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Abstract.  This paper proves three lower bounds for variants of the following range- 
searching problem: Given n weighted points in R d and n axis-parallel boxes, compute the 

sum of the weights within each box: (1) if both additions and subtractions are allowed, we 
prove that ~2 (n log log n) is a lower bound on the number of arithmetic operations; (2) if 
subtractions are disallowed the lower bound becomes f2 (n(log n/log log n) d-I), which is 
nearly optimal; (3) finally, for the case where boxes are replaced by simplices, we establish 
a quasi-optimal lower bound of f2(n2-2/Id+l~)/polylog(n). 

I .  I n t r o d u c t i o n  

We establish three lower bounds for problems of the following kind: Given n weighted 
points in R d and n axis-parallel boxes, compute the sum of  the weights within each 
box. The dimension d is arbitrary but fixed. Problems of this sort have been extensively 
studied: see [5], [8], [13], [14], [16], and [19] for surveys or general introductions to the 
subject of  range searching. We prove that: 

�9 If  both additions and subtractions are allowed, then the problem requires 
f2 (n log log n) arithmetic operations. This is the first general result for the group 
model. Note, however, that it fall s short of  the best known upper bound of O (n log n). 
The proof  uses the spectral method which we introduced in [6]. This reduces the 
problem to that of  finding a set system with incidence matrix A such that the 
eigenvalues of ATA are large. We do this nonconstructively by using a mixture 
of  algebraic and probabilistic arguments. The key ingredient of  the proof is a 
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May 1995, pp. 733-740. This work was supported in part by NSF Grant CCR-93-01254 and the Geometry 
Center, University of Minnesota, an STC funded by NSE DOE, and Minnesota Technology, Inc. 
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discrete version of Roth's method of orthogonal functions. This is a powerful tech- 
nique from discrepancy theory, which we hope will find further use in complexity 
theory. 
If subtractions are disallowed (the semigroup model), then a much stronger lower 
bound can be established, i.e., fl (n (log n/log log n) d-l), which is nearly optimal. 
The semigroup model corresponds to the monotone arithmetic circuit complexity 
of the problem, so it should be expected that lower bounds are easier to prove. 
Actually, the proof is surprisingly simple: it involves little more than the Chinese 
Remainder Theorem and basic properties of Halton-Hammersley sequences. The 
on-line version of the problem was treated in [4] and [10] and required fairly 
complicated arguments. The off-line case was open. 
Our last result concerns the same problem as above, but with simplices replacing 
boxes. Again, a quasi-optimal lower bound can be established in the semigroup 
model, i.e., ~2 (n 2-2/~d+ l) (log n)-5/2). A practical observation is that when d is large 
the bound is basically quadratic, which shows that the naive algorithm (checking 
which point belongs to which simplex, one pair at a time) is the method of choice. 
The proof makes use of recent results on Heilbronn's problem [3] and techniques 
from [7]. Again, the on-line Version of the problem has been (almost completely) 
solved [3], [I1], [18], while the off-line case was open. See also [9] for related 
results on Hopcroft's problem in two dimensions. 

2. Lower Bounds in the Group Model 

Given n weighted points in the plane, with weights chosen in an Abelian group (G, +), 
and n axis-parallel boxes, we consider the problem of computing the sum of the weights 
of the points within each box. Obviously this is the same as computing Ax, where A is 
the incidence matrix of the associated set system and x is the vector of weights. 

In the group model a circuit (or straight-line program) encodes the map A and is 
required to compute Ax for any x e G n, where (G, +) is an arbitrary Abelian group. 
There are two types of gates: A regular gate takes a pair (a, b) as input and it outputs 
a + b or a - b. A help gate outputs f(a, b), where f is any function from G 2 to G. The 
motivation behind the use of help gates is that often the group G can be embedded into 
a more complex structure, say, a ring or a field, and other operations might be possible. 
The use of help gates leaves open that possibility without restricting the generality of 
the model. 

For the purpose of the proof we assume that G is the additive group of real numbers. 
Let ~-1 > "'" > ~.n be the eigenvalues of ATA. The spectral lemma of [6] states that any 
circuit for computing Ax is of size f2 (maxk ( k -  2h) log ~-k), where h is the number of help 
gates. (This generalizes Morgenstern's classical result [ 15].) Thus we construct a set of n 
points and a set of n axis-parallel boxes such that any eigenvalue of A-rA of rank slightly 
less than n/4 is at least (log n) ~m. This immediately implies that computing Ax requires 
a circuit of size f2 (n log log n), even in the presence of up to roughly n/8 help gates. 

First, we build a large N x n set system B, from which we extract an n x n set 
system A that satisfies the lower bound. To construct B we use a set P of n points given 
by a (well-chosen) two-dimensional Halton-Hammersley subsequence; for boxes we 
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take the southwest quadrants cornered at the N vertices of a very fine square grid. Let 
/zl > .-.  > /zn be the eigenvalues of BTB. (In the following we make no distinction 
between a set system and its incidence matrix.) We go through the following sequence, 
from which the lower bound follows by application of the spectral lemma: l 

�9 Step 1. Show that/Zk >> (n -- k + 1)N(logn)/n 2 (Lemma 2.3). By the Courant- 
Fischer characterization of eigenvalues, this entails estimating the minmax value 
of the Rayleigh quotient II Bx 112/IIx II 2 over all (n - k + 1)-dimensional subspaces. 
By using Roth's method of orthogonal functions [2], [17] we derive a lower bound 
on the hybrid ratio II nx 112/IIx I1~, for any x ~ 0 (Lemma 2.2). Unfortunately, we 
need the L 2 norm in the denominator. The standard inequalities relating the L 1 and 
L 2 norms are too crude for our purposes, and we need a probabilistic argument to 
produce the desired lower bound (Lemma 2.3). 

�9 Step 2. Prove the existence of an n x n submatrix A of B such that det ATA = 
(log n) n-~ (Lemma 2.4). Step I yields a lower bound on det BTB = Ilk lzk. The 
Binet-Cauchy formula leads to the (nonconstructive) existence of A. 

�9 Step 3. Show that the kth largest eigenvalue kk of ATA is at least (log n) ~0~, for any 
k up to roughly n/4  (Lemm a 2.5). Since det ATA = l-Ik kk, such a bound follows 
from the previous step, provided that we can bound the low-ranked eigenvalues 
from above. This is done by exhibiting large enough invariant subspaces within 
which the spectral norm of the map ATA is low. 

Remark. Step 3 makes use (of all things!) of data-structuring techniques for range 
searching. It is ironic that proving a lower bound on the complexity of range searching 
should require the use of data structures. However, of course, one consequence of this 
work is that a low spectrum is a precondition for the existence of efficient data structures 
for linear maps, and hence for range searching. So, with hindsight it is not all that 
surprising. 

Theorem 2.1. Range searching with respect to n points and n axis-parallel boxes 
requires f2 (n log n log n) group operations in the worst case. This remains true even in 
the presence of n~8 - en help gates, for any fixed e > O. 

The theorem shows that up to n/8 help gates cannot help. On the other hand, it is easy 
to see that over the reals the problem can be solved entirely with only 2n - 1 help gates: 
the circuit is a tree of help gates whose leaves are the xi's and whose root "collects" 
the vector (Xl . . . . .  xn) and encodes it as real. Then, with another n help gates, we can 
distribute the correct n outputs: the total number of help gates is 2n - 1. 

It should also be noted that without help gates the problem is easily solved in 
O(n logn) time on a RAM. The lower bound holds in any dimension higher than one. 
The obvious open question is whether | Ioglogn) is the fight bound. The spectral 
method seems unlikely to provide an answer to this question. For example, it would 
be expected that the dimension of the ambient space plays a role, something which the 
method seems to rule out. 

i We use the notation >> or << to denote inequality up to a constant multiplicative factor. 
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Proof of Theorem 2.1. Let m be a large power of two and let n = m/4. The n-point set 
P is a subset of the classical bit-reversal m-point set: 

Q =  + c(k), ~mm + " O < k < m  , 

where c(k) = ~i>__o b(k, i)/2 i+l and {b(k, i)} is the binary expression for k, i.e., k = 

~_,i>_ob(k, i)2 i. For any 1 < k < logn, let Xk be the grid obtained by dividing [0, 1] 2 

into m axis-parallel rectangles of size 2 -k x (2k/m). Each cell cr of Xk is a rectangle of 
area 1/m that contains exactly one point q of Q. We say that q is well-centered for Xk if 
it lies near the center c~ of cr; specifically, within the box (or + cc,)/2. A simple inductive 
proof shows that at least half the points of Q are well-centered for Xk. (Intuitively, for a 
random choice of tr in Xk its unique point is equally likely to lie in any of its partitioning 
square cells.) It follows that at least m/4 points of Q are each well-centered for at least 
(log n)/3 grids Xk. We define P to consist of these m/4 points. 

Consider the (~/-N - 1) x (4"N - 1) square grid G covering [0, 1] 2, where N = 
(m 2 + 1) 2. Each row of the N x n matrix B is the characteristic vector of the subset 
of P lying in the southwest quadrant cornered at a distinct grid point; in other words, 
for each grid point (x, y) there is a distinct row in B corresponding to the quadrant 
( - c~ ,  x] x ( - oo ,  y]. Note that the N rows are not all distinct. Next, we show that the 
set system B has a high spectrum. We do this in two steps: we lower-bound successively 
the L 2 norm of Bx and the eigenvalues of B-rB. 

Lemma 2.2. For any x E R n, 

lIBxll2 >> lx/Nlognllxl l t .  
n 

Proof. Fix x = (xl . . . . .  xn) e R~: each xi corresponds to a distinct point of P; for 
convenience we use the same notation xi to refer to a point and to its weight (which one 
is meant being obvious from context). Without loss of generality, we can assume that 

Ilxlll _< 2 y ~ x i .  (1) 
X i > 0 

Our approach is a discretized variant of Roth's method of orthogonal functions [2], [ 17]. 
Given 1 < k < log n, we say that a cell cr of Xk is k-good if it contains a well-centered 
point xi and xi > 0. We assign a weight to each grid point q of ~ as follows: Let cr be 
any cell of Xk that contains q: 

�9 If cr is not uniquely defined (because q lies on its boundary) or if cr is not k-good, 
then assign q a weight of 0. 

�9 Else, subdivide tr into four equal-size quadrants (similar to a): Assign q a weight 
of 1 if it lies in the interior of the northeast or southwest quadrant; assign a weight 
of - 1  if it lies in the interior of the northwest or southeast quadrant. If q lies 
elsewhere, assign it a weight of 0. 

One might recognize in the weight assignment a modification of the standard two- 
dimensional Rademacher function. Let gk 6 R N be the column vector of weights (with 
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coordinates in the same order as the corresponding rows of B). It is easily checked that 
the log n vectors gk are orthogonal. Let G be the matrix whose columns are the gk's and 
let u be the column vector of R l~ whose coordinates are all ones. It follows that 

log n 

Ilaull@ = ~ Ilg~ll @ _< Nlogn .  
k=l 

We easily show that by summing separately over each k-good cell a we obtain 

N 
g'[Bx >> - -  ~_,{xi E k-good cell of Xk}. 

n i 

To see why, when summing up the weighted coordinates of Bx over each k-good cell, 
regroup each point with its three symmetric translates (one in each subquadrant) and 
apply the inclusion-exclusion formula. Finally, use the well-centeredness to argue for 
the presence of the factor N/n.  We omit the details, which are straightforward. Since 
each xi > 0 is well-centered for at least (log//)/3 grids, then, by (1), 

(Gu)TB x >> N log n llx II1, 
n 

and, by Cauchy-Schwarz, 

N log n 
// 

- - I l x l l l  << (Gu) TBx < IIGull2" Ilaxll2 ~ x/Nlognllnxll2. [] 

We are now ready to complete the first step of our lower-bound proof and estimate 
the eigenvalues of BTB from below. Let/zl > �9 .. >/zn > 0 be the eigenvalues of BTB. 

Lemma 2.3. For any 1 < k < n, the kth largest eigenvalue of  BTB satisfies 

/zk >> 
(n -- k + 1)N logn 

//2 

Proof. Let {Vi} be an orthonormal eigenbasis for BTB, where 1) i is associated with 
/xi, and let F be the invariant subspace spanned by vk . . . . .  on. By the Courant-Fischer 
theorem we know that 

IIBxl122 
/zk = max - - .  

O#~F Ilxll2 2 

The difficulty is that in Lemma 2.2 the L 2 norm of Bx is bounded in terms of the L l 
norm of x. On the other hand, the inequality IIx 111 _> Ilx 112 is too  weak for our purposes, 
so we argue (probabilistically) that the subspace F is "big'enough so that it contains 
vectors whose L 1 and L 2 norms deviate from each other substantially. 

Let ~ be the column vector obtained by expressing x in the basis {oil: we have 
= Qx, where Q --- (qq) is the orthogonal matrix whose rows are the eigenvectors 

vi. Let R ---- (rij) be the matrix obtained by replacing each of the first k - 1 rows of Q 
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by a row of  zeros. Now let y = (Yl . . . . .  Yn) be a random vector chosen uniformly in 
{--1, 1} n . 

EIIRyII22 = ~--~E rijYj 
i=1 j = l  

tl 

= E E q~Ey~ + E Z qiJqo'EyJyJ ' 
i>k j---I i>k j # j '  

n 

= E E q ~ = n - k + l .  
i>k j = l  

This implies the existence of  a vector y e { -1 ,  1} n such that Ilgyl[2 z > n - k + 1, and 
therefore the (n - k)-flat defined by the equations 

{ ~ i = 0  (1 < i  < k ) ,  
(Qy)r~ = ~/n - k + 1, 

cuts the unit-radius ball centered at the origin. Let x be a point o f  the intersection. Since 
= Qx, 

Ilxlll ___ yVx = (Qy)Z~ = ~/n - k + 1. 

Applying Lemma 2.2, we derive 

n N l o g n  2 (n - k + 1 ) N l o g n  
/Zk >_ )--~/zi~ 2 = Ilnxllz z >> ~ x I >- n2 [] 

i=1 

The determinant of  B-rB is the product of  the eigenvalues, therefore 

(N l~  (2) det BrB >> ~ ~ , ~ ]  

It is now easy to exhibit a hard set system A for orthogonal range searching and complete 
the second step of  the lower-bound proof. 

L e m m a  2.4. There exists an n x n submatrix A of B such that 

det A-CA = (log n) "-~ 

Proof. By the Binet--Cauchy formula, 2 

det BTB = 
l<_jj <...<j~ <_N 

2 The notation refers to the matrix obtained by picking the rows indexed jl . . . . .  J,, in B. 
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Therefore by (2) there exists an n x n submatrix A of B such that 

detA-rA = d e t B ( ~  J2 " '"  ~ ) 2  
, . .  

> det BrB 

f 2 ( 1 ) n ( ~ ) n ( n ) n ( N l ~  n 
= > (logn) n-~ 

\ n 2  l -  

59 

[] 

We can now move on to the last step of  the lower-bound proof. Let ~-1 > " � 9  > ~-n > 0 
be the eigenvalues of ArA. 

L e m m a  2.5. For any fixed e > 0 and any k < n/4 - en, we have ~-k = (log n) ~(1). 

Proof. The intuition is this: write down some linear constraints which, if satisfied, allow 
us to express the map A by a matrix with only few ones. Then, by using standard matrix 
norm inequalities, argue that within the subspace satisfying the constraints, II Ax 112/Itx 112 
is always small. This implies an upper bound on the eigenvalues, which allows us to 
conclude. We flesh out these ideas below. 

Place the points P in bijection with the leaves of  a complete binary tree (from left to 
right): each node v of  the tree is associated with the vertically sorted list No of the points 
stored at the leaves at or below v. This is a classical range-tree construction [14]. Any 
set specified by a row of A can be partitioned into fewer than v = log n + 1 subsets: each 
subset is a prefix of  a list No and all the relevant lists No are on different levels of  the 
tree. Thus, we can create v systems, one for each level, such that their n x n incidence 
matrices Al . . . . .  Av satisfy A = Y]i Ai. 

For every level i, perform the following operations. First, check whether some of  the 
rows in Ai are identical: p identical rows all correspond to the same prefix in some No. 
Take the last element in the prefix (i.e., the point with the highest y-coordinate) and 
duplicate it p - 1 times within the list No. Note that the total size of  the augmented lists 
at level i is at most 2n. Next, consider each list No (after the previous preprocessing) and 
subdivide it into contiguous lists of r (or fewer) points; r is a parameter to be specified 

later. 
To summarize, at each level we have a collection of at most 2n/r lists of  size exactly 

r along with a number of  other lists of  size less than r. We can now remove all the 
duplicates, as their presence was needed only to calibrate the size of  the lists. (Note that 
in the process some lists become empty.) Any subset specified by a row of Ai can be 
written as a union of full lists and a remainder set of size less than r. Thus, if H is 
the matrix whose rows are the characteristic vectors of  each full list (over all Ai), then 
the restriction of Ai (viewed as a linear transformation) to K e r H  can be expressed by 
an n x n matrix Ci, whose rows each have fewer than r ones. Because of the earlier 
duplication of points in the lists, note that similarly no column of Ci can have more than 
r ones. The rank of H does not exceed its number of  rows, which is at most 2vn/r,  
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therefore 
2vn 

codim Ker H < (3) 
r 

It is a standard result in matrix theory [12] that the spectral norm of a matrix M satisfies 

[ IMl l2<- - (max~- - , lm i j l ) (max~ i  ]mijl i j 

and, therefore, IlCi II ff _< r 2. Using the fact that 

IlCixll2 <_ IICills" Ilxl12 _< rllxll2, 

we find that, for any x ~ Ker H,  lay the triangular inequality, 

IlAx[[2 < E IIAixll2 = IlCixll2 < rvllxll2. 
i=1 i=1 

By the Courant-Fischer characterization of eigenvalues, we know that 

Ilaxll~ 
~.j = min max - - ,  

F 0 ~ r  Ilxll  2 

where the minimum is taken over all subspaces of  dimension n - j + 1. Fix j such that 
v < j < n; by (3), setting r = [2vn / ( j  - I)] makes the dimension of Ker H exceed 
n - j ,  therefore, for n large enough, 

ilaxl122 r2v 2 ( ~ ) 2  
~.j < max - - <  < 5  

-- 0#x~KerH I l x l l ,  2 - - 

Note that this inequality remains valid if 1 < j < v, because of the trivial upper bound, 
~.j < n 2. By Lemma 2.4, 

k-I 
(n - k + 1) log~.k >_ logdet ATA - E l o g Z j  

j=l 
>_ (n - o (n ) ) l og logn  - k(O(1)  + 21ogn - 21ogk + 41oglogn) .  

Choosing k = n /4  - en, for any fixed e > O, gives ~-k = (logn) f~(1). [] 

The lower bound for range searching follows directly from the spectral lemma, which 
proves Theorem 2.1. [] 

3. The Semigroup Model 

In the semigroup version of range searching, subtractions are not allowed (or not defined). 
In other words, the model of computation is a straight-line program or circuit: each 
(charged) step is the form 

Z + - x + y ,  
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where x and y are previously computed variables or input weights. It is possible to weaken 
the model slightly (and, hence, strengthen our results) by relaxing the assumption that 
the program should work for all commutative semigroups. It suffices to require that it 
should work for at least one faithful semigroup. This is a semigroup over which any two 
identically equal linear forms must have the same variables (though not necessarily the 
same coefficients)--see [3], [4], and [18] for formal definitions. 

Theorem 3.1. Range searching with respect to n points and n axis-parallel boxes in 
R d requires on the order ofn(log n/log log n) d-1 semigroup operations. 

Theorem 3.2. Range searching with respect to n points and n simplices in R d requires 
on the order of n 2-2/(d+1) (log n) -5/2 semigroup operations. 

Complicated arguments were used in [3] and [4] to treat the on-line cases. As it turns 
out, the off-line case is considerably easier. The bound of Theorem 3.1 is fairly close to 
the known upper bound of n(log n)d-lot(n) [71. The bound of Theorem 3.2 is within a 
polylogarithmic factor of the best current upper bound of n 2-2/(d+1) (log n) ~176 [ 13]. 

The proofs of both theorems are based on a simple graph-theoretical lemma. Let 
A = (ao) denote the n x n incidence matrix of a range-searching problem. Suppose 
that A has no p x q submatrix of ones. An equivalent formulation is to say that the 
corresponding bipartite graph has no (p, q) complete bipartite subgraph. 

Lemma 3.3. l f  A is an n x n incidence matrix with no p x q submatrix of ones, then 
the complexity of computing Ax over a semigroup is at least on the order of 

- -  a i j  �9 

Pq P 

Proof. Every gate of the circuit adds two linear forms together: we say that the gate is 
heavy if the linear form it outputs, ~ j  oqxj(gj ~ N+), involves q variables xj or more. 
Given a row i, let Si = ~_.j aij. Because of faithfulness, the output gate g computing the 
form ~,j aijxj is connected to Si input variables xi,, xi2, etc. Consider a subtree T/of  the 
circuit graph with g as its root and xi,, xi2 . . . .  at its leaves. Note that the maximal subtrees 
of Ti with at most q leaves (i.e., those whose root's parent has more than q descending 
leaves) are disjoint. Each such subtree has one fewer two-child nodes than leaves. There 
are at least Si/q such subtrees, so they account for at most Si - Si/q two-child nodes. 
This shows that at least Si/q - 1 intemal nodes of T/ correspond to heavy gates. By 
faithfulness again, no heavy gate can provide a node for p trees T/. Indeed, this would 
create a p x q submatrix of ones in A. The lower bound follows immediately. [] 

Proof of  Theorem 3.1. The set of input points is obtained from a Halton-Hammersley 
sequence [2]. Let Pl < P2 < " � 9  < Pd-1 be consecutive primes. Any integer m has a 
unique decomposition in base Pk: m = Y-~4>O bk(m, i)p~. We define the function 

xk(m) = E bk(m, i) 
_ p~+l 

i>0 
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This allows us to construct the input point set 

P = l ( x l ( m )  . . . . .  Xd_l(m), ~ ) "  O < m < n] . 

Any interval of the form [M/pJk, (M + 1)/p~), where M is a nonnegative integer, is said 
to be of type (k, j ) .  A box B is special if it is of the form Ii x . . .  x ld, where 

�9 B___[0,1]d; 

�9 11 . . . .  ~ la-i are intervals of type (1, j l )  . . . . .  (d - 1, jd- l ) ,  respectively, for some 
integers jl . . . . .  jd- l  > 0; 

�9 ld is of the form [Mpl Q/n ,  (M + 1)pl Q/n) ,  where Q = P~' �9 �9 " ea-l-Ya-' and M is 
an integer. 

We motivate this definition. First, observe that knowing which (k, j)-interval contains 
xk(m) amounts to the knowledge of the digits bk(m, O) . . . . .  bk(m, j - 1). Thus, if we 
know that the point of P indexed by m lies in the box It x . . .  x ld-i  • [0, 1 ], then 
we know the residues classes of m modulo p~' . . . . .  p ~ l ,  respectively. By the Chinese 
Remainder Theorem, this implies that we know m modulo Q. It follows at once that 
each of the boxes Ii x .-- x Id-I X [IQ/n,  (l + 1)Q/n)  contains at most one point of 
P. Actually, any special box B contains exactly pl points of P. The number N of such 
boxes is equal to 

It follows that 

L n J E> 
j l , . . . , ja-I_0 Pl 

> E n - o  
Jl x...x p~d-~l <_n/2pl Pl 

>- Z Z n. 
O<m<logn/logpa_l-2 jl+...+jd_j=m 2pl 

nf gn) d-' N > > - -  
Pl \ l og  pd-i 

By choosing Pl to be around (logn) d-j, we can thus find n boxes that define a set 
system whose incidence matrix A has at least n(log n/log Pd-I )a-l ones (note that we 
may have to pad with rows of zeros). We now show that A is square-free (i.e., has no 
2 x 2 submatrix of ones). 

Consider the intersection of the special box B with another special box B' with pa- 
rameters (j~ . . . . .  JJ-I).  Without loss of generality, assume that Q < Q'. (Note that the 
case Q = Q' corresponds to an empty intersection.) The intersection of two intervals of 
type (k, j )  and (k, j ' ) ,  j '  < j ,  is either empty or an interval of type (k, j ) .  This implies 
that B ~ B' is a box Jl x . . .  x Jd, where Jk (k < d) is an interval of type (k, max{jk, j~}), 
and Ja has length at most Pl Q/n .  Assume that the box B N B' contains a point of P 
and let m be its index. By the Chinese Remainder Theorem, m is completely specified 

modulo l-I p~naxljk j~}, and hence modulo Pi Q, for some 0 < i < d. We know that the 
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point's dth coordinate m/n lies in an interval Jd of length at most Pl Q/n,  therefore 
m is uniquely determined. Thus, two special boxes intersect in at most one point of 
P. It follows that A is square-free, and by Lemma 3.3, the proof of Theorem 3.1 is 
complete. [] 

Proof of  Theorem 3.2. We exhibit a set P of n points in R d along with a collection 
{Sq} of n slabs, such that: (i) each slab contains roughly n l-2/(a+l) points, and (ii) the 
intersection of any k > log n slabs contains at most a logarithmic number of points. The 
proof technique is similar to [7]; there are some differences, however, so we provide the 
details below. 

Let Hq be the hyperplane of equation (p, q) - Ilqll~ = 0: this is the hyperplane 
normal to Oq passing through q. Fix a parameter w; we let Sq denote the slab of width 
w consisting of all the points at most w/2 away from Hq. To specify the collection of 
slabs {Sq }, it thus suffices to provide a set Q of n points q. First, we show that if any d 
of the points of Q are sufficiently spread apart (in a sense to be formalized below), then 
the corresponding slabs have a small intersection. Next, by appealing to the results on 
Heilbronn's problem of [3], we are able to exhibit a suitable set Q, Finally, throwing in a 
set of random points in the unit cube provides P and completes the construction of the set 
system. We now give the details of the construction of Q. (We use the notation VOid(A) 
and conv(A) to refer to the d-dimensional volume and the convex hull of A, respectively.) 

Lemma 3.4. Let qi . . . . .  qa be d points in [0, 1 ]a, and assume that the central projec- 
tion q~ of each qi on the hyperplane Xl = 1 also lies in [0, 1] d. Then 

d 

vol  N Sq, << 
i=l  

W d 

VOld-I (conv{q I . . . . .  q~})" 

Proof. Let [ul . . . . .  ud] denote the matrix whose columns are the vectors ui spanning 
the parallelepiped n Sqi. Note that each ui has the direction specified by the intersection 
of hyperplanes bounding the slabs Sqj, for all j r i. We easily derive 

det([ul . . . . .  Ud]r [ql . . . . .  qd]) = w d I ' I  Ilqi 112, 
i 

and therefore 

d 

void n Sq, 
i=1 

= wd I-Ii [Iqill2 

Idet[ql . . . . .  qd][ 

: wd  l-Ii IIq~l12 
Idet[q I . . . . .  q~][ 

W d 
<< 

Idet[ql . . . . .  q~][' 

from which the lemma easily follows. [] 
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Choose an integer m = LconwJ, for some constant co > 0. By Theorem 4.10 of 
[3], we can place m points in (1, 0 . . . . .  0) + [0, 1] d-I so that the convex hull of any 
k > log m points has (d - 1)-dimensional volume at least [2 (k/m). For each such point 
q', place points on the segment Oq' at intervals of length w. This gives us O(con) points 
q: if w is small enough then, for at least a constant fraction of them, the slab Sq intersects 
the cube [0, 1] a in a polytope of volume f2(w). By choosing co large enough, we can 
find n such points, which thus form the set Q. To summarize, the set Q consists of n 
points such that, for any q e Q, 

void Sq 1") [0, 1] d >> w. (4) 

Also, for any distinct ql . . . . .  qk ~ Q, with k > log n, either at least two qi's have the 
same central projection q[, in which case vola A~=l Sq, = 0, or else 

k 
VOld-l(conv{q~ . . . . .  q~}) >> -- .  

m 

By triangulating the convex hull of ql,' �9 �9 ., qk,' using O(k I-(d-l).l/2) simplices, we de- 
rive the existence of d points, say, q~ . . . . .  q~, whose convex hull has volume at least 
[2 (k 2-rd/21/m). By Lemma 3.4, this shows that in all cases 

k d 
VOid f ~  Sqi <-- VOid N Sqi r nwa+lkrd/21-2" (5) 

i=1 i=1 

We define the point set P by choosing n points in [0, 1] d at random uniform- 
ly and independently. Let w = bn-2/(d+1)(logn) c, for some fixed b > 0 and c = 
(3 - Fd/2])/(d + 1). Set k = plogn]; we can ensure that k-wise intersection of slabs 
contain only O(logn) points. We use standard Chernoff bounds below; see, e.g., [1]. 
By (5) there exists a constant Cl > 0 such that the probability that N~=I Sq~ contains 
more than Cl n2w d+l k rd/21-2 = | (log n) points is less than n -a. Thus, with probability 
greater than 1 - (~)n -a, no k-wise intersection of slabs contains more than O (log n) 

points. Note that by (5) the factor of (~) can be replaced by (d), SO the probability is 
actually greater than 1/2. 

Similarly, by (4) the probability that a given Sq contains fewer than c2wn points is 
_hi~4 

less than e -~O~n) < e , for some constant c2 > 0. So, with probability greater than 
1/2, all the slabs Sq contain c2wn points or more. We derive the existence of a set P 
such that every slab Sq (q ~ Q) contains f2 (wn) points and no subset of Flog n] slabs 
has an intersection containing more than O (log n) points. 

The set P and the slabs Sq form a set system A with no p x q submatrix of ones, 
where both p and q are in O(logn). It follows from Lemma 3.3 that the semigroup 
complexity of the map x ~ Ax is f2 (wn2/log 2 n). Since the constant c is at least - 1/2, 
this bound is at least f2 (n 2-2/(a+1) (log n)-5/2), which proves Theorem 3.2. Note that the 
polylogarithmic factor can be tightened a little by keeping the exact value of c. [] 

4. Concluding Remarks 

One of the most intriguing open problems is, of course, to improve the f2 (n log log n) 
lower bound, or to extend it to tings or fields. Also, the discrepancy theory literature is vast 
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and rich in powerful mathematical techniques. To establish further links to complexity 
theory would be very interesting. 
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