact 2.5 (Chernoff’s bound). For every a > 0, |Bd(d/2− a)| ≤ e−a2/d · 2d.

Proof of Theorem 2.2. We apply the richness technique. Take λ = d
2 −

√
d ln(2n). (The hardest

case seems to be to distinguish between a distance of at most d
2 and a distance of at least d

2 + 1.) Using
Claim 2.5, n|Bd(λ)| ≤ 2d−1. Thus, for every database at most half the queries are within a distance
of λ of one of the points in the database. Therefore, for our choice of λ, non λ-neighbor is

[
2d−1, 2nd

]
-

rich. We will show that for every ε > 0, there exists δ such that every 2εd × 2(1−δ)nd submatrix of the
communication matrix of the non λ-neighbor problem contains a zero entry.

Consider a set Q of queries of cardinality 2εd. Let λQ be the largest integer such that |Bd(λQ)| ≤ |Q|.
By Fact 2.3, there exists a constant p = p(ε) such that λQ ≥ pd. Let ξ be a constant such that
0 < ξ < p−

√
ln(2n)/d. By our assumption that log n � d, we can choose ξ arbitarily close to p when n

is sufficiently large. Then,

|Bd(Q, λ)| ≥ |Bd(pd + λ)|

=
∣∣∣∣Bd

((
1
2

+ p

)
d−

√
d ln(2n)

)∣∣∣∣
≥

∣∣∣∣Bd

(
(
1
2

+ ξ)d
)∣∣∣∣

> 2d −
∣∣∣∣Bd

(
(
1
2
− ξ)d

)∣∣∣∣
≥ 2d − e−ξ2d2d

= 2d − 2(1−ξ2)d,

where the first inequality follows from Fact 2.4, and the fourth inequality follows from Fact 2.5. Consider
a probability distribution over Cd, with all points equally likely. From the final inequality above, the
probability a random point from this distribution does not fall in Bd(Q,λ) is less than 2(1−ξ2)d

2d = 2−ξ2d.
Consider now a distribution over Cn

d , with all databases equally likely. This distribution is equivalent to
taking n independent samples from the uniform distribution over Cd. Thus, the probablility that none
of the points of a random n point database fall in Bd(Q,λ) is less than 2−ξ2nd. Put δ = ξ2, and the
theorem follows.



A. Borodin et al. 7

3 A Communication Complexity Lower Bound for the partial match problem

In the exact partial match problem, the database consists of n vectors v1, v2, . . . , vn in Cd, and a query
is a vector in C̃d = {0, 1, ∗}d. A query q matches a vector v ∈ Cd iff for all j ∈ {1, 2, . . . , d}, either qj = ∗
or qj = vj . A query q matches the database iff there exists i ∈ {1, 2, . . . , n} such that q matches vi. We
say that the coordinates j for which qj 6= ∗ are exposed in q. We also refer to any j such that qj = ∗ as
a don’t care coordinate, or simply as a don’t care. For simplicity, we assume that n is a power of 2 (thus
log n is an integer). We shall see that lower bounds for the partial match problem imply corresponding
lower bounds for the exact NNS problem. (As far as we know, lower bounds for exact NNS cannot be
used to imply lower bounds for the partial match problem.)

We wish to derive asymptotic tradeoffs for the partial match problem for “large” dimensions. Thus
we again consider an infinite sequence of problems for all sufficiently large values of n, each of dimension
d = d(n). We assume that log n � d ≤ nκ for a positive κ < 1.10

The set of possible databases again includes all 2nd choices in Cn
d . The set of possible queries is

restricted to
Qn,d = {q; |{i; qi 6= ∗}| = log n + 1}.

In words, the queries are restricted to have exactly log n+1 exposed coordinates. Notice that the number
of possible queries is exactly

2n

(
d

log n + 1

)
= 2O(log n log d).

Our main result is the following theorem:

Theorem 3.1. Let 0 < ε < 1 − κ be fixed. Suppose there is an [a, b] (deterministic or randomized,
two-sided error) communication protocol for npm. Then, either a = Ω(log n log d), or b = Ω

(
n1−ε

)
.

We first present the proof for one-sided error protocols. We then extend the proof to handle two-sided
error protocols. The latter is somewhat more involved, yet it builds on the ideas for the one-sided error
case. Throughout this section ε refers to the ε as stated in the theorem.

Lemma 3.2. npm is
[

R
5 , C

6

]
-rich where R = 2n

(
d

log n+1

)
is the number of rows in Mnpm and C = 2nd

is the number of columns in Mnpm.

Proof. As in the previous section, consider a probability distribution over Cd, with all points equally
likely. For q ∈ Qn,d, the probability that q matches a random vector from this distribution is 1

2n . As
before, consider now a distribution over Cn

d , with all databases equally likely. The probability that q does
not match a random database from this distribution is(

1− 1
2n

)n

≥ e−1.

If, however, less than 1
6 of the columns (databases) contain at least a fraction of 1

5 ones entries, then the
fraction of ones entries in the communication matrix does not exceed 1

3 , a contradiction.

We say that two queries q, q′ ∈ Qn,d are consistent if they agree on all coordinates which are exposed
in both vectors. We say that q and q′ are ε-neighbors iff they are consistent and the number of coordinates
which are exposed in both of them is at least ε log n. The notion of ε-neighbors is useful because of the
following lemma.

Lemma 3.3. If q, q′ ∈ Qn,d are not ε-neighbors, then the fraction of vectors v ∈ Cd such that both q and
q′ match v is at most 1

4n2−ε .

10The assumption that the dimension d ≤ nκ is only used for the case of 2-sided errors.



8 Lower Bounds for High Dimensional Nearest Neighbor Search

Proof. If q and q′ are not consistent, then by definition there is no vector that they both match.
Otherwise, all of the coordinates that are exposed in both queries must have the same value in both.
Furthermore, if both q and q′ match a vector v, then for every j which is exposed in either q or q′, vj

must equal the exposed bit. The total number of different coordinates exposed in either q or q′ is at least
(2− ε) log n + 2. The lemma follows from computing the fraction of vectors with these bits fixed.

Lemma 3.4. For every δ > 0 there exists ν such that for all n > ν, for d = d(n) the following holds.
For every q ∈ Qn,d, the number of its ε-neighbors is less than(

d

log n + 1

)1−ε+δ

.

Proof. The number N of neighbors of q is given by

(1−ε) log n+1∑
j=0

(
log n + 1

j

)(
d− log n− 1

j

)
2j ≤ 2n1−ε

(
d− log n− 1

(1− ε) log n + 1

) log n+1∑
j=0

(
log n + 1

j

)

= 4n2−ε

(
d− log n− 1

(1− ε) log n + 1

)
< 4n2−ε

(
d

(1− ε) log n + 1

)
.

Now, (
d

log n+1

)(
d

(1−ε) log n+1

) =
((1− ε) log n + 1)! (d− (1− ε) log n− 1)!

(log n + 1)! (d− log n− 1)!

≥
(

d− log n

log n + 1

)ε log n

=
(

1− log n

d

)ε log n (
d

log n + 1

)ε log n

≥ n−ε

(
d

log n + 1

)ε log n

≥ n−ε

(
ed

log n + 1

)−ε

n−ε log e

(
d

log n + 1

)ε

.

Therefore,

N < 4n2+ε log e

(
ed

log n + 1

)ε (
d

log n + 1

)1−ε

.

Let δ > 0. As d � log n, for n sufficiently large,

4n2+ε log e

(
ed

log n + 1

)ε

≤
(

d

log n + 1

)δ

.

We call a set I ⊆ Qn,d ε-independent iff for every q, q′ ∈ I such that q 6= q′, q and q′ are not
ε-neighbors. We conclude from the above lemma

Lemma 3.5. For every δ such that 0 < δ < ε/2, there is ν such that for every n > ν, every R ⊆ Qn,d

of cardinality at least
(

d
log n+1

)1−δ
contains an ε-independent subset ind(R) of cardinality n1−ε.

Proof. Let n be sufficiently large so that Lemma 3.4 holds for δ, and
(

d
log n+1

)ε−2δ ≥ n1−ε. Consider
the graph whose nodes are the elements of R, and a pair of nodes is an edge iff its endpoints are ε-
neighbors. By Lemma 3.4, the maximum degree in this graph is less than

(
d

log n+1

)1−ε+δ
. Therefore, it

has an ε-independent set of size at least
(

d
log n+1

)ε−2δ ≥ n1−ε.



A. Borodin et al. 9

For q ∈ Qn,d we denote D(q) = {D ∈ Cn
d ; q does not match D}. For R ⊆ Qn,d we abuse notation and

denote D(R) = ∩q∈RD(q).

Lemma 3.6. For every δ such that 0 < δ < ε/2, there is ν such that for every n > ν, if R ⊆ Qn,d has

cardinality at least
(

d
log n+1

)1−δ
, then D(R) has cardinality less than 2nd−n1−ε/4.

Proof. We examine the subset ind(R) of cardinality n1−ε from Lemma 3.5. Consider a distribution
over Cd, with all points equally likely. The probability that any q ∈ ind(R) matches a random point from
this distribution is exactly 1

2n . Let q, q′ ∈ ind(R), q 6= q′. By Lemma 3.3, the probability that both q and
q′ match a random point from this distribution is at most 1

4n2−ε . Therefore, by the inclusion-exclusion
principle, the probability that a random point from the distribution is matched by at least one point in
ind(R) is at least

n1−ε · 1
2n

−
(

n1−ε

2

)
· 1
4n2−ε

≥ 1
2nε

− 1
8nε

=
3

8nε
.

Now, consider a distribution over Cn
d with all databases equally likely. The probability that none of the

points in ind(R) match a random database from this distribution is at most (1− 3/8nε)n ≤ e−n1−ε/4.

Lemma 3.6 implies the following

Corollary 3.7. For every δ such that 0 < δ < ε/2, there is ν such that for every n > ν, the communi-
cation matrix of npm does not contain a

(
d

log n+1

)1−δ × 2nd−n1−ε/4 1-monochromatic rectangle.

Proof. Otherwise, we have a set R ⊆ Qn,d with |R| ≥
(

d
log n+1

)1−δ
, and |D(R)| ≥ 2nd−n1−ε/4, in

contradiction with Lemma 3.6.

We now can conclude the proof of Theorem 3.1 for one-sided errors by applying the richness Lemma 2.1.

It remains to show how to extend this proof to the case of two-sided error. Miltersen et al. [46]
prove a second form of the richness lemma which makes it possible to prove lower bounds for randomized
algorithms having two-sided error. Essentially, instead of showing that every sufficiently large submatrix
is not 1-monochromatic, we now need to show that every sufficiently large submatrix has a constant
fraction of zeros. We now indicate how to apply this form of the richness lemma to establish Theorem 3.1
for two-sided error protocols.

Lemma 3.8. For every δ such that 0 < δ < ε/2, there is ν such that for every n > ν, every R ⊆ Qn,d

of cardinality at least
(

d
log n+1

)1−δ
can be partitioned into sets I0, I1, I2, . . . , If such that the following

hold:

1. I0 contains at most half of R; and,

2. for j = 1, 2, . . . , f , Ij is an ε-independent set with |Ij | = 2n1−ε, and

3. f � 2nκ

. (Recall κ < 1− ε and d ≤ nκ.)

Proof. As long as at least half of R remains, repeatedly apply Lemma 3.5 to pick a set Ij with the
desired properties, then remove it from R. (To be more precise, we have to slightly modify Lemma 3.5
to make each Ij have size 2n1−ε assuming R ⊆ Qn,d is of cardinality at least 1

2

(
d

log n+1

)1−δ
.) Now f is

trivially smaller than the total number of queries. Thus, f ≤ 2n
(

d
log n+1

)
� 2nκ

, for sufficiently large n

(as we assume that d ≤ nκ).

We want most databases to match many points in the sets Ij , j > 0. For I ⊆ Qn,d, we denote by
D(I) the set of databases that match less than 1

100 of the queries in I.11 We have

11 1
100

is a somewhat arbitrary constant.



10 Lower Bounds for High Dimensional Nearest Neighbor Search

Lemma 3.9. For every ε > 0, there is ν such that for every n > ν the following holds: For every
ε-independent I ⊆ Qn,d such that |I| = 2n1−ε, we have D(I) ≤ 2nd−n1−ε/50.

Proof. Consider a database chosen at random, all databases equally likely. We think of the database
as being chosen in sequence, one point at a time, each point chosen independently of the others from a
uniform distribution over Cd. Let x1, x2, . . . , xn be the database points. Let M0, M1, M2, . . . , Mn1−ε be
the following subsets of I: M0 = ∅. Mi includes all of Mi−1, and if any query q in I \Mi−1 matches one
of the database points x(i−1)nε+1, . . . , xinε , then Mi also contains one (arbitrarily chosen) such matching
query q; thus, |Mi−1| ≤ |Mi| ≤ |Mi−1|+ 1. Let Xi = |Mi|.

We show that for all i, 0 ≤ i < n1−ε, Pr[Xi+1 > Xi] ≥ 1−e−1/4. For all i, |I \Mi| ≥ n1−ε. Therefore,
by the proof of Lemma 3.6, the probability that a random database point is matched by one of the queries
in I \Mi is at least 3/8nε. For nε random points we get that the probability that none of these points
are matched by a query in I \Mi is (1− 3/8nε)nε ≤ e−1/4, for sufficiently large n.

Now, define Y0, Y1, . . . , Yn1−ε : Y0 is the initial expected size of Mn1−ε . Yi is the same expectation
after choosing x1, . . . , xinε . Notice that all these expectations are random variables (depending on the
choice of x1, . . . , xinε with Y0 being a constant). Further notice that Yn1−ε = |Mn1−ε |. By definition,
Yi = E[Yi+1 | Yi]. Also, |Yi − Yi+1| ≤ 1. Therefore, the sequence Y0, Y1, . . . , Yn1−ε is a martingale.
By Azuma’s inequality, Pr[Yn1−ε < Y0 − λn(1−ε)/2] < e−λ2/2. Now, by the linearity of expectation,
Y0 ≥

(
1− e−1/4

)
n1−ε. Set λ = 1

5n(1−ε)/2. We get, Pr[Yn1−ε <
(
1− e−1/4 − 1/5

)
n1−ε] < e−n1−ε/50.

Finally, notice that 1− e−1/4 − 1
5 > 1

50 so that(
1− e−1/4 − 1/5

)
n1−ε >

1
100

|I|.

Theorem 3.10. For every δ such that 0 < δ < ε/2, there exists ν such that for all n > ν the following
holds: In the communication matrix of npm, in every rectangle R × D with |R| ≥

(
d

log n+1

)1−δ
and

|D| ≥ 2nd−n1−ε/100, at least a fraction of 1
400 of the entries are zeros.

Proof. Let n be sufficiently large, and let R × D be a rectangle satisfying the conditions of the
theorem. By Lemma 3.8, at least half the queries in R can be partitioned into disjoint independent
subsets I1, I2, . . . , If , f � 2nκ

, for all κ > 0 and for n sufficiently large. For any j, 1 ≤ j ≤ f , the
number of databases that match less than 1

100 of the queries in Ij is at most 2nd−n1−ε/50, by Lemma 3.9.
Therefore, the number of databases that match less than 1

100 of the queries in any of the sets Ij is less
than 2nd−n1−ε/50+nκ ≤ 2nd−(n1−ε/100)−1, for n sufficiently large and 0 < κ < 1 − ε. Thus, if we take all
2nd−n1−ε/100 databases in D, at least half of them match at least 1

100 of the queries in every set Ij . The
theorem follows because the number of queries in these sets is at least half the total number of queries
in R

4 Consequences

Miltersen [44] shows that asymmetric communication complexity lower bounds can be used to derive
lower bounds for the cell probe model. Specifically, if there is a deterministic (respectively, randomized)
cell probe model solution to a “data structure” problem with parameters m (the number of cells), b (the
maximum cell size) and t (the number of probes of the data structure), then there is a deterministic
(respectively, randomized) asymmetric communication protocol for this problem with 2t rounds of com-
munication12 in which Alice sends log m bits in each of her messages and Bob sends b bits in each of his
messages. That is, Alice (respectively, Bob) sends a total of at most t log m bits (respectively, tb bits).
Using Theorem 2.2 and the connection to the cell probe model, we get the following lower bound for the
λ-neighbor problem in the cell probe model.

12In the asymmetric communication model, a message passed by either Alice or Bob is considered a round.



A. Borodin et al. 11

Theorem 4.1. Any one-sided randomized algorithm for the non λ-neighbor problem (and hence deter-
ministic algorithm for the λ-neighbor problem or its complement) that makes makes t probes, either uses
2Ω(d/t) cells, or uses cells of size Ω (nd/t).

We point out two extremes of Theorem 4.1:

• If the cell size is dO(1) and the number of cells is polynomial (in n) then the algorithm must make
Ω(d/ log n) probes.

• If the algorithm answers a query in a constant number of probes, then either it uses 2Ω(d) cells, or
requires the processing of a cell containing Ω(nd) bits.

In the same way, using Theorem 3.1 we obtain the following lower bound for the partial match problem.

Theorem 4.2. Any randomized (two-sided error) cell probe algorithm for the exact partial match problem
that makes t probes, either uses 2Ω(log n log d/t) cells, or uses cells of size Ω

(
n1−ε/t

)
.

And now we get the following two extremes of Theorem 4.2:

• If the cell size is dO(1) and the number of cells is polynomial (in n) then the algorithm must make
Ω(log d) probes.

• If the algorithm answers a query in a constant number of probes, then either it uses 2Ω(log n log d)

cells, or requires the processing of a cell containing Ω
(
n1−ε

)
bits.

Lower bounds corresponding to Theorems 3.1 and 4.2 can be obtained for the λ-neighbor problem by
applying the following reduction:

Theorem 4.3. Let Q(d, λ) denote the set of points in C̃d with exactly λ don’t cares. Then, there exist
functions ϕA : Q(d, λ) → C2d and ϕB : Cn

d → Cn
2d with the following property: If (q, D) ∈ Q(d, λ)× Cn

d ,
then q matches D iff for (q′, D′) = (ϕA(q), ϕB(D)), q′ is a λ-neighbor of D′. Furthermore, both ϕA and
ϕB can be computed efficiently (in linear time).

Proof. For x ∈ C̃d, define y = ϕA(x) ∈ C2d as follows. For i ∈ {1, 3, 5, . . . , 2d− 1},

yiyi+1 =
{

xdi/2exdi/2e xdi/2e 6= ∗
01 xdi/2e = ∗

Now, define ϕB by applying the transformation ϕA to each of the n points in D. Consider any point
x ∈ D, and its image x′ ∈ D′. Each don’t care in q produces one mismatch between q′ and x′, regardless
of the value of the corresponding coordinate in x. If q matches x, no additional mismatches are produced
between q′ and x′. Otherwise, there are at least two additional mismatches.

Now, consider the r-neighbor problem in `d
p, 1 ≤ p < ∞, for 0 < r ∈ IR. Analogous to its definition

for the cube, this problem requires deciding whether or not the minimum distance between a query point
and a database of n points is at most r. We have

Theorem 4.4. For every p ∈ IR, 1 ≤ p < ∞, for every λ ∈ {0, 1, 2, . . . , d}, there exists r ∈ IR, r > 0,
such that exact partial match with queries in Q(d, λ) reduces to the r-neighbor problem in `2d

p .

Proof. For p = 1, the theorem follows from Theorem 4.3, as the points of C2d are a subset of IR2d, and
the Hamming distance is equivalent to the L1 distance for these points. For p > 1, the theorem follows
from a monotonicity property of the Lp norm on C2d (viewed as a subset of IR2d): If w, x, y, z ∈ C2d,
then ‖w − x‖1 < ‖y − z‖1 iff ‖w − x‖p < ‖y − z‖p, where ‖ · ‖p denotes the Lp norm. (Notice that this
monotonicity property does not hold for the L∞ norm.)

Finally, we mention some implications to other geometric search problems: First, exact NNS in
Euclidean space is a special case of point location in an arrangement of hyperplanes (with

(
n
2

)
hyperplanes,

defining the Voronoi diagram). Therefore, our results imply lower bounds for point location.



12 Lower Bounds for High Dimensional Nearest Neighbor Search

Next, consider the cube Cd. Notice that the reduction in Theorem 4.3 proves a somewhat stronger
claim than mentioned. It shows that exact partial match reduces to the problem of determining whether
or not there is a database point at distance precisely λ from the query. So, we get a lower bound for this
problem as well (for the Hamming cube). Now, consider the cube as a subset of IRd (for simplicity, we’ll
use the vectors {±1}d here). The set of cube points at Hamming distance exactly λ from a cube point v
lies on the hyperplane x · v = d − 2λ. Therefore, we get a lower bound for the problem of determining
whether or not a query point v lies on one of a collection of n hyperplanes (one hyperplane for each of the
n database points). 13 As Chazelle points out [17], this problem can be viewed as a multi-dimensional
generalization of the dictionary problem. The dictionary problem can be stated as follows: In the one-
dimensional real line, we have a database of hyperplanes (zero-dimensional flats, i.e. points, in this case),
queries are points, and the answer to a query is whether or not it is contained in the database. The
problem can be solved in O(1) probes per query via hashing. Our lower bounds show that a similar result
for the multi-dimensional generalization is impossible. Erickson [24] proves lower bounds on the related
Hopcroft’s problem of deciding for a set of points and a set of hyperplanes whether or not there is a point
that lies on one of the hyperplanes. This is not considered as a data structure problem, and the bounds
are on the computation time as a function of the number n of points and the number m of hyperplanes.
In a subsequent paper, Erickson [25] proves strong time space lower bounds in a structured model (called
partition graphs) for an online version of Hopcroft’s problem where the data base consists of points and
the queries are hyperplanes.

Last, consider a geometric interpretation of exact partial match. The database points are vectors in
Cd (viewed either as vectors in Zd

2 , or as vectors in IRd). The query is an affine subspace of Cd (in either
view), defined by the linear equations xi = qi for all i such that qi 6= ∗. For definiteness, assume that this
subspace is given by an orthogonal basis plus a shift — this representation can be computed easily from a
partial match query. Thus we have lower bounds for the problem of determining whether or not a query
affine subspace contains at least one database point. (Miltersen et al. give rather strong lower bounds
for the span problem of determining whether or not a given linear subspace contains a given point.)

5 Limitations of the Method

In this section we explain why a direct application 14 of the richness technique does not appear to provide
stronger lower bounds.

First, we consider why we cannot apply the richness technique directly to the the exact NNS problem,
or, more precisely, the λ-neighbor decision problem.15 (As noted before, the hardest case seems to be to
distinguish between a distance of at most d

2 and a distance of at least d
2 + 1.) We again let Bd(λ) denote

the Hamming ball of radius λ (say around the all-zeros vector 0d ∈ Cd).

Claim 5.1. For every λ ∈ {0, 1, . . . , d}, the communication matrix for the λ-neighbor problem contains
a 1-monochromatic rectangle of size |Bd(λ)| × 2nd−d.

Before we prove this claim, we point out its consequence. In the λ-neighbor problem, each database
is close enough to at most n |Bd(λ)| queries. Thus, the problem cannot be richer than

[
n |Bd(λ)| , 2nd

]
.

Therefore, the best lower bound we can hope to prove this way is the very weak conclusion: Either the
query side sends Ω(log n) bits or the database side sends Ω(d) bits.

Proof of Claim 5.1. Take all the queries in Bd(λ). If 0d is contained in the database then it produces
a value of 1 with all these queries. If we pick a database at random, all databases equally likely, the
database contains 0d with probability more than 2−d.

We now consider the natural idea of restricting exact partial match to instances with fewer don’t
cares, in an attempt to prove better lower bounds. The hardest case seems to be when queries have

13By duality, we can interchange the role played by points (which become the data base) and hyperplanes (which become
the queries)

14By “direct application” we mean that we do not restrict the set of queries.
15By “directly” we mean that we do not restrict the set of queries.



A. Borodin et al. 13

exactly d
2 don’t cares. In this case npm is extremely rich. Almost all entries in the communication matrix

are one. However, perhaps not surprisingly, we have the following:16

Claim 5.2. The communication matrix for npm restricted to queries with exactly d
2 don’t cares contains

a 1-monochromatic rectangle of size n−2
(

d
d/2

)
2d/2 × e−12nd.

The consequence here is obvious. The total number of possible queries is
(

d
d/2

)
2d/2. Thus, the best

lower bound we can prove by the richness technique is the rather pathetic “either the query sends Ω(log n)
bits or the database sends Ω(1) bits”.

Proof of Claim 5.2. Take the set of queries to be all possible queries with d
2 don’t cares, and the

first k bits fixed as zeros (k to be determined shortly). The number of such queries is(
d− k

d/2

)
2d/2−k ≥

(
d

d/2

)
2d/2−2k.

The number of cube points matched by at least one query is exactly 2d−k. Therefore, the number of
databases that are not matched by any query is

(2d − 2d−k)n = (1− 2−k)n2nd ≥ e−n/2k

2nd.

Now, take k = log n.

Returning to the case of log n + 1 exposed bits, is it possible to improve upon the proven bounds? If
all possible queries are enumerated in some predefined order, the database can store the answer to all
possible queries and the query player can then simply send the index of the query using O(log n log d)
bits (and the database player responds with the correct answer using one bit). Hence the bound on the
query player is optimal. Finally, we ask if we can improve our lower bound on the database side to Ω(n)?
The following claim shows that our analysis cannot be improved significantly.

Claim 5.3. For every integer c, there is ν > 0 such that for every n ≥ ν, the communication matrix
of npm restricted to queries from Qn,d contains a 1-monochromatic rectangle of size 2−c(log d+1)|Qn,d| ×
2nd−n log e/2c

.

Proof. We may assume that n is sufficiently large so that log n � c. Take all queries in Qn,d with the
first c bits fixed as zeros. The number of such queries is

n

2c−1

(
d− c

log n + 1− c

)
≥ 2n

2c(log d+1)

(
d

log n + 1

)
.

The number of cube points matched by at least one of these queries is 2d−c. Therefore, the number of
databases not matched by any of these queries is

(1− 2−c)n2nd ≥ e−n/2c

2nd.

References

[1] P.K. Agarwal and J. Matoušek. Ray shooting and parametric search. SICOMP, 22:794-806, 1993

[2] M. Ajtai. A lower bound for finding predecessors in Yao’s cell probe model. Combinatorica,
8:235–247, 1988.

[3] M. Ajtai. Determinism versus non-determinism for linear-time RAMs. In Proc. of 31st STOC, pp.
632-641, 1999.

16Using similar arguments, one can show that considering the complement function does not help in this case.



14 Lower Bounds for High Dimensional Nearest Neighbor Search

[4] M. Ajtai. A non-linear time lower bound for Boolean branching programs. In Proc. of 40th FOCS,
pp. 60-70, 1999

[5] N. Alon and J.H. Spencer. The Probabilistic Method. Wiley, 1992.

[6] S. Arya and D. Mount. Approximate nearest neighbor queries in fixed dimensions. In Proc. of 4th
SODA, pp. 271–280, 1993.

[7] S. Arya, D. Mount, N. Netanyahu, R. Silverman, and A. Wu. An optimal algorithm for approximate
nearest neighbor searching in fixed dimensions. JACM, 45(6):891-923, 1998.

[8] O. Barkol and Y. Rabani. Tighter bounds for nearest neighbor search and related problems in the
cell probe model. In Proc. of the 32nd STOC, pp. 388-396, 2000.

[9] P. Beame, M. Saks, and J.S. Thathachar. Time-space tradeoffs for branching programs. In Proc.
of 39th FOCS, pp. 254–263, 1998.

[10] J.S. Beis and D.G. Lowe. Shape indexing using approximate nearest-neighbor search in high-
dimensional spaces. In Proc. IEEE Conf. Comp. Vision Patt. Recog., pages 1000–1006, 1997.

[11] J.L. Bentley and R. Sedgewick. Fast algorithms for sorting and searching strings. In Proc. of 8th
SODA, pp. 360–369, 1997.

[12] M. Ben-Or. Lower bounds for algebraic computation trees. In Proc. of 15th STOC, pp. 80-86,
1983.

[13] M. de Berg, M. van Kreveld, M. Overmars, O. Schwarzkopf. Computational Geometry, Algorithms
and Applications. Springer, 1997.

[14] M. Bern. Approximate closest-point queries in high dimensions. Information Processing Lett.,
45:95–99, 1993.

[15] A. Chakrabarti, B. Chazelle, B. Gum, A. Lvov. A good neighbor is hard to find. In Proc. of 31st
STOC, pp 305-311, 1999.

[16] T.M. Chan. Approximate nearest neighbor queries revisited. Discrete and Computational Geom-
etry, 20:359-373, 1998.

[17] B. Chazelle. Private communication.

[18] K. Clarkson. A randomized algorithm for closest-point queries. SIAM J. Computing, 17:830-847,
1988.

[19] K. Clarkson. An algorithm for approximate closest-point queries. In Proc. of 10th SCG, pp.
160–164, 1994.

[20] S. Deerwester, S.T. Dumais, G.W. Furnas, T.K. Landauer, and R. Harshman. Indexing by latent
semantic analysis. J. Amer. Soc. Info. Sci., 41(6):391–407, 1990.

[21] D. Dobkin and R. Lipton. Multidimensional search problems. SIAM J. Computing, 5:181-186,
1976.

[22] D. Dolev, Y. Harari, and M. Parnas. Finding the neighborhood of a query in a dictionary. In Proc.
of 2nd ISTCS, 1993.

[23] D. Dolev, Y. Harari, N. Linial, N. Nisan, and M. Parnas. Neighborhood preserving hashing and
approximate queries. In Proc. of 5th SODA, pp. 251–259, 1994.

[24] J. Erickson. New lower bounds for Hopcroft’s problem. Discrete Comput. Geom., 16:389–418,
1996.



A. Borodin et al. 15

[25] J. Erickson. Space-time tradeoffs for emptiness queries. SIAM J. Computing, 29(6):1968-1996,
2000.

[26] R. Fagin. Fuzzy queries in multimedia database systems. In Proc. of PODS, pp 1-10, 1998.

[27] M. Flickner, H. Sawhney, W. Niblack, J. Ashley, Q. Huang, B. Dom, M. Gorkani, J. Hafner, D. Lee,
D. Petkovic, D. Steele, and P.Yanker. Query by image and video content: the QBIC system. IEEE
Computer, 28:23–32, 1995.

[28] M.L. Fredman. A lower bound on the complexity of orthogonal range queries. Journal of the ACM,
28:696-705, 1981

[29] M.L. Fredman. Lower bounds on the complexity of some optimal data structures. SIAM J.
Computing, 10:1-10, 1981

[30] M.L. Fredman and D.J. Volper. The complexity of partial match retrieval in a dynamic setting.
Journal of Algorithms, 3:68-78, 1982.

[31] D. Grigoriev. Randomized complexity lower bounds for arrangements and polyhedra. Discrete and
Computational Geometry, 21:329-344, 1999.

[32] D. Grigoriev and M. Karpinski. Randomized Ω(n2) lower bound for knapsack. Proc. of 29th
STOC, pp. 76-85, 1997.

[33] L. Harper. Optimal numberings and isoperimetric problems on graphs. Journal of Combinatorial
Theory 1:385–394, 1966.

[34] T. Hastie and R. Tibshirani. Discriminant adaptive nearest neighbor classification and regression.
Advances in Neural Information Processing Systems, 8:409-415, 1996.

[35] J. Hellerstein, E. Koutsoupias, and C.H. Papadimitriou. On the analysis of indexing schemes. In
Proc. of PODS, 1997.

[36] P. Indyk. On approximate nearest neighbors in non-Euclidean spaces. In Proc. of 39th FOCS,
1998.

[37] P. Indyk and R. Motwani. Approximate nearest neighbors: Towards removing the curse of dimen-
sionality. In Proc. of 30th STOC, 1998.

[38] J. Kleinberg. Two algorithms for nearest-neighbor search in high dimensions. In Proc. of 29th
STOC, pp. 599–608, 1997.

[39] E. Kushilevitz and N. Nisan. Communication Complexity. Cambridge University Press, 1997.

[40] E. Kushilevitz, R. Ostrovsky, and Y. Rabani. Efficient search for approximate neares neighbor in
high dimensional spaces. SICOMP, 30(2): 457-474, 2000.

[41] J. Matoušek. Reporting points in halfspaces. Computational Geometry and Applications, 2:169-186,
1992.

[42] S. Meiser. Point location in arrangements of hyperplanes. Information and Computation,
106(2):286–303, 1993.

[43] P.B. Miltersen. The bit probe complexity measure revisited. In Proc. of 10th STACS, pp. 662–671,
1993.

[44] P.B. Miltersen. Lower bounds for union-split-find related problems on random access machines.
In Proc. of of 26th STOC, pp. 625–634, 1994.

[45] P.B. Miltersen. On the cell probe complexity of polynomial evaluation. Theoretical Computer
Science, 143:167–174, 1995.



16 Lower Bounds for High Dimensional Nearest Neighbor Search

[46] P.B. Miltersen, N. Nisan, S. Safra, and A. Widgerson. On data structures and asymmetric com-
munication complexity. JCSS, 57(5): 37-49, 1998.

[47] A. Pentland, R.W. Picard, and S. Sclaroff. Photobook: tools for content-based manipulation of
image databases. In Proc. SPIE Conf. on Storage and Retrieval of Image and Video Databases II,
1994.

[48] R. Rivest. Partial-match retrieval algorithms. SIAM J. Computing, 5:19–50, 1976.

[49] G. Salton. Automatic Text Processing. Addison-Wesley, 1989.

[50] A.W.M. Smeulders and R. Jain (eds). Proc. 1st Workshop on Image Databases and Multi-Media
Search, 1996.

[51] B. Xiao. New Bounds in Cell Probe Model. Ph.D. thesis, UC San Diego, 1992.

[52] A.C. Yao. Should tables be sorted? J. Assoc. Comput. Mach., 28:615–628, 1981.

[53] A.C. Yao and F.F. Yao. A general approach to d-dimension geometric queries. In Proc. of 17th
STOC, pp. 163–168, 1985.

Acknowledgments

Allan Borodin is at the Department of Computer Science, University of Toronto, Toronto M5S 3G4,
Canada. borodin@cs.toronto.edu. Rafail Ostrovsky is at the Math Sciences Research Center, Telcordia
Technologies, 445 South Street, Morristown, NJ 07960-6438, USA. rafail@research.telcordia.com. Yuval
Rabani is at the Computer Science Department, Technion — Israel Institute of Technology, Haifa 32000,
Israel. rabani@cs.technion.ac.il.

Part of this work was done while the first and third authors were visiting Telcordia Technologies and
while the first and second authors were visiting the Technion. Work at the Technion supported by BSF
grant 96-00402, by Ministry of Science contract number 9480198, and by a grant from the Fund for the
Promotion of Research at the Technion.

The authors would like to thank Bernard Chazelle for many helpful comments. We are also indebted
to the referees for their very constructive suggestions. In particular, we thank one of the referees for the
clarification of Meiser’s [42] space bound and for the reference to Erickson [25].


