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. Introduction 
his paper establishes lower bounds on the minimum 
)sts of managing certain production-distribution net- 
rorks with setup costs at all stages and stochastic de- 
iands. These networks include serial, assembly, and 
ne-warehouse multi-retailer systems. This study was 
iotivated by our effort to identify cost-effective control 
olicies for these systems. It is well known that optimal 
zntrol of these systems is difficult due to the presence 
f setup costs, especially at downstream stages (Clark 
nd Scarf 1962). As a result, heuristic control policies 
ecome attractive. Tight lower bounds on the minimum 
)sts are necessary to evaluate the effectiveness of heu- 
stic policies. 
We obtain lower bounds through novel cost- 

[location schemes. Cost allocation has been successfully 
pplied to obtain lower bounds for several related multi- 
:age systems by Roundy (1985, 1986), Atkins and Iyo- 
un (1987) and Zheng (1987), among others. (See At- 
ins 1990 for a review on cost allocation as well as other 
)wer-bounding methodologies.) For more general sys- 
jms, new lower bounds can be created by combining 
zst allocation with "physical decomposition." In par- 
cular, imagine that the product consists of a number 

of fictitious components. Each component is supplied/ 
produced through a subsystem-a part of the original 
system-and is allocated part of the costs. By assuming 
that the components can be replenished and sold sep- 
arately (i.e., physical decomposition), the original sys- 
tem decomposes to a number of independent systems, 
one for each component. The sum of the minimum costs 
of these independent systems is a lower bound on the 
minimum cost of the original system. 

The virtue of the cost - allocation, physical- 
decomposition framework is that it provides freedom 
in creating fictitious components and in allocating 
costs. By allocating one-period expected holding and 
backorder cost functions (hereafter referred to as loss 
functions), we re-derive and generalize the so-called 
"induced-penalty bounds" for serial systems (Clark 
and Scarf 1962 and Atkins and De 1992) and for one- 
warehouse multi-retailer systems (Rosling 1977). On 
the other hand, by allocating cost rates, we generate a 
new class of bounds, called "parameter-allocation 
bounds." These bounds are derived for both periodic- 
review and continuous-review, stationary systems op- 
erating over an infinite horizon. 

Our lower-bounding framework depends upon sev- 
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eral key results in the multi-echelon inventory literature. 
These include the optimal policies for the periodic- 
review, serial system of Clark and Scarf (1960) and 
Federgruen and Zipkin (1984b) and the periodic- 
review, assembly system of Rosling (1989), and the 
lower bound for the one-warehouse multi-retailer sys- 
tem of Federgruen and Zipkin (1984a, b, c). In this 
paper, we provide a simpler proof for the above opti- 
mality results (for serial and assembly systems). We 
first establish (induced-penalty) lower bounds on the 
minimum costs of these systems, and then show that 
these lower bounds can actually be achieved by feasible 
policies. Therefore the feasible policies are optimal 
and the lower bounds are the minimum costs. This 
method also leads to parallel optimality results for the 
continuous-review counterparts of the above systems. 

We have conducted a numerical test of the bounds' 
performance by comparing them with simple, heuristic 
policies in one-warehouse multi-retailer systems. The 
results indicate that the bounds are tight for systems 
with a small number of retailers. 

The paper is organized as follows. Sections 2-4 focus 
on periodic-review systems. In ?2, we define the systems 
to be considered and review related known results. In 
?3, we present the new optimality proofs for serial and 
assembly systems. In ?4, we establish lower bounds for 
serial, assembly, and one-warehouse multi-retailer sys- 
tems with setup costs at all stages. Section 5 describes 
briefly how the optimality results and lower bounds 
can be extended to continuous-review systems. In ?6, 
we report the numerical study. Section 7 contains con- 
cluding remarks. 

2. The Models 
In this section, we describe the models to be studied, 
review relevant known results, and define general no- 
tation. Consider serial, assembly, and one-warehouse 
multi-retailer systems with stochastic demand. (Since 
one-warehouse multi-retailer systems are the only dis- 
tribution systems considered in this paper, they will be 
referred to as distribution systems in the sequel.) Here 
we concentrate on periodic-review systems. The fol- 
lowing assumptions are common to all the systems: 

* Each system produces or distributes a single final 
product through multiple stages. A stage can be a dis- 
tinctive location in distribution systems or a buffer for 

a particular intermediate item in production systems. 
The stage(s) that receives stock from an outside supplier 
is called the "highest" stage. The stage(s) where cus- 
tomer demand arises is called the "lowest" stage. 

* The transportation (or production) leadtime at stage 
i is a constant of Li periods, i.e., a batch released to stage 
i at the beginning of period t will be received at the 
beginning of period t + Li. 

* Customer demands at different periods are inde- 
pendent and identically distributed. F denotes the cu- 
mulative distribution function (cdf) of one-period de- 
mand. If customer demand arises at more than one 
stage, F denotes the joint cdf. Demand is discrete. 

* Replenishment decisions are centralized and based 
on system-wide inventory information, which is avail- 
able and free. The objective is to minimize long-run 
average system-wide costs. 

* A fixed setup cost Ki is incurred for each batch re- 
leased to stage i. 

* The echelon holding cost at stage i is hi per 
unit* period. It is more expensive to hold inventory at 
a lower stage than at an upper stage, i.e., hi 2 0. 

* Unsatisfied customer demand is fully backlogged 
at the lowest stage with penalty cost p per unit * period. 
For systems where demand occurs at several stages, the 
penalty cost is pi at stage i. 

Serial systems. The system consists of N stages ar- 
ranged in series with stage 1 receiving stock from stage 
2, 2 from 3, etc., and stage N from an outside supplier 
with infinite stock. Customer demand occurs only at 
stage 1. Denote the system by "Series (N)." When only 
stage N has a setup cost K, i.e., KN = K and Ki = 0 for 
1 ? i ? N - 1, denote the system by "Series(N, K)." 

Assembly systems. The system produces a final 
product through a tree structure, denoted by ., with N 
stages. More specifically, each stage has exactly one 
successor stage, except for the lowest stage (the root of 
the tree) where customer demand arises. The stages 
without any predecessor stage (the leaves of the tree) 
are replenished by outside suppliers with infinite stock. 
Without loss of generality, we assume that exactly one 
unit of each intermediate item is used to produce its 
immediate successor item. We will refer to the above 
assembly system as "Assembly ( s)." Let S ( i) be the set 
consisting of stage i and all its successor stages. Define 
Mi as the total leadtime at stage i, i.e., Mi =j E&S(i) Lj. 
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The stages are numbered such that Mi is nondecreasing 
in i. (Thus stage 1 is the lowest stage.) When only stage 
N, the stage with the longest total leadtime, has a setup 
cost K, the above system will be referred to as "Assem- 
bly(., K)." 

Distribution systems. The system has one ware- 
house and N retailers. The warehouse (stage 0) receives 
stock from an outside supplier with infinite stock and 
replenishes the retailers (stages 1, . . . , N). Customer 
demands occur only at the retailers. The above system 
will be denoted by "Distribution(N)," or by "Distri- 
bution(N, K)" when only the warehouse has a setup 
cost K. 

We proceed to briefly review the existing results on 
Series(N, K), Assembly(&, K), and Distribution(N, K), 
which are the building blocks of our lower bounds. 

Note that Series(1, K) or Series(1) is the extensively 
studied single-location system. For this system, it is well 
known that (s, S) policies are optimal. (See Scarf 1960 
and Iglehardt 1963 for the original proof, and Zheng 
1991 for a simple proof.) Under an (s, S) policy, an 
order is placed to increase the inventory position 
(= inventory on hand + outstanding orders - back- 
orders) to S whenever it drops to or below s. The min- 
imum cost of the system is therefore the cost associated 
with the optimal (s, S) policy. For a simple and efficient 
algorithm to compute optimal (s, S) policies, see Zheng 
and Federgruen (1991). 

In their seminal paper, Clark and Scarf (1960) char- 
acterized the optimal policies for the finite-horizon ver- 
sion of Series(N, K). Their result was extended by Fed- 
ergruen and Zipkin (1984b) to infinite-horizon systems. 
An optimal policy for Series(N, K) uses an echelon stock 
(s, S) policy at stage N and an echelon stock order-up- 
to policy at each downstream stage. We denote the 
minimum cost of Series(N, K) by a function of the sys- 
tem parameters, CN(K, h, p, L, F), where h = { Nh }N 
and L = { L, } . A new derivation of the optimal policy 
and its minimum cost will be provided in ?3. 

For Assembly(., 0), Rosling (1989) characterized the 
optimal policies by showing that the system is equivalent 
to a serial system by introducing the notion of total 
leadtimes. Section 3 provides a simple proof that this 
equivalence holds for Assembly ( 1, K). Denote the 
minimum cost of Assembly(1, K) by C' (K, h, p, L, F), 
where h = {hi }N and L = {Li }N 

Optimal policies for Distribution(N, K) are unknown. 
The difficulty is due to possible stock imbalance among 
different retailers (Eppen and Schrage 1981, Zipkin 
1984). However, Federgruen and Zipkin (1984a, b, c) 
provided a lower bound on the minimum cost of the 
system by allowing a free inventory (position) rebalance 
among the retailers. Under such a relaxation, the original 
system reduces to a single-location system whose min- 
imum cost can be easily computed. This minimum cost 
is a lower bound on the minimum cost of the original 
system. Denote this lower bound by Cd (K, h, p, L, F), 
where h = {hi }o, P = {pi }N and L = {Li }. (Notice 
that h and L are being used to represent different vectors 
in different contexts.) 

We proceed to define key state variables. Echelon in- 
ventory level at stage i is the inventory on hand at stage 
i plus inventories at or in transit to all its successor stages 
minus total customer backorder at stage i and its suc- 
cessor stages. Echelon inventory position at stage i is the 
sum of echelon inventory level at stage i and the in- 
ventories in transit to stage i. Assume that the activities 
in a period happen in the following sequence: (a) at the 
beginning of the period, replenishment batches are re- 
leased and received; (b) during the period, customer 
demand occurs; and (c) at the end of the period, holding 
and backorder costs are assessed based on the ending 
inventory and backorder levels. Fix a period t. Let 
IL (t) and IPi (t) be the (beginning) echelon inventory 
level and the echelon inventory position at stage i after 
replenishment batches are released and received but 
before demand occurs. At the end of period t (after de- 
mand), let 

Ii (t) = echelon inventory at stage i 
= inventory on hand at stage i plus inventories 

at or in transit to all its successor stages 
Bi (t) = customer backorder level at stage i, defined 

only if customer demand arises at stage i; use 
B(t) if customer demand arises only at one 
stage 

ILi (t) = (ending) echelon inventory level at stage i 
For t1 c t2, we use [t1, t2] to denote the time interval 

of periods t1, . . . , t2 . Similarly, we use [ t1, t2) to denote 
the time interval of periods t1, . . ., t2-1. For Series (N) 
and Assembly (1s), let D[ t1, t2] and D[t1, t2) be the total 
customer demand in [t1, t2] and [t1, t2) respectively for 
any t1 ? t2 with D[t, t) 0. For Distribution(N), let 
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Di [ ti, t2] and D [tl, t2) be the total customer demand 
at retailer i, 1 ? i ? N, in [ ti, t2] and [ ti, t2) respectively 
for any t, ? t2 with Di [ t, t) 0. Let Do[ tl, t2] 
= 1 Di[tj, t2] and Do[ tl, t2) = 1 Di[t1, t2) 

3. Optimality Proofs 
In this section, we rederive the optimality results for 
Series(N, K) and Assembly(., K) by first establishing 
lower bounds on the minimum costs of the systems and 
then showing that the bounds can be reached by feasible 
policies. 

3.1. Series(N, K) 
Consider any feasible policy for Series(N, K). The total 
holding and backorder cost incurred at period t is 

N 

E hi (t) + pB(t). 

Since ILi(t) = Ii(t) - B(t), the above expression can 
be rewritten as 

N 

hILi(t) + (p + H1)B(t) 
i=l 

where H1 NI= hi, the installation holding cost at stage 
1. For convenience, we charge the following cost to pe- 
riod t - MN 

N 

E hiILi(t - Mi1) + (p + Hi)B(t) (1) 
i=l 

where Mo =0 and Mi = E 41 Lj for i = 1, .. . , N. Notice 
that Mi is the total leadtime at stage i. This cost ac- 
counting scheme only shifts costs across time periods. 
Therefore, it does not affect the long-run average hold- 
ing and backorder costs. The accounting scheme has 
the following intuitive interpretation: Since ILi (t -Mi-1) 
= IPi(t - Mi) - D[t - Mi, t -Mi- ], we see that ILi(t 
- Mi1) is statistically determined by IPi (t - Mi). 
Moreover, by definition, IPi (t -Mi ) is constrained by 
the beginning echelon inventory level at stage i + 1, 
i.e. IPi (t - Mi ) ? IL - 1(t - Mi ), with the difference 
being the on-hand inventory at stage i + 1. But 
IL i-+ (t - Mi) is, in turn, statistically determined by 
Pi+l (t - Mi+l): IL -1 (t - Mi) = Pi+l (t - Mi+) - D[ t 

- Mi+?, t - Mi). A simple induction shows that IPN(t 

- MN) determines, directly or indirectly, ILi (t -Mi-) 

for i = 1, . . . , N. Therefore it is meaningful to charge 
the holding and backorder cost in (1) to period t - MN 

when the decision on IPN (t - MN) is made. For sim- 
plicity, write IPi for IPi (t - Mi), ILi for ILi (t -Mi-1), 
IL7 for IL (t - Mi1), and B for B(t). Consequently, 
the total holding and backorder cost charged to period 
t - MN is 

N 

hiILi + (P + H1)B (2) 

Next, we identify a lower bound on the expected 
value of (2). Define 

Gl(y) = E[h1(y - D[t - Ml, t]) 

+ (p + Hl)(y - D[t - Ml, t])-]. 

Notice that G1 (*) is convex. Let Y1 be a minimum point 
of Gl(*) and Cl G1(Y1). Define 

Cl if y ? Y 

GG (y) otherwise 

G l2(y) = Gl(y) - Gl(y) 

and 

G2(y) = E[h2(y - D[t -M2, t - M1]) 

+ G2(y - D[t - M2, t -Ml))] 

Note that both G (*) and G2(*) are convex. The above 
definitions can be extended inductively. In particular, 
suppose that Gi ( * ), 2 ? i < N, are defined and convex. 
Let Yi be the minimum point of Gi (*) and Ci = Gi (Yi). 
Define 

Ci if y ? Yi 

G(YJl=Gi (y) otherwise 

G'+ 1(y) = Gi (y) -G (y) 

and 

Gi+l(y) = E[hi+l(y - D[t - Mi+,, t - M]) 

+ G+l (y - D[t - Mi+?, t Mi- . 

By induction, it is easy to see that the Gi (* )'s are all 
convex. (The above functions were introduced by Ros- 
ling 1989 under a slightly different form.) Now consider 
a single-stage system with setup cost K, loss function 
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GN( ), and the demand process of the original system. 
We know that (s, S) policies are optimal. Let (SN, SN) 

be the optimal (s, S) policy and CN the minimum cost 
of the single-stage system. (The above definitions will 
also be used in discussing assembly systems.) 

LEMMA 1. For Series (N, K), we have E[ N=l hiIL 
+ (p + H1)B] 2 E[ IN-1 G'(IPi) + GN(IPN)]. 

PROOF. Since IL1 = IP1 - D[t - M1, t] and B 
(IL1)-, from the definition of G1(*) we have 

E[h1IL1 + (p + H1)B] = EG1(IP1). 

Since IP1 ? IL - and G 2( () is nonincreasing, we have 
G1(IPl) = GI(IPl) + G2(IP1) ? G (IPl) + G2(ILy). 
Therefore 

E[, hiILi + (p + H1)B] 

? E[G1(IP1) + h2IL2+ G 2G(IL )] 

Notice that G 2(IL- ) corresponds to the induced-penalty 
cost in Clark and Scarf (1960). It represents the expected 
holding and backorder cost increment at stage 1 when 
stage 2's on-hand stock is insufficient to bring stage l's 
inventory position up to Y1, i.e. IL F < Y1. Charging this 
induced-penalty cost to stage 2, we have 

E[h2IL2 + G2(IL-)] = E[h2(IP2 - D[t - M2, t - M1]) 

+ G1(IP2 - D[t - M2, t -M))] 

= EG2(1P2) 

Therefore, 

Ep I hiILi + (p + Hi)B] ? E[G}(IP1) + G2(IP2)]. 

The lemma is now true for N = 2. A simple induction 
verifies the lemma for any value of N. O 

LEMMA 2. zI=, Ci is a lower bound on the minimum 
long-run average cost of Series(N, K). 

PROOF. Recall that Ci is the minimum value of Gi (*) 
for i < N. Thus, it follows from Lemma 1 that 

- N ( N-1 

EE hi ILi + (p + Hi ) B | Ci + EGN (IPN)- 

In other words, given IPN = y, the expected systemwide 
holding and backorder costs charged to period t - MN 

under any policy are bounded below by i =1 C, 
+ GN(Y). By substituting the latter for the former, the 
original system reduces to a single-stage system with 
setup cost K and loss function E iN-1 Ci + GN(Y). Since 
LiN=1 C, is constant, the optimal policy of this single- 
stage system is the (SN, SN) policy with minimum cost 

i=1 Ci. Clearly, this minimum cost is a lower bound 
on the minimum cost of Series(N, K). O 

We next show that the above lower bound can be 
achieved by a feasible policy. Consider the following 
feasible policy for Series(N, K). Stage N uses the echelon 
stock (SN, SN) policy: if the echelon inventory position 
at stage N falls to or below SN then order up to SN; and 
stage i, i = 1, . . ., N - 1, uses an echelon stock order- 
up-to Yi policy: if the echelon inventory position at stage 
i is below Yi then order up to Yi. This is indeed the 
optimal policy characterized by Clark and Scarf (1960) 
and Federgruen and Zipkin (1984b). To prove its op- 
timality, it suffices to show that it actually achieves the 
lower bound E I=1 Ci. 

THEOREM 1. For Series(N, K), the optimal policy uses 
the echelon stock (SN, SN) policy at stage N and the echelon 
stock order-up-to Yi policy at stage i, i = 1, . .. , N - 1, 
with minimum cost Cs(K, h, p, L, F) = , Ci. 

PROOF. Suppose that the above policy is in place 
for Series(N, K). All we need to show is that, given IPN 
= y, the expected system-wide holding and backorder 
costs charged to period t - MN are exactly equal to 

i= C + GN(Y)- 
Take any i < N. Notice that IPi ? IL - 1. Since stage 

orders up to Yi, we have IPi = min{Yi, IL - 1 }. Thus 
G (IPj) = Ci. Therefore it only remains to show that 
the inequality in Lemma 1 is an equality. To see this, 
simply notice that G'+1(IPi) = G'+1(IL - 1) since if IP, 

Yi then IL -I1 ? Yi and thus G'+1(IPi) = G'+1(IL -71) 
= 0. D 

We proceed to interpret the above lower bound and 
optimality proof under a cost-allocation framework. For 
ease of presentation, we only consider Series(2, K). 
Imagine that the end product (at stage 1) consists of 
two components, 1 and 2. The subsystem that supplies 
component 2 is exactly the same as the original system. 
But component 1 is supplied through a truncated sys- 
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tem: it is directly sourced from an outside vendor with 
ample supply. The delivery leadtime from the vendor 
to stage 1 is L1, the same as the transportation time from 
stage 2 to stage 1. In the original system, replenishment 
is "coordinated" between the two components: each 
unit of component 2 leaving stage 2 is matched by a 
unit of component 1 leaving the outside vendor. After 
arriving at stage 1, these components are sold in pack- 
ages. Since component 2 is the only item at stage 2, it 
bears the setup cost K at stage 2 and the stage-2 echelon 
holding cost with rate h2. The loss function at stage 1, 
G1 (*), is shared by the two components: G I (* ) by com- 
ponent 1 and the remaining, G1(*), by component 2. 
(The systems of the components are depicted in Figure 
1.) Notice that the above cost allocation fully recovers 
the total costs of the original system. 

Now relax the above coordination constraint by as- 
suming that the components can be replenished and 
sold independently of each other. Under this relaxation, 
the original system decomposes to two independent 
systems, one for each component. The sum of the min- 
imum costs of the components is a lower bound on the 
minimum cost of the original system. 

The system of component 1 is a single-stage system 
with loss function G (.) and no setup cost. Thus its 
minimum cost is C1 = G 1(Y1), which can be reached by 
any policy that keeps the inventory position of com- 
ponent 1, IP1, at or below Y1. Now consider the system 
of component 2. Notice that the loss function at stage 

Figure 1 Decomposition of Series (2, K) 

System of System of 
Series(2,K) Component 1 Component 2 

+ 

1 1 

YI Y1 Y1 

1, G 2(IPF), is a nonincreasing function of IP1. Since no 
setup cost is incurred for shipping stock from stage 2 
to stage 1, there is no incentive to hold inventory at 
stage 2. Therefore an optimal policy would keep IP1 
= IL - and the system collapses to a single-stage sys- 
tem. Since IL2 = IP2 - D[t - M2, t - M1] and IL-2 
=I2 - D[t - M2, t - M1), the total holding and back- 
order cost of component 2 can be expressed as a loss 
function of its echelon inventory position at stage 2, 
IP2: 

E[h2IL2 + G 2(IPl)] = E[h2IL2 + G2(IL2j)] 

= E[h2(IP2 - D[t - M2, t -M1]) 

+ GW(IP2 - D[t - M2, t -M))] 

= EG2(1P2). 

Therefore the resulting single-stage system has loss 
function G2( ( ) and setup cost K. Since G2 ( ) is convex, 
the (s2, S2) policy is optimal with minimum cost C2. 
Thus, C1 + C2 is a (induced-penalty) lower bound on 
the minimum cost of Series(2, K). 

To show Theorem 1, recall that the only relaxation 
used to generate the lower bound is that the components 
can be replenished and sold independently of each 
other. Therefore, it suffices to show that there exist op- 
timal policies for the component systems such that the 
components arriving at stage 1 are exactly matched. First 
consider component 2. The optimal policy for compo- 
nent 2 is to use the echelon stock (s2, S2) policy at stage 
2 and ship all to stage 1 (i.e., ship up to IL2-). However, 
since G 2(y) is flat for y 2 Y1, the policy remains optimal 
if stage 2 ships up to min{Y1, IL - }. Now consider com- 
ponent 1. Since G (y) is flat for y < Y1, any policy that 
does not raise the inventory position of component 1 
to above Y1 is optimal. One such policy is to ship up to 
min{ Y1, IL - }. Observe that under the above optimal 
policies in the component systems, the components ar- 
riving at stage 1 are exactly matched. This completes 
the proof for the theorem. The above cost-allocation 
approach will be used in ?4 to derive a similar bound 
for Series (N). 

3.2. Assembly( ?, K) 
Suppose that a batch is released to stage i at period t. 
Conventionally, this batch is not counted as part of the 
echelon inventory of stage i until its arrival at period t 
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+ Li. For convenience, we introduce an accounting 
scheme under which the above batch becomes a part 
of the echelon inventory of stage i at period t + li, 
where li = - Mi-Mi1. (For readers familiar with Rosling 
1989, we reverse his definitions of Li and li.) Let s(i) 
be the immediate successor of stage i with s(1) = 0. 
Since Li = Mi - MS(i) and Mi-1 ? MS(i), we have l 
< Li. Therefore, under the new accounting scheme, the 
batch released to stage i at period t incurs echelon hold- 
ing costs of stage i while it is still in assembly at period 
t + li. Consequently, the new accounting scheme 
overcharges the echelon holding costs. But observe that, 
under any policy, the difference in long-run average 
system-wide holding costs between the new and the 
original accounting schemes is 

N 

E hi(Li - 1) 

where A is the expected one-period demand. Since the 
difference is a constant, an optimal policy under the 
original accounting scheme is still optimal under the 
new one, and vice versa. Unless otherwise mentioned, 
the new accounting scheme will be used for the rest of 
this section. 

Write IPi for IPi(t - Mi), ILi for ILi(t - Mi1), IL 
for IL, (t - Mi1), and B for B(t). Notice that 

ILi = IPi - D[t - Mi, t - Mi1] and B = (IL1) 

Define 

IPij = IPi-D[t-Mi, t-Mj) 

for i j]. Clearly IPii = IPi. Note that IPij is the echelon 
inventory position of stage i at period t - Mi after ex- 
cluding orders released after period t - Mi. In particular, 

IPi,i_j = IL-, the beginning echelon inventory level at 
stage i; while IPi,s (i) is the beginning echelon inventory 
level at stage i under the original accounting scheme. Write 
Ipi for min,l{ IP, }. Thus IpN = IPN 

LEMMA 3. 

(i) IP1 = IP1 

(ii) Ipi _< IPi, i =2, N - .,N1, IPN = IPN 

(iii) Ipi _< IP'+ 1- D[t -Mi+,, t -Mi), i = 1, . ..., N- 1. 

PROOF. (i) Take any stage i ? 2. Since stage s(i) is 
the immediate successor of stage i, the echelon inven- 

tory position of stage s ( i) is constrained by the beginning 
echelon inventory level at stage i under the original ac- 
counting scheme, i.e., 

Ii,'s(i) 2 IPS(i). 

By subtracting D[t - Ms (i), t - M1) from both sides of 
the above inequality, we have 

IPF1 ? IPS(i),l. 

Replacing i with s(i), we have IPs(i)l ?> IPs(s(i)),l and 
thus IPi1 2 IPs (s ())l. Continuing this process, we have 

IPi 1 ? IPF1 = IPF 

since stage 1 is the root of the assembly tree and thus 
a successor of any other stage. That IPF = IP1 follows 
from the definition of IPF. 

(ii) Follows from the definition of IPF. 
(iii) 

IpF = min IP,7} 

< min {IP,} 
n?2i+1 

= min IP,1+i -D[t - Mi+1, t - Mi)} 
n?2i+ 1 

= min {IP,1j+, }-D[t - Mi+l t - M) 
?1?i+ 1 

= IPi+l - D[t - M+l, t - Mi). Z 

As in the series case, we charge the holding and 
backorder costs in (2) to period t - MN. The following 
lemma parallels Lemma 1. 

LEMMA 4. For Assembly (G, K), we have E[ ,N=l hiILi 
+ (p + H1)B] 2 E[ N- L Gi(IP') + GN(IPN)]. 

PROOF. From Lemma 3(i) we have 

E[hlILl + (p + H,)B] = EG,(IP'). 

Notice that G,(IP') = G (IP') + G 2(IP') > GI(IP') 
+ G 2 (IP 2) - D[ t - M2, t - Ml)), where the inequal- 
ity follows since G 1(.) is nonincreasing and IPF ? IF2 
-D[t - M2, t - Ml) from Lemma 3(iii). Therefore, 

E hiILi + (p + Hl)B] 2 E[GI(IP') + h2IL2 

+ G2(IP2 - D[t - M2, t -MI. 
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Since IL2 = IP2 - D[t - M2, t - M1] ? Ip2 - D[t -M2, 

t- M1] (Lemma 3(ii)), we have 

2 
E hiILi + (p + H1)B) 

> E[GI(IP') + h2(1P2 - D[t - M2, t -M1]) 

+ G2(IP2 - D[t - M2, t -M))] 

- E[GI(IP') + G2(1P2)] 

where the last equality follows from the definition of 
G2( ). Now we have proved the lemma for N = 2. The 
above proof can be easily adapted for any value of N 
by induction. D] 

Recall that Ci is the minimum value of G (.) for i 
< N and that IPN = IpN. From Lemma 4 we have 

- N 1 N-1 

ELZ hiILi + (p + H1)B ? E Ci + EGN(IPN) 

N-1 

= z Ci + EGN(IPN). 

In other words, given IPN = y, the expected system- 
wide holding and backorder costs charged to period t 
-MN under any policy are bounded below by E i&' Ci 
+ GN(Y). By substituting the latter for the former and 
following the same argument as in the serial case, we 
have: 

LEMMA 5. NI=, Ci is a lower bound on the minimum 
long-run average cost of Assembly(&, K). 

Now consider the following feasible policy for As- 
sembly(', K). Stage N uses the echelon stock (SN, SN) 

policy: if IPN falls to or below SN, an order is placed 
with the outside supplier to raise IPN Up to SN; and stage 
i, i = 1, ..., N - 1, uses the echelon stock order-up- 
to min{Yi, IPi+,,i } policy (Yi is the minimum point of 
Gi ()): if IPi is below min{Yi, IPi+,,i}, order up to 
min{Yi, IPi+1,i }. This policy is exactly the one charac- 
terized by Rosling (1989). Therefore, one way to show 
that the policy is optimal is to check that the cost func- 
tion given by Rosling coincides with the lower bound. 
Below we present an alternative proof. 

THEOREM 2. For Assembly(&, K), the optimal policy 
uses the echelon stock (SN, SN) policy at stage N and the 
echelon stock order-up-to min{Yi, IPi+,,i } policy at stage 

i, i = 1, ... , N -1, with minimum cost C' (K, h, p, L, 
F) = , Ci- I= hi(Li - li) (under the original ac- 
counting scheme). 

PROOF. Suppose that the above policy is in place 
for Assembly(&, K). In the long run, we have 

IPFi < IPn+1,n for n = 1, . . ., N- 1. 

By subtracting D[ t - M, t -Mi ) from both sides of the 

above inequality, we have 

IPni < IP,1+l,i for n ? i. (3) 

With (3), it is clear that 

IPi =IPi for i=1,...,N. (4) 

Take any i < N. Let P(i) be the set of the immediate 
predecessors of stage i. Take any m E P(i). Notice that 
the echelon inventory position at stage i, IPi, is con- 
strained by the beginning echelon inventory level at 
stage m (under the original accounting scheme), IP,:i 
IPi < IPF,i. Considering all the immediate predecessors 
of stage i, we have IPi < min{IP,iIn E P(i)}. This is 
the only constraint on IPi. Now consider the order- 
up-to (target) level for IPi, min{Yj, IPi+,,i }. Since m 
? i + 1, we have from (3) IPi+,i < IP,,,i. Therefore, 
min{Yj, IPj+1,} < min{IP,jIn E P(i)}, i.e. the tar- 
get level is within the constraint. As a result, IPF 
= min{Yi, IPi+1,,i }. Since IPi+,,i = IL -+1, we have 

IPi = min{Yj, IL-+1} for i = 1, . . . , N - 1 (5) 

With (4) and (5), the proof of Theorem 2 is identical 
to that of Theorem 1. (Recall that =, hi,(Li - li) is 

the amount by which the new accounting scheme 
overcharges the holding costs. Therefore, the minimum 
cost in the theorem is given under the original account- 
ing scheme.) D] 

4. Lower Bounds 
This section establishes lower bounds on the minimum 
costs of Series(N), Assembly(s), and Distribution(N) 
through cost allocation and physical decomposition. We 
first establish induced-penalty bounds by allocating loss 
functions, and then parameter-allocation bounds by al- 
locating cost rates. We then show that these two classes 
of lower bounds can be integrated to form a class of 
lower bounds, or integrated bounds, that dominate 
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both the induced-penalty bounds and the parameter- 
allocation bounds. 

4.1. Induced-penalty Bounds 
4.1.1. Series(N). The induced-penalty bound for 

Serial(N) is a generalization of that for Series(N, K) 
(Lemma 2). To see this, we first need to revise the def- 
initions of Gi ()'s, G ( * )'s and Gi+' (*)'s used in ?3.1. 
GC (*) is the same as before. Suppose that Gi (*), i < N, 
is defined and is convex. Consider a single-stage inven- 
tory system with setup cost Ki, loss function Gi ( * ) and 
the demand of the original system. Since Gi ( * ) is convex, 
(s, S) policies are optimal for the system. Let (si, Si) be 
the optimal (s, S) policy and Ci the minimum cost. De- 
fine 

Cj if y <?S 
Gi (Y)= 

Gi (y) otherwise 

Gi (y) = Gi (y) - Gi(y) 

and 

Gi+j(y) = E[hi+,(y - D[t - Mi+, t - Mi]) 

+ Gi+1 (y - D[t - Mi+1, t -Mi. 

Notice that G'+' (*) is an induced-penalty cost for stage 
i + 1, i.e., the cost increment at stage i when stage i 
+ 1 is unable to raise IPi to above si. 

From Veinott and Wagner (1965), we know that Si 
< Yi where Yi is the minimizer of Gi ( * ). From Zheng 
(1991), we have Gi(si) ? Ci ? Gi(si + 1). Therefore, 
the convexity of Gi (*) implies that G'+ (*) is convex 
and nonincreasing. Consequently, Gi+1 (*) is also con- 
vex. By induction, all the Gi ( * )'s are convex. Figure 2 
illustrates the above definitions. 

We proceed to show that I=, Ci is a lower bound 
for Series (N). First consider Series (2). Create compo- 
nents 1 and 2 and allocate costs as in ?3. 1 for Series (2, 
K) by replacing K with K2 and using the above new 
definitions of G 1 (*), G 2 (2 ) and G2 (*). The only addition 
here is the setup cost K1, which is allocated to compo- 
nent 1. Now consider the component systems sepa- 
rately. The system of component 1 is a single-stage sys- 
tem with setup cost K1 and loss function GC (*). Note 
that -C ) is unimodal (see Figure 2). Therefore, an 
(s, S) policy is optimal (Veinott 1966). It can be shown 
that the minimum cost of component 1 is Cl, the min- 

imum cost as if the loss function were G1 (*) (see 
Appendix A). Now consider component 2. As in ?3.1, 
there is no incentive to hold inventory at stage 2 since 
G 2(*), the induced-penalty cost, is nonincreasing and 
there is no setup cost in shipping stock from stage 2 to 
stage 1. As a result, the system of component 2 reduces 
to a single-stage system with setup cost K2 and loss 
function G2( ( ). Therefore, the minimum cost of com- 
ponent 2 is C2. Consequently, C1 + C2 is an induced- 
penalty bound for Series (2). (The idea of using induced- 
penalty costs to create lower bounds originated in Clark 
and Scarf 1962. The form of the above lower bound 
first appeared in Atkins and De 1992.) 

For Series(N), we first establish a lower bound on 
the expected system-wide holding and backorder costs. 
Similar to Lemma 1, it can be shown that 

hiILi + (p + Hl)B] E Gi(IPi) + GN(IPN)] 

Now suppose that the final product consists of N com- 
ponents. The supply system for component i (= 1, . . ., 
N) is a subsystem of the original system: from an outside 
supplier to stage i, to stage i - 1, . . . , to stage 1. Con- 

Figure 2 Definition of Functions 

Gle) 

Gi+(.) I\/ 

ll ~~~~~~~Si Yi S 
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sider the system of component i. Its system inventory 
position is IPi. Now allocate G' (IPi ) (GN(IPN) if i = N) 
to component i. Therefore, the system-wide holding 
and backorder costs for component i depend solely on 
its system inventory position. Also allocate Ki to com- 
ponent i. It is clear that the system of component i is 
effectively a single-stage system with loss function 
G (.) and setup cost Ki, whose minimum cost is Ci 
(Appendix A). Consequently, I I=, Ci is a lower bound 
for Series(N). 

REMARK. Notice that echelon holding costs are a 
natural way to allocate installation holding costs among 
different stages. In the above derivation, we took this 
allocation as given. This does not have to be the case: 
the installation holding costs can be re-allocated before 
allocating loss functions. For example, consider Se- 
ries (2). The echelon holding costs h, and h2 are an al- 
location of the installation holding cost at stage 1, Hl, 
between the two stages. For the deterministic counter- 
part of the two-stage system (with zero leadtime and 
no backlogging), Roundy (1985) observed that when 
K2/h2 < K / h1, a better lower bound can be obtained 
by allocating h' (<h2) to stage 2 and h' (=Hi - h' ) to 
stage 1. The induced-penalty bound can also be made 
more general by allowing a similar holding cost re- 
allocation. Let h' and h' be any such allocation of H1 
between stage 1 and stage 2. Under this allocation, the 
loss function at stage 1 becomes 

G1(y) = E[h (y - D[t - M1, t]) 

+ (p + Hl)(y - D[t - M1, t])-. 

Let ('l, S1) be the optimal (s, S) policy and C1 the min- 
imum cost for the single-stage system with loss function 
GC (*) and setup cost Ki. Define 

G-(y)tf if y?sl 

GY (y) otherwise 

Gj2(y) = G' (y) - Gj(y) 

and 

G2(Y) = E[h'(y - D[t - M2, t - Ml]) 

+ Gl(-D[t-M2, t-Ml))1. 

Let C2 be the minimum cost of a single-stage system 
with loss function C2( ( ) and setup cost K2. Now we 
have a new lower bound for Series(2): C1 + C2. Nu- 

merical examples suggest that the above generalization 
can lead to better bounds at the expense of additional 
computational effort. (The above idea of re-allocating 
installation holding costs before allocating loss functions 
can be applied to the other two systems as well.) 

4.1.2. Assembly ( i?). Following Atkins (1988), we 
can decompose the assembly system into a number of 
serial systems, each of Series (N) -type. A lower bound 
can thus be generated for each of the resulting serial 
systems (e.g., induced-penalty bounds), and the sum 
of these lower bounds is a lower bound on the minimum 
cost of the original assembly system. For example, con- 
sider a simple assembly system where two components 
are assembled into an end product. By allocating the 
setup cost, the backorder cost as well as the echelon 
holding cost of the end product between the two com- 
ponents, the assembly system decomposes to two two- 
stage, serial systems. The summation of the lower 
bounds for the resulting serial systems is a lower bound 
for the original system. 

4.1.3. Distribution(N). For i = 1, . .. , N, define 

Gi(y) = E[hi(y - Di[t, t + Li])+ 

+ (ho + pi)(y - Di[t, t + Lj])j] 

Notice that Gi (* ) is convex. Consider a single-stage sys- 
tem with setup cost Ki, loss function Gi(.), and the 
demand process of retailer i. Since Gi(.) is convex, 
(s, S) policies are optimal for the system. Let (si, Si) be 
the optimal (s, S) policy and Ci the minimum cost. De- 
fine 

Ci if y <Si 
G'i (Y)= 

Gi (y) otherwise 

and G (y) = Gi (y) - G (y). Note that the above def- 
initions are different from those used earlier in other 
systems. Here GC (*) represents an induced-penalty cost 
for the warehouse: the cost increment at retailer i due 
to the warehouse's inability to raise IPi to above si. 

We proceed to derive an induced-penalty bound for 
Distribution (N). Imagine that the product at retailer i 
consists of two components: a common component 0 
and a retailer-specific component i. Therefore, there are 
a total of N + 1 components. Component 0 is supplied 
through the original distribution system: from the out- 
side supplier to the warehouse and then to the retailers. 
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Component i is directly shipped from an outside sup- 
plier to retailer i. Allocate setup cost Ki (i = 0, . . . , N) 
to component i and warehouse echelon holding cost 
rate ho to component 0. The loss function at retailer i, 
Gi ( * ), is allocated between component 0 and compo- 
nent i: Gi(*) to component 0 and Gi(*) to component 
i. In summary, the system of component 0 is Distri- 
bution(N, KO) with warehouse echelon holding cost rate 
ho (assessed on the warehouse echelon inventory level), 
loss function G? (*) at retailer i (assessed on the inven- 
tory position of retailer i). The system of component i 
= 1, . . . , N is a single-stage system with setup cost Ki, 
loss function G (.). The component systems are de- 
picted in Figure 3. 

In the original system, replenishment of the com- 
ponents is "coordinated": when a shipment of com- 
ponent 0 is released at the warehouse to retailer i, a 
same quantity of component i is released at a supplier 
to retailer i. Both shipments arrive at retailer i at the 
same time. After arriving at the retailer, components 0 
and i are sold in packages. Now assume that the com- 
ponents can be replenished and sold independently of 
each other. As a result, the original system decomposes 
to N + 1 component systems. The minimum cost of 
component i = (1, . . . , N) is Ci (Appendix A). A lower 
bound on the minimum cost of component 0, Co, can 
be obtained by replacing Gi ( * ) in (B5) in Appendix B 
with G? (.). Therefore, a lower bound for Distribu- 
tion(N) is 

N 

def= i C ip = 2: ci 
i=O 

Figure 3 Decomposition of Distribution (N) 

System of Systems of 

Distribution(N) Component 0 Components 1,...,N 

(Rosling (1977) obtained precisely this bound in a dif- 
ferent form, but only under additional technical con- 
ditions.) 

4.2. Parameter-allocation Bounds 
The previous subsection established induced-penalty 
bounds by allocating loss functions, or "expected" costs. 
Next we derive a new class of lower bounds for Se- 
ries (N), Assembly (S), and Distribution (N) by allocat- 
ing "real" costs, i.e., holding and backorder cost rates. 

4.2.1. Series(N). First consider Series(2). Create 
fictitious components and their systems as in Figure 1. 
Allocate setup cost Ki (i = 1, 2) to component i and 
echelon holding cost rate h2 to component 2. The eche- 
lon holding cost rate h, and the backorder cost rate p 
at stage 1 are allocated between components 1 and 2: 
h} and p' to component 1; h 2 and p2 to component 2. 
The allocated cost rates satisfy h 1 + h 2 = hi and pl 
+ p2 = p. Check that the sum of the allocated costs of 
the components is equal to the total cost of the original 
system. Since the minimum costs for components 1 and 
2are C'(K1, hI, p', Ll, F) and C'(K2, h , h2, p2 ILl, L2, 
F) respectively, a lower bound on the minimum cost of 
Series( 2) is 

Cs(K1, h}, p', L1, F) + Cs (K2, h 2, h2, p2, L1, L2, F). 

Consider the special cost allocation with h 2 = 0. Ex- 
amine the system of component 2. In this case, since 
there is no setup cost or echelon holding cost at stage 
1, there is no incentive to keep any stock at stage 2. In 
other words, the system of component 2 effectively re- 
duces to a single-stage system with setup cost K2, hold- 
ing cost rate h2, backorder cost rate p l, and transpor- 
tation leadtime L, + L2. Notice that holding costs start 
to accumulate at rate h2 as soon as the component enters 
the system (at stage 2). The time for each unit of the 
component to go from stage 2 to stage 1 is L, periods, 
during which a holding cost of h2L1 is incurred. Con- 
sequently, the long-run average holding cost incurred 
while shipping the component from stage 2 to stage 1 
is gth2L, per period, where ,u is the mean one-period 
demand. In summary, under the above cost allocation 
the parameter-allocation bound becomes 

Cs(K1, hi, p', L1, F) 

+ Cs(K2, h2, p2, L2 + L1, F) + gh2Li. 

1436 MANAGEMENT SCIENCE/VOL 40, No. 11, November 1994 



CHEN AND ZHENG 
Lower Bounds for Multi-echelon Stochastic Inventory Systems 

With the above illustration, constructing a lower 
bound for Series(N) becomes straightforward. Suppose 
that there are N fictitious components, denoted by 1, 
... , N. The system of component j is Series (j, Kj) with 
echelon holding cost rate h at stage i, i = 1, . . ., 

and backorder cost rate p i (at stage 1). The cost allo- 
cation satisfies INi h j = hi for i = 1, ..., N and 
Z=1 pJ = p. Notice that the minimum cost for com- 
ponent j is 

Cj,(Kj, h', p', LI, F), 

where h h {h } j=1 and L = {L} j . A lower bound 
on the minimum cost of Series(N) is simply the sum of 
the minimum costs of all the components. 

4.2.2. Assembly(S). From ?3, we know that it is 
straightforward to compute the minimum cost of an 
assembly system with a setup cost only at its highest 
stage, the stage with the longest total leadtime. Since 
there is a setup cost at each stage in Assembly(S), a 
natural approach is to decompose the system into sub- 
systems of Assembly(g, K)-type. 

Recall that there are N stages in Assembly(S9). The 
stages are numbered in increasing order of total lead- 
times. (Thus stage N has the longest total leadtime.) 
Imagine that the end product consists of N fictitious 
components. Consider component j (= 1, . . . , N). Delete 
stages j + 1, . . ., N of S. The resulting graph is still a 
tree, denoted by gj with gN = ?. Component j is pro- 
duced through gj. Allocate Kj to stage j, echelon holding 
cost h j to stage i (=1, . .. , j), and backorder cost pi to 
stage 1. The cost allocation satisfies I N i h = hi for i 
= 1, . . ., N and E1 p - p. The system of component 
j is of Assembly(9j, Kj) -type, with minimum cost 

C I(Kj, h', p'. LI, F) 

whereh= { h j } i and Li = {L }i. The sum of these 
minimum costs over all components is a lower bound 
on the minimum cost of Assembly (S). 

4.2.3. Distribution(N). Create fictitious compo- 
nents as in ?4.1.3, but allocate costs differently. The 
system of component 0 is Distribution (N, KO) with 
echelon holding cost rate ho at the warehouse, and 
echelon holding cost rate hi and backorder cost rate 
pi at retailer i. The system of component i = 1, . . . , N 
is a single-stage system with setup cost Ki, holding cost 

rate hi, backorder cost rate p . The cost allocation sat- 
isfiesh +h? =hiandp +p? =pifori= 1,...,N. 
Recall that the minimum cost of component 0 is un- 
known, but a lower bound on it is 

CN(Ko, ho, h0, p0, L, F), 

whereh? = {h }I and po = {p? }I . The minimum cost 
of component i = 1,.. .,N is 

Cj(Ki, hi, pi, Li, Fi) 

where Fi is the cdf of one-period demand at retailer i. 
Consequently, the sum of the minimum costs of com- 
ponents 1, ... , N and the lower bound of component 
0, 

N 

CN(Ko, ho, h0, p0, L, F) + Z Cs(Ki, hi, pi, Li, Fi), 
i=l 

is a lower bound on the minimum cost of Distribu- 
tion (N). For easy reference, write CPa for the maximum 
value of the above expression over all possible cost al- 
locations. (In the above cost allocation, we should re- 
strict p9 > 0 for all i in order to prevent the lower bound 
for component 0 from becoming negative infinity. But 
h? is allowed to be negative so long as h? + ho 2 0.) 

It is interesting to contrast our approach here with 
the bounding scheme of Atkins and lyogun (1987) for 
one-warehouse multi-retailer systems with deterministic 
demand. In their approach, the warehouse setup cost 
is allocated to decompose the system into a number of 
two-stage, serial systems. However, as recognized by 
Atkins (1990), this method fails for not capturing the 
"risk pooling" function of the warehouse when demand 
is stochastic. Our method overcomes this difficulty: we 
preserve the warehouse node leaving its risk-pooling 
function intact but decompose the retailer nodes. 

4.3. Integrated Bounds 
We have obtained induced-penalty bounds by allocating 
loss functions and parameter-allocation bounds by al- 
locating cost rates. These allocation schemes can be in- 
tegrated to generate a class of dominant bounds. We 
use Distribution(N) as an illustration. 

First, create fictitious components and allocate cost 
rates as in ?4.2.3. Let A denote an allocation of the 
holding and backorder cost rates, i.e., hi, hi? pi and 
p? with hi + hi? = hi and pi + p?9 = pi for 1 c i c N. 
Under A, the loss function for component i is 
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def 

Gi(ylA) = E{hi(y - Di[t, t + Li])+ 

+ p(y - Di[t, t + Li])} 

and the loss function for retailer i in the system of com- 
ponent 0 is 

G(yfA) E E{h?(y - Di[t, t + Li]) 

+ (ho + p9)(y - Di[t, t + Li]y} 

The system of component i = 1,... , N is a single-stage 
system with setup cost Ki, loss function Gi (I * A), and 
the demand process of retailer i. Since Gi ( * A) is con- 
vex, (s, S) policies are optimal for the system. Let si (A) 
be the optimal reorder point and Ci (A) the minimum 
cost. Note that Ci((A) = Cs(Ki, hi, pi, Li, Fi), where 
Fi is the cdf of one-period demand at retailer i. 

Now allocate loss functions. For i = 1, . . . , N, define 

{Ci(A) if y?csi(A) 
Gii(y I A ) = 

j() i y<S A 

G ) Gi (y I A) otherwise 

and Gio(yjA) = Gi(y A) - Gii(yjA). Allocate 
Gi0( j A) back to component 0. With this allocation, 
component i's loss function (1 ' i ' N) reduces from 
Gi( IA) to Gii( 1A), but its minimum cost remains 
unchanged at C, (A) (Appendix A). On the other hand, 
the loss-function allocation increases the loss func- 
tion of component 0 at retailer i from G 9( IA) to 
GI( IA) + Gio( 1A). As a result, the lower bound 
for component 0, denoted by Co(A), is greater than 
CN(Ko, ho, ho, p0, L, F), the lower bound for compo- 
nent 0 before allocating loss functions. (C0(A) is ob- 
tained by replacing Gi ( * ) in (B5) of Appendix B with 
G?(. IA) + Gio( IA).) Therefore, by allocating cost 
rates as well as loss functions, we have a new lower 
bound for Distribution(N): 

N 

I Ci(A) 
i=O 

The integrated bound, denoted by C, is the maximum 
value of the above expression over all possible alloca- 
tions A. (In ?4.2.3, we mentioned that p9 should be 
restricted to be nonnegative. This restriction should not 
be used in computing the integrated bound. To see this, 
consider the system of component 0. Recall that under 
the above integrated cost allocation, the loss function 
at retailer i is [G 9(y IA) + Gio(y IA)], whose slope is 
always -(pi + ho) as y -oo regardless what p9 is. In 

other words, a unit of backorder at retailer i ultimately 
increases cost by (pi + ho). On the other hand, since 
the echelon holding cost at the warehouse is assessed 
on the warehouse echelon inventory level, a unit of 
backorder at retailer i decreases cost by ho. Thus the net 
penalty of a backorder at retailer i is pi. Therefore, no 
matter what the value of p? is, a positive penalty is 
incurred for each additional unit of backorder.) 

From the above derivation, it is clear that C 2 CPa. It 
is also true that C 2 C'P. To see this, consider the fol- 
lowing allocation of cost rates A0: hi = hi, hi = 0, 
pi = pi + ho, and p? = -ho. Under A0, check that 
IN1=o Ci (- A) = C'P. Therefore, 

THEOREM 3. C 2 max{ CPa, Cip}. 

5. Extension to Continuous-review 
Systems 

We have so far focused on periodic-review systems. 
Parallel results can be obtained for their continuous- 
review counterparts with compound Poisson demand. 
These include the optimality results of ?3 and the lower 
bounds of ?4. 

The definitions of the periodic-review systems in ?2 
can be easily adapted for their continuous-review 
counterparts. The constant transportation leadtimes can 
now take any nonnegative values. In a continuous- 
review system, the holding and backorder costs accrue 
continuously over time at rates proportional to inventory 
levels. Therefore, the cost rates hi's and pi's should be 
re-defined as costs per unit time. Furthermore, since a 
continuous-review system monitors its inventory status 
continuously and can make replenishment decisions at 
any time, the time index t in the state variables, e.g. 
IPi (t), can be any time epoch. 

From the previous development, we see that a key 
building block for our results is that (s, S) policies are 
optimal for single-location, periodic-review systems. 
Fortunately, a similar result also holds for single- 
location, continuous-review systems with compound 
Poisson demand (Beckmann 1961). To extend the 
previous results for periodic-review systems to their 
continuous-review counterparts with compound Pois- 
son demand, we only need to notice that: (a) the com- 
pound Poisson demand process is memoryless (this 
property is parallel to the iid-demand assumption for 
periodic-review systems); (b) the loss functions for 
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Figure 4 Frequency Diagrams of the Ratios of Parameter-Allocation Bounds to Induced-Penalty Bounds for Distribution (N). 
The Horizontal Axes Represent the Ratios in Percentage 
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periodic-review systems are now loss rate functions; and 
(c) the idea of cost allocation/ physical decomposition 
does not depend on the inventory review system in 
place. 

6. Numerical Comparisons 
This section makes numerical comparisons between dif- 
ferent lower bounds and between lower bounds and 
the costs of heuristic policies for Distribution (N) with 
identical retailers and simple Poisson demand. 

In two separate papers (Chen and Zheng 1994, 1993), 
we studied a class of echelon stock (R, Q) policies for 
Distribution (N). An echelon stock (R, Q) policy is 
specified by N + 1 pairs of control parameters: (Ri, 
Qi )N=o. The warehouse orders Qo units from the outside 
supplier as soon as its echelon inventory position 
reaches Ro. Retailer i orders Qi units from the warehouse 
once its inventory position (= on-hand inventory + all 
outstanding orders - customer backorders) declines to 
Ri. In case of insufficient on-hand stock at the ware- 
house to satisfy a retailer order, the order can be partially 
filled with the remaining backordered at the warehouse. 
Backorders (of retailer orders) at the warehouse are sat- 
isfied on a first-come, first-served basis. Setup costs are 
incurred only when shipments are sent, not when orders 
are placed. For Distribution (N) with identical retailers, 
we assume that the retailers use identical policies, i.e. 
R1 = = RNand Ql = * = QN, and that Qo is an 
integer multiple of Ql. We have developed procedures 
to identify optimal (for N = 1) or close-to-optimal (for 
N > 1) echelon stock (R, Q) policies for Distribution(N) 
with identical retailers and simple Poisson demand. 
These procedures were used in our numerical study. 

Table 1 Numerical Examples 

Parameter Values 

N 1, 4, 8, 16, 32 
/\,, Ll, Lo 1, 2 
K1 5, 10 
Ko 50, 100 
h1 1 

Pi 5, 10 
0.5, 0.75, 1.0, 1.25 

The numerical examples used in our study are sum- 
marized in Table 1, where Al is the customer arrival rate 
at retailer 1 or any other retailer. From the table, we see 
that there is a total of 1,280 different combinations of 
parameters, representing 1,280 different examples. 
These examples were divided into five groups according 
to the value of N, the number of retailers. For each 
example, we computed the induced-penalty bound 
(CiP), the parameter-allocation bound (CPA), the inte- 
grated bound (C), and the cost of the "optimal" echelon 
stock (R, Q) policy (C). These values were then con- 
verted into two ratios: CPa/C'P and C/ C. A frequency 
diagram of CPa/CiP (C/ C) was created for each group, 
and depicted in Figure 4 (5). From Figure 4, we see that 
as the number of retailers increases, the parameter- 
allocation bounds go from smaller than to greater than 
the induced-penalty bounds. Figure 5 indicates that the 
gap between C and C is small for the first group (with 
only one retailer), and widens somewhat as N increases. 

Note. In the numerical study, CPA and C were com- 
puted by searching over a and : which parameterize 
the allocation of cost rates: h' = ahl, h? = (1 - a)/hl, 
p, =flp, and p2 = (1 -f)plfori= 1,..., N. Agrid 
size of 0.1 was used. The search range over (a, A) 
was [0, 1]2([0, 1] X [0, (pi + ho)/p1]) for parameter- 
allocation (integrated) bounds. 

7. Concluding Remarks 
In this paper, we have provided simple proofs of known 
optimality results for Series (N, K) and Assembly( (, K) 
and established parallel results for their continuous- 
review counterparts with compound Poisson demand. 
We have created lower bounds for Series(N), Assem- 
bly(?), and Distribution(N) under a cost-allocation, 
physical-decomposition framework. We expect that this 
framework can be used to generate lower bounds for 
more general systems. 

Remaining research issues abound: (a) an efficient 
algorithm is desired to find optimal cost allocations, e.g., 
the a and : in the numerical study; (b) a further study 
is needed on the bounds' effectiveness; and (c) simple, 
cost-effective heuristic policies are to be proposed and 
studied for general systems. The ultimate result is heu- 
ristic policies with guaranteed cost effectiveness. It is 
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Figure 5 Frequency Diagrams of the Ratios of Integrated-Bounds to the Minimum Costs of (R, nQ) Policies for Distribution 
(N). The Horizontal Axes Represent the Ratios in Percentage 
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our hope that the results presented in this paper will 
serve as a stepping stone in this endeavor.1 

1 The authors would like to thank the Associate Editor and two referees 
for their constructive comments that have led to many improvements 
in the exposition of this paper. This research was supported in part 
by NSF grant DDM 9111183. 

Appendix A 
Consider a single-location, periodic-review system with infinite plan- 
ning horizon. Demands in different periods are independent and 
identically distributed with one-period probability mass function pj, 
j = 0, 1, .... It has setup cost K and loss function G(*) (a function 
of its inventory position). The long-run average cost of an (s, S) 
policy in this system is 

K ? sS-4 G(S -j)m(j) 
C(S, S) = S-m-l 

Ej=o m(l) 

where 

m (O) = 1_ p and m(i)= Z pjm(i-j) i = 1, 2, * * . 
lPo 1~~~~~~=0 

Let Y be the minimizer of G(.). It follows from Zheng (1991) that 
there exists an (s*, S*) policy that satisfies 

def 
(i) g* = c(s*, S*) = mins<s c(s, S) 

(ii) s* < Y S* 

(iii) G(s* + 1) ? g* c G(s*) 

(iv) g* 2 G(S*). 
Define 

G(i) i > s* 
G-(i) = 

Now modify the above system by replacing the loss function G(*) 
with G-(.). The long-run average cost of an (s, S) policy in this 
modified system is 

K + s-s- G-(S - j)m(j) 
C(S, 5) = 

= 
S-s-1 

2:j=0 m(j) 

LEMMA. g* = mins<s c(s, S). 

PROOF. First notice that c-(s*, S*) = g*. Thus we only need to 
show that c(s, S) 2 g* for all s < S. Take any s < S. Consider the 
following cases: (1) If s 2 s* then c(s, S) = c(s, S) > g*; (2) if s 
< S* and S ? s* then 

K + g* z Ss1(j) 
C(S, S) - S-- mj g 

2:j=o m(l) 
and (3) if s < s* and S > s* then 

c-(s, S) = wc(s*, S) + (1 - w)g* > g* 

where w = s-s- m(I)/ 0 m(j) E (0, 1], and the inequality 
follows since c (s *, S) > g*. 

The above lemma shows that the (s *, S *) policy satisfying conditions 
(i)-(iv) is the optimal (s, S) policy for the above modified system 
(with loss function G-(*)). In fact, this policy is optimal among all 
policies. 

THEOREM. The (s*, S*) policy is optimal for the modified systemn. 

PROOF. Analogous to Theorem 2 of Zheng (1991). 0 

Appendix B 
Based on Federgruen and Zipkin (1984a, b, c), here we briefly derive 
CN(K, h, p, L, F). Consider any feasible policy in Distribution(N, 
K). The total systemwide holding and backorder costs at period t are 

N 

hoIo(t) + hi Ii (t) + pi Bi (t)] 
i=l 

Since ILO ( t) = IO( t)- i= 1 Bi ( t), the above expression can be written 
as 

N 

hoILo(t) + [hiIi(t) + (ho + pi)Bi(t)] 
i=l 

For convenience, we charge the following to period t: 

N 

hoILo(t) + E [hiIi(t + Li) + (ho + pi)Bi(t + Li)]. (Bi) 

It is clear that this cost accounting scheme will not affect the long- 
run average systemwide holding and backorder costs. Recall that 
IL-(t) is the beginning echelon inventory level at the warehouse at 
period t (before demand occurrence). Thus ILo (t) = IL - (t) - Do[ t, t]. 
Consequently, (Bi) becomes 

ho { IL-(t) - Do[t, t] } 

N 

+ E [hiIi(t + Li) + (ho + pi)Bi(t + Li)]. (B2) 
i=l 

Notice that Ii(t + Li) = {IPi(t) - Di[t, t + Li]}+ and Bi(t + Li) 
= {IPi(t) - Di[t, t + Li]}. Given ILj-(t) = y and IPi(t) = yi for 

=1, . . ., N, the expected value of (B2) is 

N 

ho (y - sO) + Gi (yi) (B3) 
i=l 

where AtO is the mean one-period system demand and 
def 

Gi(y) = E[hi {y-Di[t, t + Li }+ 

+ (ho + pi){y-Di[t, t + Li]}-], (B4) 

the loss function for retailer i. 
Notice that, by definition, the total inventory position of the retailers 

cannot exceed the beginning echelon inventory level at the warehouse, 
i.e., i yN ? y. Thus for any given value of y, a lower bound on 
(B3) is 

def N 
R(y) = ho(y - io) + min Gi(yi). (B5) 

Ni -1 iyi 
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In other words, given that the beginning echelon inventory level at 
the warehouse is y, the expected one-period holding and backorder 
costs are at least R(y). Notice that R( * ) is convex and easy to compute 
(cf. Zipkin 1984 for further references). The minimization in (B5) is 
effectively a free inventory position rebalance, a technique used by 
Eppen and Schrage (1981) and Federgruen and Zipkin (1984a, b, c) 
in solving what they called the myopic allocation problem. 

Notice that IL-(t) = IPo(t - Lo) - Do[t - Lo, t). Hence, given IPO(t 
- Lo) = z, the expected system-wide holding and backorder costs 
charged to period t are at least 

def 
Go(z) = ER(z - Do[t - Lo, t)). 

Since R(*) is convex, Go(-) is convex. By substituting Go(z) for the 
expected system-wide holding and backorder costs at period t, the 
original system reduces to a single-location system with setup cost K, 
loss function Go( * ), and the aggregate demand of the original system. 
Since Go( ) is convex, (s, S) policies are optimal for the single-location 
system. The cost of the optimal (s, S) policy is Cd (K, h, p, L, F). 
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