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Abstract. In this paper we consider some matrix operators on block weighted sequence
spaces lp(w, F ). The problem is to find the lower bound of some matrix operators such
as Hausdorff and Hilbert matrices on lp(w, F ). This study is an extension of papers by
G. Bennett, G.J.O. Jameson and R. Lashkaripour.
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1. Introduction

Suppose p > 1 and w = (wn) is a decreasing non-negative sequence. We define

the weighted sequence space lp(w) as

lp(w) :=

{

x = (xn) :

∞
∑

n=1

wn|xn|
p is finite

}

,

with a norm ‖ · ‖p,w which is defined in the following way:

‖x‖p,w =

( ∞
∑

n=1

wn|xn|
p

)1/p

.

Assume that F is a partition of positive integers. If F = (Fn), where each Fn is a

finite interval of positive integers and

max Fn < min Fn+1 (n = 1, 2, . . .),
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we define the block weighted sequence space lp(w, F ) as

lp(w, F ) :=

{

x = (xn) :

∞
∑

n=1

wn|〈x, Fn〉|
p is finite

}

,

where 〈x, Fn〉 =
∑

j∈Fn

xj . The norm on lp(w, F ), denoted by ‖ · ‖p,w,F , is defined as

follows:

‖x‖p,w,F =

( ∞
∑

n=1

wn|〈x, Fn〉|
p

)1/p

.

For a certain In such as In = {n}, I = (In) is a partition of positive integers,

lp(w, I) = lp(w) and also ‖x‖p,w,I = ‖x‖p,w.

We write ‖A‖p,w,F for the norm of A as an operator from lp(w, I) into lp(w, F ).

The problem of the norm of matrix operators on lp(w) and lp(w, F ) is considered

in [5], [6], [7] and [8].

We consider lower bounds L of the form

‖Ax‖p,w,F > L‖x‖p,w,I ,

for all decreasing non-negative sequences x. The constant L is independent of x. We

seek the largest possible value of L, and denote the best lower bound by Lp,w,F (A) for

matrix operators from lp(w, I) into lp(w, F ). Also, if A is an operator from lp(w, I)

into itself, we denote the best lower bound by Lp,w,I(A). We shall use all the above

notation when p < 1.

In Section 2, we generalize two techniques obtained by Bennett in Section 7 of [1]

and deduce the lower bound for the Hausdorff matrix. In Section 3, we also generalize

Theorem 1 of [4] for matrix operators from lp(w, I) into lp(w, F ) and study the lower

bound problem for the Hilbert and Copson matrices.

Throughout this paper, we denote the transpose matrix of A by At, and the

conjugate exponent of p by p∗, so that p∗ = p/(p − 1).

2. Hausdorff matrix operator

In this part we consider the Hausdorff matrix operator H(µ) = (hj,k) with entries

of the form

hj,k =







(

j − 1

k − 1

)

∆j−kak if 1 6 k 6 j,

0 if k > j,

where ∆ is the difference operator, that is

∆ak = ak − ak+1,
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and (ak) is a sequence of real numbers, normalized so that a1 = 1. If

ak =

∫ 1

0

θk−1 dµ(θ) (k = 1, 2, . . .),

where µ is a probability measure on [0, 1], then for all j, k = 1, 2, . . .,

hj,k =







(

j − 1

k − 1

)
∫ 1

0

θk−1(1 − θ)j−k dµ(θ) if 1 6 k 6 j,

0 if k > j.

The Hausdorff matrix contains some famous classes of matrices. These classes are

as follows:

i) Choice dµ(θ) = α(1 − θ)α−1 dθ gives the Cesàro matrix of order α;

ii) Choice dµ(θ) = point evaluation at θ = α gives the Euler matrix of order α;

iii) Choice dµ(θ) = |log θ|α−1/Γ(α) dθ gives the Hölder matrix of order α;

iv) Choice dµ(θ) = αθα−1 dθ gives the Gamma matrix of order α.

The Cesàro, Hölder and Gamma matrices have non-negative entries whenever

α > 0, and also the Euler matrix is non-negative when 0 6 α 6 1.

In this section, we are considering the lower bound problem for the Hausdorff

matrix (general form), and also for the Cesàro, Hölder and Gamma matrices.

Proposition 2.1. Let A = (an,k) be an upper-triangle matrix with non-negative

entries and let 0 < p 6 1. If

sup
n

∞
∑

k=n

an,k = k1 > 0, inf
k

k
∑

n=1

an,k = k2,

then

Lp,w,I(A) > k
(p−1)/p
1 k

1/p
2 .

P r o o f. Suppose x is a non-negative sequence. Applying Hölder’s inequality we

have
∞
∑

k=n

an,kwkxp
k =

∞
∑

k=n

a1−p
n,k (an,kw

1/p
k xk)p

6

( ∞
∑

k=n

an,k

)1−p( ∞
∑

k=n

an,kw
1/p
k xk

)p

6 k1−p
1

( ∞
∑

k=n

an,kw
1/p
k xk

)p

.
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Since A is an upper-triangle matrix with non-negative entries and w is decreasing,

we have

k1−p
1

∞
∑

n=1

wn

( ∞
∑

k=1

an,kxk

)p

= k1−p
1

∞
∑

n=1

wn

( ∞
∑

k=n

an,kxk

)p

> k1−p
1

∞
∑

n=1

( ∞
∑

k=n

an,kw
1/p
k xk

)p

>

∞
∑

n=1

( ∞
∑

k=n

an,kwkxp
k

)

=

∞
∑

k=1

wkxp
k

( k
∑

n=1

an,k

)

> k2

∞
∑

k=1

wkxp
k.

Hence ‖Ax‖p
p,w,I > kp−1

1 k2‖x‖
p
p,w,I and so we have the desired conclusion. �

In the next statement, we seek a lower bound for the quasi-Hausdorff matrix when

the sequences are non-negative. We recall the transpose of the Hausdorff matrix

which is called the quasi-Hausdorff matrix.

Theorem 2.1. Suppose that H(µ) is the Hausdorff matrix and 0 < p 6 1. Then

‖Ht(µ)x‖p,w,I >

(
∫ 1

0

θ(1−p)/p dµ(θ)

)

‖x‖p,w,I

for every non-negative sequence x. The constant is the best possible.

P r o o f. Let E(α) be the Euler matrix of order α. Since all row sums of Et(α)

are 1/α and all column sums are 1, applying Proposition 2.1 we obtain

Lp,w,I(E
t(α)) > α(1−p)/p.

Let F = (Fn) be defined as above. We now apply Minkowski’s inequality to show

‖Ht(µ)x‖p,w,I =

( ∞
∑

n=1

wn

(

∑

j∈Fn

(Ht(µ)x)j

)p)1/p

=

( ∞
∑

n=1

wn

( ∞
∑

k=1

hk,nxk

)p)1/p

=

( ∞
∑

n=1

wn

(
∫ 1

0

∞
∑

k=1

ek,nxk dµ(α)

)p)1/p

>

∫ 1

0

( ∞
∑

n=1

wn

( ∞
∑

k=1

ek,nxk

)p)1/p

dµ(α)

=

∫ 1

0

‖Et(α)x‖p,w dµ(α) >

(
∫ 1

0

α(1−p)/p dµ(α)

)

‖x‖p,w,I .
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This completes the proof of the above inequality. Therefore for any real number

α > 0 we have

(I) ‖Ht(µ)x‖p,w+α,I >

(
∫ 1

0

θ(1−p)/p dµ(θ))‖x‖p,w+α,I

for all non-negative sequences x in lp(w, I). We will show that the above constant is

the best possible.

Let ̺ > 1/p and let n be a fixed integer such that n > ̺. We define x by

xk =







0 if k < n,
(

k − ̺

k − n

)

/

(

k

n

)

if k > n.

Since

xk =
(k − ̺) . . . (n + 1 − ̺)

k . . . (n + 1)
∼ k−̺

when k → ∞, it follows that ‖x‖p < ∞ and ‖x‖p → ∞ when ̺ → 1/p. Since w is

decreasing and also wk + α > α for all k, we have

α1/p‖x‖p 6 ‖x‖p,w+α,I 6 (w1 + α)1/p‖x‖p,

so ‖x‖p,w+α,I < ∞ and ‖x‖p,w+α,I → ∞ when ̺ → 1/p. Moreover, for all m > n we

have

(Ht(µ)x)m = xm

∫ 1

0

θ̺−1 dµ(θ),

hence

‖Ht(µ)x‖p
p,w+α,I =

n
∑

m=1

(wm + α)

( ∞
∑

k=m

hk,mxk

)p

+

∞
∑

m=n+1

(wm + α)(Ht(µ)x)p
m

6 n(w1 + α) sup
k,m

|hk,m|p‖x‖p
1 +

(
∫ 1

0

θ̺−1 dµ(θ)

)p

‖x‖p
p,w+α,I

and also

(Lp,w+α,I(H
t(µ)))p 6

n(w1 + α) supk,m |hk,m|p‖x‖p
1

‖x‖p
p,w+α,I

+

(
∫ 1

0

θ̺−1 dµ(θ)

)p

.

If ̺ → 1/p, then

Lp,w+α,I(H
t(µ)) 6

∫ 1

0

θ(1−p)/p dµ(θ).
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Therefore

Lp,w+α,I(H
t(µ)) =

∫ 1

0

θ(1−p)/p dµ(θ),

and the constant in (I) is the best possible. Hence for all m there is a non-negative

sequence ym ∈ lp(w, I) such that

‖Ht(µ)ym‖p,w+α,I

‖ym‖p,w+α,I
<

∫ 1

0

θ(1−p)/p dµ(θ) +
1

m
.

Since ‖Ht(µ)ym‖p,w,I 6 ‖Ht(µ)ym‖p,w+α,I , we have

‖Ht(µ)ym‖p,w+α,I

‖ym‖p,w+α,I
>

‖Ht(µ)ym‖p,w,I

‖ym‖p,w+α,I

=
‖ym‖p,w,I

‖ym‖p,w+α,I
·
‖Ht(µ)ym‖p,w,I

‖ym‖p,w,I

>
‖ym‖p,w,I

‖ym‖p,w+α,I
Lp,w,I(H

t(µ)),

and so
‖ym‖p,w,I

‖ym‖p,w+α,I
Lp,w,I(H

t(µ)) 6

∫ 1

0

θ(1−p)/p dµ(θ) +
1

m
.

If α → 0, since ‖x‖p,w+α,I < ∞, we have ‖x‖p,w+α,I → ‖x‖p,w,I and so

Lp,w,I(H
t(µ)) 6

∫ 1

0

θ(1−p)/p dµ(θ) +
1

m
.

Now, if m → ∞, we have

Lp,w,I(H
t(µ)) 6

∫ 1

0

θ(1−p)/p dµ(θ).

Therefore

Lp,w,I(H
t(µ)) =

∫ 1

0

θ(1−p)/p dµ(θ).

This completes the proof of the theorem. �

Example. We denote the Gamma matrix of order 2 by Γ(2). If Γt(2) = (bi,j) is

the transpose of the Gamma matrix, we have

bi,j =







i
1
2j(j + 1)

if j > i,

0 if j < i
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and

Lp,w,I(Γ
t(2)) =

2p

p + 1
.

We now give a lower bound for the quasi-Hausdorff matrix when the sequences are

non-negative. We recall the transpose of the Hausdorff matrix which is called the

quasi-Hausdorff matrix.

Proposition 2.2. Let 0 < p, q < 1, and let A be a matrix with non-negative

entries. Then

‖Ax‖q,w,I > L‖x‖p,w,I

for all non-negative x if and only if

‖Aty‖p∗,w,I > L‖y‖q∗,w,I

for all non-negative y, where p∗, q∗ are the conjugate exponents of p and q, respec-

tively.

P r o o f. Suppose u is a sequence with non-negative entries. First we show that

(I) ‖u‖t,w,I = inf{〈u, v〉 : v is a non-negative sequence and ‖v‖t∗,w,I > 1}

for 0 < t < 1 or t < 0, where 〈u, v〉 =
∞
∑

k=1

wkukvk.

Let v be a non-negative sequence such that ‖v‖w,t∗,I > 1. Then applying Hölder’s

inequality, we deduce that

〈u, v〉 =

∞
∑

k=1

wkukvk =

∞
∑

k=1

w
1/t+1/t∗

k ukvk >

( ∞
∑

k=1

wkut
k

)1/t( ∞
∑

k=1

wkvt∗

k

)1/t∗

= ‖u‖t,w,I‖v‖t∗,w,I > ‖u‖t,w,I.

Hence inf 〈u, v〉 > ‖u‖t,w,I.

We divide the proof of the converse inequality in two cases as follows:

Case 1. If u > 0, we take

ṽk = ut−1
k , vk =

ṽk

‖ṽ‖t∗,w,I
.

Hence ‖ṽ‖t∗,w,I = ‖u‖t−1
t,w,I and 〈u, v〉 = ‖u‖t,w,I, so that

inf 〈u, v〉 6 ‖u‖t,w,I.

Case 2. If some uk = 0, we consider (i), (ii):
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(i) For t < 0, ‖u‖w,t,I = 0 and set

vn =







0 for n 6= k,

1

w
1/t∗

k

for n = k.

(ii) For 0 < t < 1, we set

ṽk =







ut−1
k for uk > 0,

( ε

wk2k

)1/t∗

for uk = 0

and vk = ṽk/‖ṽ‖t∗,w,I , where ε is positive.

Hence ‖v‖t∗,w,I = 1, ‖ṽ‖t∗,w,I > 1/(ε + ‖u‖t
t,w,I)

−1/t∗ and also

〈u, v〉 6 ‖u‖t
t,w,I(ε + ‖u‖t

t,w,I)
−1/t∗ ,

so that

inf 〈u, v〉 6 ‖u‖t
t,w,I(ε + ‖u‖t

t,w,I)
−1/t∗ .

If ε tends to zero, we have

inf 〈u, v〉 6 ‖u‖t,w,I.

This completes the proof of (I).

Applying (I) twice, we deduce that

inf
‖x‖p,w,I>1

‖Ax‖q,w,I = inf
‖x‖p,w,I>1

inf
‖y‖q∗,w,I>1

〈Ax, y〉

= inf
‖x‖p,w,I>1

inf
‖y‖q∗,w,I>1

〈

x, Aty
〉

= inf
‖y‖q∗,w,I>1

inf
‖x‖p,w,I>1

〈

x, Aty
〉

= inf
‖y‖q∗,w,I>1

‖Aty‖p∗,w,I

and so we have the statement. �

In the next statement, we are seeking a lower bound of the Hausdorff matrix when

the sequences are non-negative.

Corollary 2.2. Suppose that p < 0, and let H(µ) be the Hausdorff matrix. Then

‖Ht(µ)x‖p,w,I >

(
∫ 1

0

θ−1/p dµ(θ)

)

‖x‖p,w,I

for every non-negative sequence x. The constant is the best possible.

P r o o f. Since 0 < p∗ < 1, applying Theorem 2.1 and Proposition 2.1 we obtain

the statement. �
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Corollary 2.3. Assume 0 < p 6 1, and let H(µ) be the Hausdorff matrix. Then

‖Ht(µ)x‖p >

(
∫ 1

0

θ(1−p)/p dµ(θ)

)

‖x‖p

for every non-negative sequence x. The constant is the best possible.

P r o o f. By taking wn = 1 for all n in the previous corollary, we have the above

inequality. �

Corollary 2.4. If p > 0 and H(µ) is the Hausdorff matrix, then

∞
∑

n=1

wn

( n
∑

k=1

hn,k

|xk|

)−p

6

(
∫ 1

0

θ1/p dµ(θ)

)−p ∞
∑

k=1

wk|xk|
p

for every non-negative sequence, and the constant is the best possible.

P r o o f. Suppose that y is a sequence with non-negative entries. Since −p < 0,

applying Corollary 2.2, we arrive at

‖Ht(µ)y‖−p,w,I >

(
∫ 1

0

θ1/p dµ(θ)

)

‖y‖−p,w,I.

Hence
∞
∑

n=1

wn

( n
∑

k=1

hn,kyk

)−p

6

(
∫ 1

0

θ1/p dµ(θ)

)−p ∞
∑

k=1

wk|yk|
p.

By replacing yk with 1/|xk| for k = 1, 2, . . ., we have the result. �

3. Lower bound of matrix operators

In this section, we deal with the problem of finding a lower bound of certain matrix

operators from lp(w, I) into lp(w, F ), which is considered for some matrix operators

such as Cesàro, Copson and Hilbert operators in [2], [4] and [9] on lp(w) and on

Lorentz sequence spaces d(w, p). We generalize Theorem 1 from [4] to certain matrix

operators from lp(w, I) into lp(w, F ).
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Lemma 3.1 ([4], Lemma 2). Let p > 1. Suppose that (aj), (xj) are non-negative

sequences and (xj) is decreasing and tends to 0. Write An =
n
∑

j=1

aj (with A0 = 0),

and Bn =
n
∑

j=1

ajxj . Then

(i) Bp
n − Bp

n−1 > (Ap
n − Ap

n−1)x
p
n for all n;

(ii) if
∞
∑

j=1

ajxj is convergent, then

( ∞
∑

j=1

ajxj

)p

>

∞
∑

n=1

Ap
n(xp

n − xp
n+1).

Corollary 3.1. If (xj) is a non-negative decreasing sequence and Xn = x1 + . . .+

xn, then for each n

Xp
n − Xp

n−1 > [np − (n − 1)p]xp
n.

P r o o f is elementary. �

Theorem 3.1. Suppose p > 1 and let A = (ai,j) be a matrix operator

from lp(w, I) into lp(w, F ) with non-negative entries. Write rj,i =
i

∑

k=1

aj,k and

Si =
∞
∑

n=1

wn

(

∑

j∈Fn

rj,i

)p

.

Then

Lp
p,w,F (A) = inf

n

Sn

Vn
.

P r o o f. Let x be in lp(v, I) such that x1 > x2 > . . . > 0 and m = inf(Sn/Vn).

Since
∑

i∈Fn

yi =
∞
∑

j=1

cn,jxj , where cn,j =
∑

i∈Fn

ai,j , hence
k
∑

j=1

cn,j =
∑

i∈Fn

ri,k. Applying

Lemma 3.1, we obtain

‖Ax‖p
p,w,F =

∞
∑

n=1

wn

(

∑

j∈Fn

yj

)p

>

∞
∑

n=1

wn

∞
∑

i=1

(

∑

j∈Fn

rj,i

)p

(xp
i − xp

i+1)

=

∞
∑

i=1

Si(x
p
i − xp

i+1).

Since

‖x‖p
p,w,I =

∞
∑

n=1

Wn(xp
n − xp

n+1),
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we deduce that

‖Ax‖p
p,w,F > m‖x‖p

p,w,I .

Therefore

Lp
p,w,F (A) > m.

Further, if we take x1 = x2 = . . . = xn = 1 and xk = 0 for all k > n + 1, then

‖x‖p
p,w,I = Wn, ‖Ax‖p

p,w,F = Sn.

Hence

Lp
p,w,F (A) 6 m.

This completes the proof of the theorem. �

Corollary 3.2. Suppose A = (ai,j) is a matrix operator from lp(w, I) into itself

with non-negative entries. We write ri,n =
n
∑

j=1

ai,j and Sn =
∞
∑

i=1

wir
p
i,n and Wn =

w1 + . . . + wn. Then

Lp,w,I(A)p = inf
n

Sn

Wn
.

Note 3.1. For p > 1, the last part of Theorem 3.1 shows that ‖A‖p
p,w,F >

sup
n

(Sn/Wn), but lp(w, F ) = lp(w) when Fi = {i} and equality does not hold (see [5]).

Write

tn =

∞
∑

i=1

wi

(

∑

j∈Fi

aj,n

)p

and

sn = Sn − Sn−1 =
∞
∑

i=1

wi

[(

∑

j∈Fi

rj,n

)p

−

(

∑

j∈Fi

rj,n−1

)p]

,

where Sn = s1 + . . . + sn. For p = 1 we have tn = sn. It is elementary that

inf
n

(Sn/Wn) > inf
n

(sn/wn). We now apply Lemma 3.1 to deduce the following result.
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Proposition 3.1. If A satisfies all conditions mentioned in Theorem 3.1 and

(ai,j) decreases with j for each i, then

Lp,w,F (A)p > inf
n

[np − (n − 1)p]
tn
wn

.

P r o o f. Corollary 3.2 yields that

(

∑

j∈Fi

rj,n

)p

−

(

∑

j∈Fi

rj,n−1

)p

> [np − (n − 1)p]

(

∑

j∈Fi

aj,n

)p

.

Thus

sn > [np − (n − 1)p]

∞
∑

i=1

vi

(

∑

j∈Fi

aj,n

)p

= [np − (n − 1)p]tn

and so we have the statement. �

Let p > 1 and let A be a matrix operator with non-negative entries. If y = Ax

and w is a decreasing sequence, then for each non-negative sequence x we have

‖Ax‖p
p,w,F =

∞
∑

i=1

wi

(

∑

j∈Fi

yj

)p

>

∞
∑

i=1

wi

∑

j∈Fi

yp
j >

∞
∑

i=1

wiy
p
i = ‖Ax‖p

p,w.

It follows that

Lp,w,F (A) > Lp,w(A).

Corollary 3.3. Suppose that A is the Cesàro operator and p > 1. If wn = 1/n,

then

Lp,w,F (A) > 1.

P r o o f. If we apply Theorem 4 from [4], we deduce that Lp,w(A) = 1 and so we

have the statement. �

The Copson matrix is an upper triangular matrix. We will solve the lower bound

problem for this operator by the next statement. In fact, we characterize a class of

operators for which the lower bound constant is equal to one.

92



Theorem 3.2. Assume that A is an upper triangular matrix, i.e. an,k = 0 for

n > k, and
k
∑

n=1
an,k = 1 for all k (in other words, A is a quasi-summability matrix).

Let p > 1 and let w = (wn) be a non-negative decreasing sequence. Then

Lp,w,F (A) = 1.

P r o o f. If we apply Proposition 2 from [4], we have Lp,w(A) = 1. Hence

Lp,w,F (A) > Lp,v(A) = 1. Since 1 ∈ F1 and Ae1 = e1, we deduce that

‖Ae1‖p,w,F = ‖e1‖p,w,I = w1.

This completes the proof of the theorem. �

In the next statement, we consider the lower bound constant for the Hilbert matrix

operator H .

Theorem 3.3. Suppose that H is the Hilbert matrix operator and p > 1. Let

Fi = {2i − 1, 2i} and wn = 1/nα, where 0 < α < 1. Then

Lp,w,F (H)p >

∞
∑

k=1

1

kα(k + 1/2)p
.

P r o o f. Let Ek = {i ∈ Z : (k − 1)n < i 6 kn}, where k > 1. If i ∈ Ek, then

( i

n

)α

(2i + n)p
6 kα(2kn + n)p.

Since Ek has n members,

np+α−1
∑

i∈Ek

1

iα(2i + n)p
>

np

kα(2kn + n)p
=

1

kα(2k + 1)p
.

Hence

np+α−1
∞
∑

k=1

1

kα(2k + n)p
>

∞
∑

k=1

1

kα(2k + 1)p
,

and also

inf
n

np+α−1
∞
∑

k=1

1

kα(2k + n)p
=

∞
∑

k=1

1

kα(2k + 1)p
.

We now apply Proposition 3.1, and with the above notation we have

tn =

∞
∑

i=1

1

iα

( 1

2i − 1 + n
+

1

2i + n

)p

,
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and so

Lp,w,F (H)p
> inf

n
[np − (n − 1)p]nαtn.

Since np − (n − 1)p > np−1, we deduce that

Lp,w,F (H)p > inf
n

np+α−1
∞
∑

i=1

1

iα

( 1

2i − 1 + n
+

1

2i + n

)p

> 2p inf
n

np+α−1
∞
∑

k=1

1

kα(2k + n)p

= 2p
∞
∑

k=1

1

kα(2k + 1)p
.

This completes the proof of the theorem. �
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