
Lower Bounds for Linear Locally Decodable Codes and Private Information Retrieval

Oded Goldreich� Howard Karloffy Leonard J. Schulmanz Luca Trevisanx

Abstract

We prove that if a linear error-correcting code C :
f0; 1gn ! f0; 1gm is such that a bit of the message can
be probabilistically reconstructed by looking at two entries
of a corrupted codeword, then m = 2
(n). We also present
several extensions of this result.

We show a reduction from the complexity of one-round,
information-theoreticPrivate InformationRetrieval Systems
(with two servers) to Locally Decodable Codes, and con-
clude that if all the servers’ answers are linear combinations
of the database content, then t =
(n=2a), where t is the
length of the user’s query and a is the length of the servers’
answers. Actually, 2a can be replaced byO(ak), where k is
the number of bit locations in the answer that are actually
inspected in the reconstruction.

1 Introduction

This paper is concerned with two related notions. The
first notion is that of locally decodable codes (LDC), which
are error-correcting codes that allow recovery of individual
information bits based on a few (randomly selected) code-
word bits. The second notion is that of private information
retrieval (PIR) schemes, which are protocols allowing users
to retrieve desired data items from several (non-colluding)
servers without yielding any information to any individual
server. The relation between these notions has been ob-
served by some researchers before, and is further established
in this paper.

The study of LDCs was initiated by Katz and Trevisan [6],
who established super-linear (but at most quadratic) lower
bounds on the length of codes that allow recovery based on

�Computer Science Department, Weizmann Institute of Science, Re-
hovot, Israel. Supported by MINERVA Foundation, Germany. E-mail:
oded@wisdom.weizmann.ac.il

yAT&T Labs–Research, USA. E-mail: how ard@researc h.att.com
zCaltech, USA. Supported in part by NSF grant 0049092 (previ-

ously 9876172), and by the Charles Lee Powell Foundation. E-mail:
schulman@caltech.edu

xComputer Science Division, University of California, Berkeley. E-
mail: luca@eecs.berkeley.edu

a constant number of bits. In contrast, the best known con-
structions of LDCs (supporting such efficient recovery) have
sub-exponential length. This leaves a huge gap between the
known lower and upper bounds, and an important research
goal is to try to close this gap. We take a first step in this
direction by closing the gap (via improved lower bounds)
for the special case of linear LDCs in which recovery is
based on two bits.

The study of PIR schemes was initiated by Chor, Gol-
dreich, Kushilevitz and Sudan [4], who presented (among
other schemes) a one-round, 2-server PIR scheme of com-
munication complexity O(n1=3). The question of whether
their (2-server) PIR scheme has the lowest communication
complexity possible has been open since. We present sev-
eral results that are related to this question, where all our
results relate to the special case of one-round, 2-server PIR
schemes in which the servers’ answers are always linear
combinations of the data bits.

1.1 Locally Decodable Codes

In this paper we consider error-correcting codes with the
following local decodability property: given a corrupted
codeword it is possible to recover each bit of the original
message by applying a probabilistic procedure that looks
at only two entries of the corrupted codeword. The proce-
dure should predict each bit with a constant advantage even
when there is a constant fraction of errors in corrupted code-
word. The Hadamard code satisfies this requirement, but
unfortunately its codewords are exponentially longer than
the message they encode. In this paper, we prove that this is
essentially the best possible with respect to linear codes.

Let us first define formally the notion of a locally decod-

able code. For a natural number n, we let [n]
def
= f1; :::; ng.

For x 2 �m and i 2 [m], we let xi be the ith element of
x; that is, x = x1 � � �xm. For y; z 2 �m, we denote by
d(y; z) the number of locations on which y and z differ, that
is, d(y; z) = jfi : yi 6= zigj.

Definition 1.1 For reals �; � and an integer q, we say that
C : �n ! �m is a (q; �; �)-locally decodable code if there
exists a probabilistic oracle machine A such that:

Proceedings of the 17th IEEE Annual Conference on Computational Complexity (CCC�02)
1093-0159/02 $17.00 © 2002 IEEE

� In every invocation,A makes at most q queries (possi-
bly adaptively). Query i 2 [m] to the oracle y 2 �m

is answered by yi.

� For every x 2 �n, for every y 2 �m with d(y;C(x)) �
�m, and for every i 2 [n], we have

Pr[Ay(i) = xi] � 1

2
+ �;

where the probability is taken over the internal coin
tosses of A.

An algorithm A satisfying the above requirements is called
an (adaptive) (q; �; �)-local decoding algorithm for C.

While it appears natural to allow adaptive reconstruction
algorithms in our definition, we only know how to directly
prove lower bounds in the non-adaptive case. Lower bounds
for the non-adaptive case can be generalized to the adaptive
case by using the following reduction.

Lemma 1.2 ([6]) LetC : �n ! �m be an error-correcting
code that has an adaptive (2; �; �)-local decoding algorithm.
ThenC also has a non-adaptive (2; �; �=j�j)-local decoding
algorithm.

All the results that we will state (from now on) refer to
non-adaptive reconstruction procedures, and “local decod-
ing algorithm” and “locally decodable code” will always
refer to the non-adaptive case. We omit the statement of the
results for the adaptive case (which can be obtained by the
application of the above lemma).

As stated above, our work focuses on linear codes. In
particular, we will consider the following settings:

� � = � = F is a finite field, and the functionC : Fn !
Fm is a linear mapping between the vector spaces Fn

and Fm. In Theorem 1.3 we deal with the special case
� = � = GF (2), while in Theorem 1.4 we deal with
general fields.

� � = f0; 1g, � = f0; 1gl, and C : f0; 1gn ! f0; 1glm
is linear. We deal with this case in Theorem 1.5.

� � = � = f0; 1gl, and C : f0; 1gln ! f0; 1glm is lin-
ear. That is, we consider codes mapping a sequence of
n blocks, each being a string of length l, to a sequence
ofm such blocks, and algorithms that recover a desired
(entire) block by making two block-queries. We refer
to such codes as block-block codes, and deal with them
in Theorem 1.6.

Our main result is

Theorem 1.3 Let� = � = f0; 1g, and letC : �n ! �m be
a (2; �; �)-locally decodable linear code. Thenm � 2��n=8.

The result has the following extensions to larger alphabets
(corresponding to the three cases discussed above). First,
we consider an extension to linear codes over arbitrary finite
fields.

Theorem 1.4 Let C : Fn ! Fm be a (2; �; �)-locally de-
codable linear code. Then m � 2

��
16 �n�1�log2 jF j.

Theorem 1.5 Let C : f0; 1gn ! (f0; 1gl)m be a (2; �; �)-
locally decodable linear code, and suppose that the decoder
uses only k predetermined bits out of the l bits that it re-
ceives as answer to each query. Then m � (1=f(k; l)) �
2��n=(8f(k;l)), where f(k; l) =

Pk
i=0

�
l
i

� � minf2l; 2lkg.
Theorem 1.6 Let C : (f0; 1g`)n ! (f0; 1g`)m be a
(2; �; �)-locally decodable code that is a linear block-block
code. Then m � 2

��
16 �n�(`+1)2 .

Theorem 1.4 is proved by an extension of the argument
used in the proof of Theorem 1.3. Theorem 1.5 is proved
by means of a reduction to the case l = k = 1 and an
application of Theorem 1.3. Theorem 1.6 is proved by an
extension of the argument used in the proof of Theorem 1.3.

1.2 Private Informational Retrieval

Loosely speaking, a Priv ate Information Retrieval
(PIR) scheme for k serv ers is a protocol by which a user
can obtain the value of a desired bit out of n bits held by
the servers without yielding the identity of this bit to any
individual server (assuming that the servers do not cooper-
ate in order to learn the identity of the desired bit). The aim
is to obtain PIR schemes of low communication complexity
(i.e., substantially lower than the obvious solution of having
a server send all n bits to the user). We focus on one-round
PIR schemes that are protocols in which the user sends a
single message to each server, which responds also with a
single message. In the definition below, Q represents the
algorithm employed by the user to generate its queries, Sj
represents the algorithm employed by the jth server, and R
represents the recovery algorithm used by the user (once it
gets the servers’ answers).

Definition 1.7 A one-round, (1��)-secure, 2-server PIR
scheme for database size n, with recovery probability
p, query size t and answer size a is a quadruple of deter-
ministic algorithms A = (Q;S1; S2; R) with the following
properties.

Algorithmic operation: On input i 2 [n] and (random-tape)
r 2 f0; 1gL, algorithm Q outputs a pair of t-bit long

queries; that is, (q1; q2)
def
= Q(i; r).

On input a database x 2 f0; 1gn, and query q 2
f0; 1gt, algorithm S1 (resp., S2) returns an answer
S1(x; q) 2 f0; 1ga (resp., S2(x; q) 2 f0; 1ga).

Proceedings of the 17th IEEE Annual Conference on Computational Complexity (CCC�02)
1093-0159/02 $17.00 © 2002 IEEE

On input i 2 [n], r 2 f0; 1gL, and answers �1; �2 2
f0; 1ga, algorithm R outputs a bit R(i; r; �1; �2),
which is supposed to be a guess of the entry xi.

The reco very condition: We denote by A(i; x) the ran-
dom variable that represents the output of
R(i; r; S1(x; q1); S2(x; q2)), where (q1; q2) = Q(i; r)
and the probability space is induced by the uniform dis-
tribution of r 2 f0; 1gL. Then, for every i 2 [n] and
x 2 f0; 1gn, it must hold that Pr[A(i; x) = xi] � p.

The secrecy condition: For i 2 [n], denote byQ1(i) (resp.,
Q2(i)) the distribution induced on the first (resp., sec-
ond) element ofQ(i; r) when r is uniformly distributed
in f0; 1gL. Then, for every i; j 2 [n], the distributions
Q1(i) and Q1(j) (resp., Q2(i) and Q2(j)) are �-close
(i.e., the statistical difference between them is at most
�).

Notice that we relax (and quantify) the security and recov-
ery requirements; the traditional perfect requirements are
obtained by setting � = 0 and p = 1. On the other hand,
in the following, we restrict our attention to PIR schemes
which have linear answers; that is, for every fixed query
q 2 f0; 1gt, the servers’ answers S1(x; q) and S2(x; q)
are linear functions of x (each bit of S1(x; q) and each bit
of S2(x; q) is a linear combination of the bits of x). The
above-mentioned PIR scheme of Chor et. al. [4] satisfies this
requirement.

Theorem 1.8 Suppose there is a one-round, (1� �)-secure
PIR scheme with 2 servers, linear answers, database size n,
query size t, answer size a, and recovery probability 1=2+�.
Suppose also that the user only uses k predetermined bits
out of the a bits it receives as answer to each query. Then

t >
(�� �) � n
12 � f(k; a) � log2 f(k; a)� 3;

where f(k; a) =
Pk

i=0

�
a
i

� � minf2a; 2akg.
As immediate corollaries we conclude that
� Any (secure, one-round) 2-server PIR scheme with lin-

ear answers of constant length must have queries of
linear (i.e.,
(n)) length. (This extends a simple lower
bound (of n � 1 bits) on the length of queries in a 2-
server PIR scheme with single-bit linear answers [4,
Sec. 5.2].)

� Any (secure, one-round) 2-server PIR scheme with
linear answers in which the user only uses one bit
from each answer must have communication complex-
ity
(

p
n).

� Any (secure, one-round) 2-server PIR scheme with lin-
ear answers in which the user only uses k bits from
each answer, k a constant, must have communication
complexity
(n1=(k+1)).

In the abovementioned PIR scheme of Chor et. al. [4], both
a and t are O(n1=3), and k = 4. By a minor modification
to that scheme, we can reduce k to 3. Thus the third lower
bound asserts that for this case (i.e., k = 3), communication
complexity of
(n1=4) is essential. We comment that the
first two lower bounds are tight:

� There exists a (perfectly secure, one-round) 2-server
PIR scheme that uses n-bit queries and linear answers
that are single bits (cf., [4, Sec. 3.1]).

� There exists a (perfectly secure, one-round) 2-server,
linear-answer PIR scheme in which the user uses only
one bit from each

p
n bit-long answer, and the queries

are also
p
n-bit long strings (e.g., by a minor modifi-

cation of the scheme in [4, Sec. 3.2–3.3] as applied to
d = 2).

Perspective: Computational security. We stress that the
above results (as well as Section 5) refer to an information-
theoretic notion of security. A relaxed notion of secu-
rity, requiring only security with respect to polynomial-time
servers, was put forward and first investigated by Chor and
Gilboa [3]. Assuming the existence of one-way functions,
for any � > 0, they presented 2-server computational-secure
PIR schemes of communication complexityO(n�). Further-
more, their PIR schemes are one-round and use linear 1-bit
answers. This stands in contrast to the lower bounds regard-
ing the information-theoretic notion of security. Another
PIR setting where computational security offers an advan-
tage over information-theoretic security is the one of a single
server (i.e.,n bits is a lower bound in the case of information-
theoretic security [4, Sec. 5.1], whereas communication
complexity of O(n�) can be achieved for computationally-
secure PIR’s [7] under reasonable intractability assump-
tions).

1.3 Organization

Most of the paper is devoted to analysis of several types of
locally decodable codes, and the application to private infor-
mation retrieval is postponed to the last section (Section 5).
Due to space considerations, two of the extensions men-
tioned above (i.e., to finite fields and block–block codes) are
omitted. Full details can be found in our technical report [5].

2 Preliminaries

The notions and results in this section are mostly due to
Katz and Trevisan [6]. In particular, their notion of smooth
codes and its relation to locally decodable codes are central
to our analysis. Here we generalize their definition to the
case in which the message is over a non-Boolean alphabet.

Proceedings of the 17th IEEE Annual Conference on Computational Complexity (CCC�02)
1093-0159/02 $17.00 © 2002 IEEE

2.1 Smooth Codes

Informally, a code is smooth if a corresponding local de-
coding algorithm “spreads its queries almost uniformly” (or,
actually, does not query any code location too frequently).

Definition 2.1 For fixed c; �, and integer q we say that
C : �n ! �m is a (q; c; �)-smooth code if there exists
a probabilistic oracle machine A such that:
� In every invocation, A makes at most q queries non-

adaptively.
� For every x 2 f0; 1gn and for every i 2 [n], we have

Pr[AC(x)(i) = xi] � 1

2
+ �:

� For every i 2 [n] and j 2 [m], the probability that on
input i machine A queries index j is at most c=m.

(The probabilities are taken over the internal coin tosses of
A.) An algorithm A satisfying the above requirements is
called a (q; c; �)-smooth decoding algorithm for C.

We stress that the decoding condition in Definition 2.1 refers
only to valid codewords, whereas the corresponding condi-
tion in Definition 1.1 refers to all oracles that are sufficiently
close to valid codewords. To get a feeling for the smooth-
ness condition note that if the decoding machine spreads its
queries uniformly, then we would get c = q (and this is the
lowest possible value, assuming that the machine always
makes q queries). It turns out that any locally decodable
code is smooth, for suitable parameters and by possible
modification of the decoding machine.

Theorem 2.2 (See Theorem 1 in [6]) Let C : �n ! �m

be a (q; �; �)-locally decodable code. Then C is also a
(q; q=�; �)-smooth code.

This is stated only for the case � = f0; 1g in [6], but the
proof applies to the general case as well.

2.2 The Recovery Graphs

Let C : �n ! �m be a (2; c; �)-smooth code and let
algorithm A be a (non-adaptive) (2; c; �)-smooth decoding
algorithm for C. Let fq1; q2g be a pair of elements of [m].
We say that a given invocation of A reads fq1; q2g if the
set of indices which A reads in that invocation is exactly
fq1; q2g. We say that fq1; q2g is good for i if:

Pr[AC(x)(i) = xi jA queries fq1; q2g] > 1=2;

where the probability is taken over x uniformly chosen from
f0; 1gn, and over the internal coin tosses of A. For every
i 2 [n], we consider the graph with edge set consisting of
the set of good pairs.

Definition 2.3 Fixing a code C : f0; 1gn ! �m and a 2-
query recovery algorithmA, the recovery graph fori 2 [n],
denoted Gi, consists of the vertex set [m] and the edge set
Ei that equals the set of pairs fq1; q2g that are good for i.

We have the following result about such graphs.

Lemma 2.4 ([6]) Let C be a (2; c; �)-smooth code and
fGigni=1 be the associated set of recovery graphs. Then, for
every i, the graphGi = ([m]; Ei) has a matchingMi � Ei

of size at least �m=c.

This is essentially Lemma 4 in [6], but, since we slightly
changed the definition of the recovery graph (from [6]), and
get slightly better bounds, we present a proof below.
Proof: We may assume without loss of generality that, for
every i 2 [n] and j1; j2 2 [m],

Pr[AC(x)(i) = xi jA queries fj1; j2g] � 1

2
(1)

where the probability is taken uniformly over x 2 f0; 1gn
andA’s internal coin tosses. (For example, we can modifyA
so that it outputs a random bit whenever i 2 [n] and j1; j2 2
[m] do not satisfy Eq. (1).) Using a Markov argument, it
follows that with probability at least 2�, on input i 2 [n],
algorithm A generates a pair that is good for i. In other
words, with probability at least 2�, the pair generated by
A(i) is an edge in Gi. Thus, if C � [m] is a vertex cover
of Gi, then the probability that A(i) queries at least one
element of C is at least 2�. On the other hand, no element
of [m] is queried by A with probability greater than c=m,
and so it follows that jCj � (2�)=(c=m) = 2�m=c. Since
the size of the maximum matching in a graph is at least half
the size of the minimum vertex cover, we conclude that Gi

has a matching of size at least �m=c.

3 The Boolean Case – Proof of Theorem 1.3

3.1 Getting Rid Of Projected Bits

To simplify the rest of our analysis, we would like to get
rid of bits in the range of the code that are identical to some
input (data) bit. That is, we wish the code to be such that no
single bit of the output is (always) equal to a particular bit
of the input. We can accommodate this condition by fixing
bits of the input that are identical to too many bits in the
output. This gives the following lemma.

Lemma 3.1 For n > 4c=�, let C : f0; 1gn ! f0; 1gm
be a (q; c; �)-smooth code. Then there is another code
C
0 : f0; 1gn0 ! f0; 1gm0

that has a (q; c; �=2)-smooth
reconstruction procedure A0, such that n0 � n=2, m0 � m,
and for every i and j there exists an x 2 f0; 1gn0 such that
the jth bit of C0(x) is different from xi. Furthermore, if C
is a linear code, then so isC0.

Proceedings of the 17th IEEE Annual Conference on Computational Complexity (CCC�02)
1093-0159/02 $17.00 © 2002 IEEE

Thus lower bounds on the length of smooth codes satisfying
the conclusion of the lemma yield lower bounds on general
smooth codes.

Proof: Consider the set I of bits in the input that occur in
more than a fraction 2=n of the bits of the output. Clearly,
jI j � n=2. For each i 2 [n] n I , consider the behavior of
the smooth reconstruction procedure AC(x)(i) for some x.
Since i 62 I , at most a fraction 2=n of the bits ofC(x) contain
copies of xi. By the smoothness condition, such code bits
are examined with probability at most 2c=n, which is less
than �=2 (provided that n > 4c=�). Thus, if we modify
A such that it does not read such bits, we may decrease the
probability that it recoversxi by at most �=2, so the recovery
condition is met.

We construct the codeC0 fromC by omitting the output
bits that are copies of any input bit i 2 [n], fixing arbitrary1

values for the bits in I , “hardwiring” these values into C0,
and modifying A so that it queries only bits in C0 (rather
than bits in C). Note that the fact that the length of C0 may
be shorter than the length of C only makes the smoothness
condition easier to meet.

3.2 The Combinatorial Lemma

We will deal with the linear error-correcting code C0 of
Lemma 3.1. In the following we will use ei to denote a
vector in f0; 1gn that has 1 in the i-th coordinate and 0
elsewhere. We can identify our error-correcting code C0

with a sequence of m0 vectors a1; : : : ; am0 2 f0; 1gn0 , such
that the jth bit ofC(x) is aj �x. Recall that, by Lemma 3.1,
none of these aj’s equals any unit vector ei. Let fGign0i=1

be the sequence of recovery graphs associated withC0 as in
Lemma 2.4.

Lemma 3.2 For every i, and for every fq1; q2g 2 Ei, ei is
in the span of faq1 ; aq2g.

Proof: Suppose ei is linearly independent of aq1 and aq2 .
Then, for a random x, the value x � ei is independent (in
the statistical sense) of the values x � aq1 and x � aq2 , and so
it is not possible to gain any advantage in predicting xi by
looking at the q1-th and the q2-th bit of the encoding of x.

Since we are dealing with the field f0; 1g, when ei is in the
span of faq1 ; aq2g there are only three possibilities: either
aq1 or aq2 equals ei itself, or ei = aq1 � aq2 . But forC0 (as
in Lemma 3.1) the only possible case is that ei = aq1 �aq2 .
Thus proving Theorem 1.3 reduces to proving the following
result.

1 Actually, in order to preserve linearity, these bits should all be set to
zero. However, in fact, all our results apply also to affine codes.

Lemma 3.3 (Combinatorial Lemma) Let a1; : : : ; am be el-
ements of f0; 1gn such that for every i 2 [n] there is a set
Mi of at least
m disjoint pairs of indices fj1; j2g such
that ei = aj1 � aj2 . Then m � 2
n. Furthermore, the
conclusion holds even when the hypothesis only states that
1
n

Pn
i=1 jMij �
m.

Below, we will present two alternative proofs of Lemma 3.3.
Actually, the second proof yields a stronger lower-bound (of
m � 22
n, rather than m � 2
n). Combining all the above
lemmas, we get:

Corollary 3.4 Let C : f0; 1gn ! f0; 1gm be a (2; c; �)-
smooth linear code. Then m � 2�n=(4c).

Notice that Theorem 1.3 is an immediate consequence of
Corollary 3.4 and Theorem 2.2.

Proof: We first apply Lemma 3.1 to obtain a (2; c; �0)-
smooth linear codeC0 : f0; 1gn0 ! f0; 1gm0

, forn0 � n=2,
m0 � m and �0 = �=2. Combining Lemmas 2.4 and 3.2,

it follows that 1
n0

Pn0

i=1 jMij � �0m0=c. Finally, applying
Lemma 3.3, we get m0 � 2�

0n0=c � 2�n=(4c), and using
m � m0 the claim follows.

3.3 A Combinatorial Proof of Lemma 3.3

For starters, let us suppose that all the vectors a1; : : : ; am
are different. In this special case, Lemma 3.3 is a conse-
quence of the following known combinatorial result.2

Lemma 3.5 (See Appendix in [5]) For any subset S �
f0; 1gn of the hypercube, the number of edges of the hy-
percube having both endpoints in S is at most 1

2 jSj log2 jSj.
Note that our (distinct) vectors a1; : : : ; am are all vertices
of a hypercube, and we are assuming that, for every i, there
are at least
m edges in the ith “direction” between such
vertices. This gives a total of at least
mn edges, but this
number has to be no more than 1

2mlog2m, and so it follows
that m � 22
n.

To complete the proof of Lemma 3.3, we have to consider
the case in which a1; : : : ; am are not all different. Note that
an analogue of Lemma 3.5 does not hold in this case (e.g.,
if a1 = � � � = am=2 = 0n and a(m=2)+1 = � � � = am =
10n�1 then we get (m=2)2 edges).3

2 The proof of Theorem 2 in [2, Sec. 16] implies that the subset S �
f0; 1gn of given sizem for which the number of internal edges is maximum
is the set of the first m = jSj strings in lexicographic order (of f0; 1gn).
Since each such vertex has at most dlog2me internal edges, we get an
upper-bound of 1

2
jSj dlog2 jSje on the number of internal edges. Indeed,

the difference is of little significance in the context of our work.
3 Note that this example does not violate Lemma 3.3: for every sequence

of Mi’s as in Lemma 3.3, it holds that
Pn

i=1
jMij � 1 (since jM1j � 1

and all the other Mi’s must be empty). Thus, the “furthermore hypothesis”
only holds with
 � 1=(nm), implying a lower bound of m � 2
n � 2
(which indeed holds).

Proceedings of the 17th IEEE Annual Conference on Computational Complexity (CCC�02)
1093-0159/02 $17.00 © 2002 IEEE

For every a 2 f0; 1gn, let us denote by �a the number
of indices j such that aj = a (so that

P
a2f0;1gn �a = m).

That is, �a is the multiplicity of the vector a in the sequence
a1; : : : ; am. For every k, let us denote by Sk the set of
vectors a such that �a � k, and let sk = jSkj; observe that

X

k

sk = m; (2)

because each vectora that occurs in the sequencea1; : : : ; am
is counted exactly �a times. Finally, define �(a; j) to be 1
if �a � j and to be 0 otherwise. With this new piece of
notation we can write

X

a2f0;1gn

X

k�1

�(a; k) = m; (3)

and we also note that for any two vectors a; b 2 f0; 1gn, we
have

minf�a; �bg =
X

k�1

�(�a; k)�(�b; k): (4)

Now we would like to argue that for every i, the following
upper bound holds on the size of the matching Mi:

jMij �
X

a;b:a�b=ei

minf�a; �bg: (5)

Indeed, for starters we have by definition thatMi is the set of
all pairs fj1; j2g such that aj1 � aj2 = ei, and that all such
pairs are disjoint. Let us fix two vectors a and b such that
a� b = ei, and consider how many possible pairs fj1; j2g
can belong to Mi subject to aj1 = a and aj2 = b; since the
pairs have to be disjoint, both �a and �b are upper bounds
on the number of such possible pairs. Summing over all
choices of a and b gives the bound of (5).

Combining the lemma’s hypothesis with Equations (5)
and (4), we get

mn �
nX

i=1

jMij

�
nX

i=1

X

a2f0;1gn

minf�a; �a�eig

=

nX

i=1

X

a2f0;1gn

X

k�1

�(�a; k)�(�a�ei ; k)

and so

mn �
X

k�1

nX

i=1

X

a2f0;1gn

�(�a; k)�(�a�ei ; k): (6)

Note that
Pn

i=1

P
a2f0;1gn �(�a; k)�(�a�ei ; k) counts

(twice) the number of hypercube edges with both endpoints
in Sk. Thus, by Lemma 3.5, we have, for every k, that

nX

i=1

X

a2f0;1gn

�(�a; k)�(�a�ei ; k) � 2 � 1
2
jSkj log2 jSkj

= sk log2 sk

� sk � log2m:

Combining this inequality with (6), and recalling (2), we
have

mn �
X

k

sk � log2m = m � log2m;

from which it follows that m � 2
n.

3.4 An Alternative Proof of Lemma 3.3

The “information-theoretic” proof in this section is due
to Alex Samorodnitsky, and was suggested to us after we
found the combinatorial proof presented in the previous sub-
section.

Let X be a random variable uniformly distributed in the
multiset fa1; : : : ; amg. We will write X = X1X2 � � �Xn,
where Xi denotes the ith bit of X , and Xi;j denotes
Xi � � �Xj . We consider the entropy of X , denoted H(X).
On one hand, H(X) � log2m. On the other hand, we
will prove that H(X) � 2
n, and Lemma 3.3 will follow
immediately.

We can express the entropy of X as

H(X) = H(X1) +H(X2jX1)

+ � � �+H(XnjX1 � � �Xn�1):

The value of the ith term, H(XijX1 � � �Xi�1) =
H(XijX1;i�1), is given by the following formula:

H(XijX1;i�1)

=
X

b2f0;1gi�1

Pr[X1;i�1=b] �H(XijX1;i�1=b): (7)

Observe that for any 0-1 random variableY (in our caseY =

(XijX1;i�1=b)), with p
def
= Pr(Y = 1), we have H(Y) =

H2(p), where H2(x) = x log(1=x) + (1� x) log2(1=(1�
x)) � 2 �min(x; 1� x) is the binary entropy function.4 So
Eq. (7) is at least

X

b2f0;1gi�1

Pr[X1;i�1=b]

�2 � min
�2f0;1g

fPr[Xi=�jX1;i�1=b]g: (8)

4We claim that, for x 2 [0; 0:5], it holds that H2(x) � 2x (whereas
a bound of H2(x) � x is obvious). The claim can be verified by noting

that f(x)
def
= H2(x)� 2x is convex in that interval, and that f(0) = 0 =

f(1=2).

Proceedings of the 17th IEEE Annual Conference on Computational Complexity (CCC�02)
1093-0159/02 $17.00 © 2002 IEEE

Now, under any conditioning, the probability that X is an
endpoint of an edge in Mi equals the sum over � 2 f0; 1g
of the probabilities that Xi = � and X is an endpoint of
an edge in the matching Mi (which matches events of the
type Xi = 0 with events of the type Xi = 1). Thus,
each of the two probabilities in the sum is bounded above
by min(Pr[Xi = 0jcond];Pr[Xi = 1jcond]). Thus,
Pr[X is an endpoint of e 2MijX1;i�1 = b] is bounded
above by 2 � minfPr[Xi = 0jX1;i�1 = b];Pr[Xi =
1jX1;i�1 = b]g, and Eq. (8) is bounded below by

X

b2f0;1gi�1

Pr[X1;i�1 = b]

�Pr[X is an endpoint in an edge of MijX1;i�1 = b]

= Pr[X is an endpoint in an edge of Mi]

=
2jMij
m

� 2
:

Then H(X) � 2
n and so m � 22
n.

Comment: Note that the lower bound established here
(i.e., m � 22
n) is a square of the lower-bound claimed
in Lemma 3.3. Furthermore, this stronger lower-bound is
tight, and implies Lemma 3.5 as a special case.5

4 Extension To Binary Linear Block Codes –
The Proof of Theorem 1.5

In this section we deal with linear codes mapping f0; 1gn
to (f0; 1g`)m, where the case ` = 1 corresponds to the main
result (presented in Section 3). Thus each output symbol
is an `-bit long string, where each of these bits is a linear
combination of the n input bits. We show that providing
lower bounds for the general case reduces to providing lower
bounds for the special case of ` = 1.

4.1 Reduction to the Boolean case

Lemma 4.1 Let C : f0; 1gn ! (f0; 1g`)m be a (q; c; �)-
smooth linear error-correcting code. Then there is a code
C
0 : f0; 1gn ! f0; 1g2`�m that is (q; c � 2`; �)-smooth. Fur-

thermore, suppose that C has a decoding algorithm that
uses only k predetermined bits out of the ` bits that it
receives as answer to each query. Then there is a code
C
00 : f0; 1gn ! f0; 1gt�m that is (q; c � t; �)-smooth, where

t =
Pk

i=0

�
`
i

�
.

5 Specifically, the set of edges E(S;S) with both endpoints in S
can be partitioned into matchings Mi’s as in Lemma 3.3. Letting
 =
(
P

i
jMij)=(njSj), and applying the stronger bound (for Lemma 3.3), we

get jSj � 22
n = 2
2

P
i
jMij=jSj. Thus, log2 jSj � 2jE(S;S)j=jSj,

which implies jE(S;S)j � (1=2)jSj log2 jSj.

Proof: Let x 2 f0; 1gn. We define C0(x) as follows: for
every j 2 [m] and for every a 2 f0; 1g`, the entry ofC0(x)
indexed by (j; a) contains the inner product between the jth
(`-bit long) block ofC(x) and the (`-bit long) string a. This

encoding has lengthm0 def= 2`m. We now describe a smooth
decoding procedure forC0.

Let A be the (2; c; �)-smooth decoding procedure for
C. The smooth decoding procedure A0 for C0 will first
simulate A, and get two queries (j1; j2). If xi is in the
span of C(x)j1 and C(x)j2 , then A0 will reconstruct xi as
a linear combination of C(x)j1 and C(x)j2 , a computation
that can be done by looking at two entries of C0(x) (i.e.,
specifically the entries (j1; a1) and (j2; a2), where xi =
ha1;C(x)j1 i + ha2;C(x)j2 i). If xi is not in the span of
C(x)j1 andC(x)j2 , thenA0 will output a random guess. As
argued in the proof of Lemma 2.4, with probability at least
2�, algorithm A (on input i) samples a pair (j1; j2) that is
good for i (i.e., allows reconstruction with average success
probability above 1=2, when averaging over all possible
x’s). However, whenever (j1; j2) is good for i, it must
be the case that xi is in the span of C(x)j1 and C(x)j2 ,
and A0 correctly reconstructs xi. Combining these two
observations, we bound the reconstruction probability of A0

below by 2� � 1 + (1� 2�) � (1=2) = 1=2 + � (as required).
Turning to the smoothness condition, observe that each entry
in C0(x) is queried with probability at most c=m, which
equals (2` � c)=m0 as required.

In order to prove the “furthermore” part, we do a similar
construction, except that the entries ofC00(x) correspond to
pairs (j; a) where j 2 [m] and a 2 f0; 1gn is a vector of
weight at most k. When introducing the decoding procedure
A00 (for C00), we refer not only to the queries made by A
but also the the predetermined bit locations in the answer
that are inspected by A. Specifically, A00 first simulates A,
and gets two queries (j1; j2) as well as two corresponding
sets of bit locations S1; S2 � [`]. If xi is in the span of
the bit positions S1 in C(x)j1 and the bit positions S2 in
C(x)j2 , then A00 will reconstruct xi as a linear combination
of these bit positions, a computation that can be done by
looking at two entries ofC00(x), since jS1j; jS2j � k. In the
analysis we note that whenever a pair of queries (made by
A) is good for i, it must be the case that xi is in the span of
the bits of C(x)j1 and C(x)j2 that are inspected by A, and
A00 correctly reconstructs xi.

4.2 Consequences

Combining Lemma 4.1 and Corollary 3.4, we obtain the
following result.

Corollary 4.2 Let C : f0; 1gn ! (f0; 1g`)m be a (q; c; �)-
smooth linear error-correcting code. Then m � (1=2l) �
2�n=4�2

l�c. Furthermore, ifC has a decoding algorithm that

Proceedings of the 17th IEEE Annual Conference on Computational Complexity (CCC�02)
1093-0159/02 $17.00 © 2002 IEEE

uses only k of the ` bits that it receives as answer to each
query, then m � (1=t) � 2�n=4�t�c, where t =

Pk
i=0

�
`
i

�
.

Theorem 1.5 follows by combining Corollary 4.2 and The-
orem 2.2.

5 Lower Bounds For Private Information Re-
trieval – Proof of Theorem 1.8

The main result of this section is a reduction showing
that a one-round PIR system can be converted into a smooth
error-correcting code. This transformation preserves linear-
ity, and hence, combined with the lower bound for smooth
linear codes, yields a lower bound for linear one-round PIR
systems.

5.1 Constructing Smooth Codes Based on PIR
Schemes

Actually, we consider a relaxed notion of a PIR. First,
recovery is not required to always be correct but rather only
to be correct with probability at least 1=2 + �, where the
probability is taken over the PIR’s randomization for any
fixed input (i.e., a database and a desired bit). Second, we
do not require perfect secrecy (i.e., � = 0), but rather that
the distributions of each query for each desired bit are at
pairwise statistical distance at most �.

Lemma 5.1 Suppose there is a one-round, (1 � �)-secure
PIR scheme with two servers, database size n, query size
t, answer size a, and recovery probability at least 1=2 + �.
Then there is a (2; 3; � � �)-smooth error-correcting code
C : f0; 1gn ! (f0; 1ga)m, wherem � 6�2t. Furthermore:

1. If in the PIR scheme the answer bits are a linear com-
bination of the data, thenC is linear.

2. If, in the PIR scheme, the user only uses k predeter-
mined bits out of the a bits it receives as an answer to
each question, then the same property is true for the
decoding algorithm ofC.

Proof: Let us first develop some intuition about the proof.
By enumerating all possible answers from either server,
we can view the PIR system as encoding the database
x 2 f0; 1gn as a string PIR(x) 2 (f0; 1ga)l, where
l = 2 � 2t. The user can reconstruct one bitxi of the database
with advantage � by looking at two entries of the encoded
string PIR(x). For any i and j, the distribution of the first
entry read into PIR(x) when reconstructing xi is �-close
to the distribution of the first entry read into PIR(x) when
reconstructing xj (and similarly for the second entry). In-
stead of this closeness property, we would like to have a
smoothness property, that is, we would like each entry to
be read with low probability. We are willing to make the

encoding be slightly longer in order to achieve this goal. We
will achieve this goal by duplicating entries that have a high
probability of being read.

Suppose, to start, that � = 0. Then, for every j, the
probability that entry j is queried by the reconstruction al-
gorithm (as a first query or as a second query) is a fixed
value pj (independent of which bit of the database the user
wants to reconstruct); note that

P
j pj = 2. We will repli-

cate entry j of the encoding nj = dpj � le times, denot-
ing by C(x) this new encoding (with repetitions) of x.
Recall that PIR(x) 2 (f0; 1ga)l (and we will show that
C(x) 2 (f0; 1ga)O(l)).

A reconstruction algorithm for xi from C(x) will gen-
erate queries j1; j2 as in the reconstruction algorithm that
accesses PIR(x). The algorithm then picks at random one
of the nj1 copies of the j1th entry and one of the nj2 copies
of the j2th entry, and then accesses these selected two entries
in C(x). Clearly, the advantage in decoding xi remains the
same. Regarding smoothness, let us consider an entry j in
PIR(x). If pj � 1=l, then the corresponding (unique) bit
in C(x) is accessed with probability pj � 1=l. Otherwise
(i.e., pj > 1=l), the jth entry is replicated nj = dpj le > 1
times, and each copy is accessed with probability pj=nj ,
which is

pj
dpj le �

pj
pj l

=
1

l
:

The length of the new encoding is m =
Pl

j=1 nj , and we
have

m =
X

j:pj�1=l

dpj le+
X

j:pj>1=l

dpjle

�
X

j:pj�1=l

1 +
X

j:pj>1=l

(1 + pj l)

� l +
X

j

pj l

= 3l = 6 � 2q:

Recall that no entry is queried with probability higher than
1=l, which (using m � 3l) is bounded above by 3=m.

Consider now the general case in which the query distri-
butions for xi1 and xi2 are only guaranteed to be �-close.
We apply the previously described construction using the
distribution of queries for x1. When we want to reconstruct
xi we proceed as follows. For every j, let pj be the probabil-
ity that j is queried when reconstructing x1 and let qj be the
probability that j is queried when reconstructing xi. Note
that
P

j pj =
P

j qj = 2 and that
P

j jpj�qj j � 4�, and soP
j:qj>pj

(qj �pj) � 2�. We sample queries j1; j2 as in the
original algorithm for xi (modified so as to choose a random
copy, if the required entry has multiple copies), and then if
qj1 � pj1 , we proceed to make query j1. If qj1 > pj1 , then
we read query j1 with probability pj1=qj1 and we enter a

Proceedings of the 17th IEEE Annual Conference on Computational Complexity (CCC�02)
1093-0159/02 $17.00 © 2002 IEEE

“failure mode” with the remaining probability. In failure
mode, bit xi is just guessed randomly. Query j2 is handled
similarly.

Observe that the smoothness requirement is satisfied as
before (since each bit corresponding to the original query j
is accessed with probability minfqj ; pjg=nj � pj=nj �
1=l). The probability of entering the failure mode isP

j:qj>pj
(qj � pj) � 2�, and when the failure mode is

entered, the probability of guessing xi correctly is exactly
one half. Thus, in the worst case, failures subtract � of
the probability of guessing xi correctly, and so the overall
probability of guessing xi right is at least 1=2 + �� �.

5.2 Consequences

Theorem 1.8 follows by combining Lemma 5.1 and
Corollary 4.2. Specifically, using m � 6 � 2t, a smooth-
ness bound of c = 3 and recovery advantage �� �, we have

6 � 2t � 1
f(k;a) � 2

(���)�n
4�3�f(k;a) , and Theorem 1.8 follows.

Acknowledgments

We are grateful to Alex Samorodnitsky for suggesting
to us the information-theoretic proof of Lemma 3.3 and
allowing us to present it in Section 3.4. Thanks also to
Noga Alon for providing us with a proof of Lemma 3.5 and
allowing us to reproduce it in our technical report [5].

References

[1] A. Ambainis. An Upper Bound On The Communication
Complexity of Private Information Retrieval. In 24th
ICALP, Springer, Lecture Notes in Computer Science,
Vol. 1256, pages 401–407, 1997.

[2] B. Bollobás. Combinatorics. Cambridge University
Press, 1986.

[3] B. Chor and N. Gilboa. Computationally-Private Infor-
mation Retrieval. In 29th STOC, pp. 304–313, 1997.

[4] B. Chor, O. Goldreich, E. Kushilevitz and M. Sudan,
Private Information Retrieval. Journal of the ACM,
Vol. 45, No. 6, pages 965–982, November 1998.

[5] O. Goldreich, H. Karloff, L.J. Schulman and L. Tre-
visan, Lower Bounds for Linear Locally Decodable
Codes and Private Information Retrieval. ECCC, TR01-
080, 2001.

[6] J. Katz and L. Trevisan. On The Efficiency Of Local
Decoding Procedures For Error-Correcting Codes. In
32nd STOC, 2000.

[7] E. Kushilevitz and R. Ostrovsky. Replication is Not
Needed: Single Database, Computationally-Private In-
formation Retrieval. In 38th FOCS, pages 364–373,
1997.

Proceedings of the 17th IEEE Annual Conference on Computational Complexity (CCC�02)
1093-0159/02 $17.00 © 2002 IEEE

