
 Open access Journal Article DOI:10.1007/BF00264439

Lower bounds for on-line two-dimensional packing algorithms — Source link

Donna J. Brown, Brenda S. Baker, Howard P. Katseff

Institutions: University of Illinois at Urbana–Champaign, Bell Labs

Published on: 01 Nov 1982 - Acta Informatica (Springer-Verlag New York, Inc.)

Topics: Bin packing problem, Approximation algorithm, Bin and Upper and lower bounds

Related papers:

 Shelf Algorithms for Two-Dimensional Packing Problems

 Orthogonal Packings in Two Dimensions

 A 54 algorithm for two-dimensional packing

 Performance Bounds for Level-Oriented Two-Dimensional Packing Algorithms

 On Packing Two-Dimensional Bins

Share this paper:

View more about this paper here: https://typeset.io/papers/lower-bounds-for-on-line-two-dimensional-packing-algorithms-
2okjvfisfs

https://typeset.io/
https://www.doi.org/10.1007/BF00264439
https://typeset.io/papers/lower-bounds-for-on-line-two-dimensional-packing-algorithms-2okjvfisfs
https://typeset.io/authors/donna-j-brown-41qlnemzzv
https://typeset.io/authors/brenda-s-baker-i5664b42tp
https://typeset.io/authors/howard-p-katseff-5e4x019z88
https://typeset.io/institutions/university-of-illinois-at-urbana-champaign-1mpdu76r
https://typeset.io/institutions/bell-labs-bjhaia1m
https://typeset.io/journals/acta-informatica-2acu7k0y
https://typeset.io/topics/bin-packing-problem-37wwae2z
https://typeset.io/topics/approximation-algorithm-3j82mu0v
https://typeset.io/topics/bin-2efrr475
https://typeset.io/topics/upper-and-lower-bounds-26krndal
https://typeset.io/papers/shelf-algorithms-for-two-dimensional-packing-problems-1rsiuy69pb
https://typeset.io/papers/orthogonal-packings-in-two-dimensions-24lxamkb4m
https://typeset.io/papers/a-54-algorithm-for-two-dimensional-packing-rq8qvcdh3d
https://typeset.io/papers/performance-bounds-for-level-oriented-two-dimensional-2trzrmqzvk
https://typeset.io/papers/on-packing-two-dimensional-bins-56ic5vngpu
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/lower-bounds-for-on-line-two-dimensional-packing-algorithms-2okjvfisfs
https://twitter.com/intent/tweet?text=Lower%20bounds%20for%20on-line%20two-dimensional%20packing%20algorithms&url=https://typeset.io/papers/lower-bounds-for-on-line-two-dimensional-packing-algorithms-2okjvfisfs
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/lower-bounds-for-on-line-two-dimensional-packing-algorithms-2okjvfisfs
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/lower-bounds-for-on-line-two-dimensional-packing-algorithms-2okjvfisfs
https://typeset.io/papers/lower-bounds-for-on-line-two-dimensional-packing-algorithms-2okjvfisfs

UNCLASSIFIED

SECU R I T Y CLASSI F I CAT IO N o f T H IS PAGE (When Da t a Ent ered)

REPORT DOCUMENTAT ION PAGE
R E A D I N S T R U C T I O N S

B E F O R E C O M P L E T I N G F O R M

1 . R E P O R T N U M B E R 2 . G O V T A C C E S S I O N N O . 3. R E C I P I E N T ’ S C A T A L O G N U M B E R

4 . T I T L E (a nd Subt i t le)

LOWER BOUNDS FOR ON-LINE TWO-DIMENSIONAL PACKING

ALGORITHMS

5 . T Y P E O F R E P O R T & P E R I O D C O V E R E D

Technical Report

Clc¥-¥f
1 R-888

I R M I N G O R G . R E P O R T N U M B E R

’ UILU-ENG 80-2220
7 . A U T H O R f a ;

Donna J. Brown, Brenda S. Baker, Howard P. Katseff

8 . C O N T R A C T O R G R A N T N U M B E R / s J

DAAG-29-78-C-0016

9 . P E R F O R M I N G O R G A N I Z A T I O N N A M E A N D A D D R E S S

Coordinated Science Laboratory

University of Illinois at Urbana-Champaign

Urbana, Illinois 61801

10 . P R O G R A M E L E M E N T , P R O J E C T , T A S K

A R E A à W O R K U N I T N U M B E R S

11 . C O N T R O L L I N G O F F I C E N A M E A N D A D D R E S S

Joint Services Electronics Program

12 . R E P O R T D A T E

July 1980
13 . N U M B E R O F P A G E S

2 2

1 4 . M O N I T O R I N G A G E N C Y N A M E a A D D R E S S ^ / / dif f erent from Cont r ol l ing Of f ice) 15 . S E C U R I T Y C L A S S , (of. t his report)

UNCLASSIFIED

1 5 « . D E C L A S S I F I C A T I O N / D O W N G R A D I N G

S C H E D U L E

16 . D I S T R I B U T I O N S T A T E M E N T (of t his Repor t)

Approved for public release; distribution unlimited

17 . D I S T R I B U T I O N S T A T E M E N T (of t he abst ract ent ered in Block 20, i f dif f erent from Repor t)

18 . S U P P L E M E N T A R Y N O T E S

19 . K E Y W O R D S (Cont inue on rever se side i f necessa r y and ident i f y by b lock number)

bin packing, scheduling, algorithms, rectangles, on-line, lower bounds

2 0 . A B S T R A C T (Cont inue on r ever se side i f necessa r y and ident i f y by block number)

Many problems, such as cutting stock problems and the scheduling of tasks with a

shared resource, can be viewed as two-dimensional bin packing problems. Using

the two-dimensional packing model of Baker, Coffman, and Rivest, a finite list L

of rectangles is to be packed into a rectangular bin of finite width but infinite

height, so as to minimize the total height used. An algorithm which packs the

list in the order given without looking ahead or moving pieces already packed is

called an on-line algorithm. Since the problem of finding an optimal packing is

DD 1 J ? N M7 3 1473 U N C L A S S IF IE D

S E C U R I T Y C L A S S I F I C A T I O N O F T H I S P A G E (When Da t a Ent er ed)

UNCLASSIFIED

S E C U R I T Y C L A S S I F I C A T I O N O F T H I S P A G E f H T i a n Da t a Ent er ed) _ _ _ _ _ _ _ _ _

20. (cont.)

NP-hard, previous work has been directed at finding approximation algorithms.

Most of the approximation algorithms which have been studied are on-line

except that they require the list to have been previously sorted by height

or width. This paper examines lower bounds for the worst-case performance

of on-line algorithms for both non-preordered lists and for lists preordered

by increasing or decreasing height or width.

UNCLASSIFIED

S E C U R I T Y C L A S S I F I C A T I O N O F T H I S P A G E f » 7 > « n Da t a En(er ad)

I

UILU-ENG 80-2220

LOWER BOUNDS FOR ON-LINE TWO-DIMENSIONAL

PACKING ALGORITHMS

by

Donna J. Brown, Brenda S. Baker, and Howard P. Katseff

This author's work was supported by the Joint Services Electronics

Program (U.S. Army, U.S. Navy and U.S. Air Force) under Contract DAAG-

29-78-C-00I6.

Reproduction in whole or in part is permitted for any purpose of

the United States Government.

Approved for public release. Distribution unlimited

L o w er B o u n d s fo r O n -L in e T w o -D im e n sio n a l P a ck in g A lg o r ith m s

Donna J. Brown*

Coordinated Science Laboratory
University of Illinois

U rbana, Illinois 61801

Brenda S. Baker

Bell Laboratories
M urray Hill, New Jersey 07974

Howard P. Katseff

Bell Laboratories
Holm del, New Jersey 07733

AB STR A CT

M any problems, such as cutting stock problems and the scheduling of tasks with a
shared resource, can be viewed as two-dimensional bin packing problems. Using
the two-dimensional packing model of Baker, Coffman, and Rivest, a finite list L
of rectangles is to be packed into a rectangular bin of finite width but infinite
height, so as to minimize the total height used. A n algorithm which packs the list
in the order given without looking ahead or moving pieces already packed is called
an on-line algorithm. Since the problem of finding an optim al packing is N P-hard,
previous work has been directed at finding approxim ation algorithms. Most of the
approxim ation algorithms which have been studied are on-line except that they
require the list to have been previously sorted by height or width. This paper
examines lower bounds for the worst-case performance of on-line algorithms for
both non-preordered lists and for lists preordered by increasing or decreasing height
or width.

In tr o d u c tio n

Two-dimensional packing problems arise in m any contexts. For example, cutting stock prob
lems involving rolls or sheets of m aterial and the scheduling of tasks with a shared resource can be
viewed as two-dimensional packing problems. In the model proposed by Baker, Coffman and
Rivest [2], a finite list L of rectangles is to be packed into a rectangular bin of finite width but infin
ite height, in such a way as to minimize the maximum height used. The packed rectangles cannot
overlap, nor can they be rotated. Since the problem of finding an optim al packing is N P-hard [2],
several approxim ation algorithms have been studied [1,2,3,6,7,10]. Figure 1 illustrates possible
packings of a list of five pieces, with sizes as specified. Notice that, for a com puter scheduling
application, the horizontal dimension represents core while the vertical dimension represents time.

A two-dimensional bin packing algorithm is said to be on-line if, given a list of rectangles
L = (ph ...,pn), it

• packs the rectangles in the order given by L,

• packs each rectangle p { without looking ahead at any pj (J > i), and

• nevers moves a rectangle already packed.

* T h is a u th o r ’s w o r k w a s s u p p o r te d b y th e J o in t S e r v ic e s E le c tr o n ic s P r o g r a m (U .S . A r m y , U .S . N a v y a n d U .S .
A ir F o r c e) u n d e r C o n tr a c t D A A G - 2 9 - 7 8 - C - 0 0 1 6 .

- 2 -

M ost of the algorithms which have been studied are designed to pack lists already sorted by decreas
ing or increasing height or width. Thus, some simple preordering is done before the actual on-line
packing. For instance, the Split algorithm [7] is an on-line algorithm which requires that the list be
ordered by decreasing width. Next-Fit and First-Fit Decreasing Height [6] are on-line algorithms
which require that the list be first sorted by decreasing height. On the other hand, the Next-Fit and
First-Fit Shelf algorithms [3] are on-line and do not require that the list be preordered.

This paper examines lower bounds for the perform ance of on-line packing algorithms for both
non-preordered lists and for lists preordered by decreasing or increasing height or width. As a spe
cial case, lower bounds for packing squares in order of increasing or decreasing size are also investi
gated.

A b so lu te L o w e r B o u n d s

For any algorithm A, let A(L) denote the height of the packing of L produced by A and let
OPT(L) denote the height used by an optimal packing. As a measure of absolute worst-case perfor

m ance, we study the ratio ; i.e ., we consider bounds of the form A (L)^aO P T (L), where a

is some constant.

A piece (rectangle) p{ is said to have size (xj,y,) if p, has width x, and height yt. Pieces /?,• and
pj are said to be colateral at height h from the bottom of the bin in a packing if a horizontal line at
height h intersects both /?,• and pj. For instance, in Figure lb pieces p \, p2, and p$ are colateral at
height 5. If Li = (pt , . . . ,P i) and L2 = (p j ,...,/»/) are two lists, then we write L\L2 to denote their

concatenation (p^, . .„ p ^ .p j , . . . ,p jJ .

W hen presented with lists which are not preordered appropriately, most of the algorithms
which have been studied either are undefined or have perform ance which can be arbitrarily bad
relative to an optim al packing, i.e. for any a , there is a list L such that A{L)> clOPT{L). The two
exceptions are the Next-Fit and First-Fit Shelf algorithms of Baker and Schwartz [3]. Of these, the
First-Fit Shelf algorithm performs better, with a worst-case performance of at most 6.99 OPT(L).
W e give here a corresponding lower bound of about 2; every on-line algorithm packs some list so
badly that it comes arbitrarily close to doubling the height of an optimal packing. Thus, even for
unpreordered lists, there may be room for substantial improvement over the perform ance of the
First-Fit Shelf algorithm.

Th e o r e m 1: Let A be an on-line algorithm. For any 5 > 0 , there is a list L for which

A(L) > (2 - 8) OPT(L).

Proof: Let 8 and e be fixed, with 0 < e < 8 /4 , and suppose that the bin has width 3. W e obtain a
contradiction by assuming that, for every list L , A (1) ^ (2 - 8) OPT(L). In particular, we construct a
list L —L\L2L,T,LtiJ-5 (with each list L, consisting of a single piece pi) for which it cannot be the case
that

A (Li......Lk) ^ (2 - 8) OFT(Lh ...,L k)

for each k, l</fe<5. In other words,

f A(L{) A (L iL2) A{L\L2Lf) A (L iL2LjLf) A(L)] > 2 _ g

maX{ OPT(L!) ’ OPT(L!L2) ’ OPTtLiZ^a) ’ OPT(L1L2L3L4) ’ OPT(L) J

Let Li consist of a piece p i of size (1 ,1). The algorithm A packs p\ at some height hlt as
indicated in Figure 2a. Let the next piece, p2, have size. (3 ,/ii + e). Clearly, p2 must be placed
above p_ Let h2 denote the difference in height between the top of p \ and the bottom of p2_ If the
next piece, p2, has size (1, l + ̂ + Z^+e), then p 3 is too tall to fit below p2 and so A must place p2 at
some height h2 above the top of p2.

Assume that, for 1<& <3,

A(L!...L*) < 2 O PT(L!...!*)•

- 3 -

Letting yt denote the height of piece p t, we have:

OPTCLj)

A(L iL2)

o p t (i 1l 2)

h \+ y\

y\
< 2 hl < y l = l

h \+ y \+ h2+y2

y \+ y2

=*> hi + h2 < y \+ y2 =1 + Ai +€

==> h2 < 1 + e

A{L\L2L 2) _ h l + yl + h2+y2+h3+y3 ^

O P T (L i L 2L 3) > 2+> '3

==̂> /ii + /i2+/j3+};i < _y2+y3 = (/ti+e)+(l + /ti + /t2+e)

=*> h3 < h \+ 2e. < l + 2e

So if piece p 4 has size (3 , l + 2e), then y4 > max{/i1,A2,/i3}, and p 4 will be placed with its bottom at
some height /t4 above the top of p3. A piece p$ of size (l , l + /i1 + /i2+fc3+ /i4+ 2 e) would then have
to be placed above p 4, giving:

A(J^\L2L 3L liLs)

- hi+ yx+h2+y2+h3+y3+h4+y4+y5

— /ti + l + /t2 + y2+ /t3+ (l + /ti + /t2+ €) + /l4 + y4+ jy5

= ,y2+>’4+>'5+(/ ii + e) + (l + 2e) + (l + / i1 + / i2+/ i3+/ i4+ 2e)+ / i2—4«

= 2[y2+ y 4+ y 5J + /i2- 4 € .

N oting that OPT(L) = y2+yt+ys > 1 (see Figure 2b), we have

A (L) > 2 O P T (L)+ /t2- 4 e

> 2 O P T (L)-8

> (2 - 5) OPT(L)

thereby proving the theorem . □

The Bottom-Leftmost algorithm [2] and the Split algorithm [7] both have a worst case perfor
m ance of 3 OPT(L) for lists ordered by decreasing width. The following result shows that every
on-line algorithm which packs pieces ordered by decreasing width has a worst case bound of at least

(l + - ^) O P T (i) . *

Th e o r e m 2: For any on-line algorithm A , there is a list L ordered by decreasing width such that

A(L) > (1 + ^ y -) OPT(L) > 1.81 OPT(L).

Proof: Let e be fixed, 0 < e < -^ - . Consider the list of rectangles L=L iL2LyL4 where

Li consists of 8 pieces of size (y — 3 e ,l) ,

L2 consists of 6 pieces of size (1 + e, — 1 + V 6),

* T h is is a n im p r o v e m e n t o v e r S t o r e y s r e s u lt o f a p p r o x im a te ly 1 .7 8 [1 1] .

- 4 -

L 3 consists of 3 pieces of size (1 ,2),

L4 consists of 3 pieces of size (1 ,3).

N ote that L is ordered by decreasing width.

Figures 3a,b ,c ,d give optimal packings of lists L u L\L2, L\L2L 3, and L\L2L ^ = L , respec
tively, for a bin of width 12. Therefore,

O P T ^) = 1,

that

OPT(L iZ.2) = 2,

O P T (L 1L 2̂ 3) = V 6 ,

O PT(L1L2L 3L4) = OPT(L) = 3.

It is shown that any algorithm which packs each of the lists L \, L {L2, L \L2L 3 in such a way

/!(£.,) < (1 + ^) OPT(Z.,),

A{LxL i) < (1 + ^) O P T (i , i 2) ,

A(L\L-iLi) < (1 + ^) O P W 2Z.3),

V 6
will necessarily lead to a packing of list L\L2LJuA = L for which A(L) > (1 + - — -) O PT(L). In

other words, we assume that

max-
^ (¿ i) A{L\L2) A{L\L2L3) A (L)

[OFT(Li) ’ OPT(L!L2) ' O PT(L1L2L 3) ' OPT(L)
< 1 +

V 6

and then obtain a contradiction, thereby proving the theorem .

W e m ust first pack L\. Since O PT(L1) = l , it is clear that the bottom of every L { piece must
be strictly ^bglow height 1, or else we would violate our assumption that

A (LO < (1 + —~) O PT(Li). Thus, for sufficiently small 8 i> 0 , all L\ pieces are colateral in the bin

at height 1 — 8i (see Figure 4a). Since the bin is filled to a width of 1 2 -2 4 « at height l - S ^ the
total rem aining unfilled space is only 24«. None of the rem aining pieces of L will be able to fit
below height 1.

Now each piece of L2 must be placed with its bottom at or above height 1 and will therefore
reach a height of at least V ó in the bin. As above, in order to avoid violating

A{L iL2) < (l + - ~ ') O P T (L 1L2), the L2 pieces are colateral at height V 6 - 8 2 in the bin, for any suf

ficiently small 82 (see Figure 4b). In particular, it is not possible to pack two L2 pieces on top of
each other, because this would give

A{LxL2) l + 2 (—1 + V ó) V ó

OPT(L!L2) 2 3 *

Similarly, no L3 piece can be placed on top of an L2 piece because we would have

A{LxL2L 3) ^ ! + (- ! + V ó)+ 2 = V ó

O PT(L1L2L3) V ó 3 ‘

So at height V ó —82, the three L3 pieces are colateral with the L2 pieces, filling the bin to a width of
9 + ó e . Thus, it is not possible to pack all of the L4 pieces below height V ó . A t least one of them
m ust be above an L2 or an L 3 piece, which gives

A(L) ^ ! + (—! + V ó) + 3 _ V ó
OPT(L) ~ 3 3 ‘

- 5 -

Th is contradicts our assumption, proving the desired result. □

The First-Fit Decreasing Height algorithm [6] does somewhat better than the above algorithms
which use decreasing width; its perform ance is at most 2.7 OPT(L). The following theorem gives a

corresponding lower bound of y .

Th e o r e m 3: For any on-line algorithm A, there is a list L ordered by decreasing height such that

A (L) a | OPT(L).

Proof: Consider a bin of width 6. For C K eC -jy , let the list L=L \L2L 2 be defined as follows:

Li consists of 6 pieces of size (l - 2 e , l) ,

L2 consists of 6 pieces of size (2 + e , 1),

¿3 consists of 6 pieces of size (3 + e , l) .

Observing Figure 5a, it is easy to verify that

OPIXLi) = 1,

O PT(L1¿ 2) = 3,

O PT(L1L2¿ 3) = 6.

Assum e that

Í ^ (¿ i) ^ (¿ 1̂ 2) A (L)) 5_
m a X \ O P T (i i) ' O P T O . ’ O P T (£) J 3 '

Then, in order to avoid violating this assumption, the bottom of every L\ piece m ust be strictly
below height 1; i .e ., for sufficiently small 8 > 0 , all L\ pieces are colateral at height 1 - 8 . Since no
L 2 piece will fit below height 1, and yet all the L2 pieces must pack below height 5 (since
OPT(Li¿ 2) = 3), there is not enough height for four L2 pieces to fit above each other. Also, no
three pieces of L2 or L3 can be colateral. Thus, there is no way to leave space for an L3 piece below
height 4, and an algorithm A can do no better than to pack L2 as shown in Figure 5b. But this
forces all the pieces in L3 to be at or above height 4 and, since no two L3 pieces can be colateral,

A(L) > 10 = y OPT(L). □

Some algorithms perform better for squares than for rectangles. The Bottom -Leftm ost algo
rithm [2] and the Next-Fit and First-Fit Decreasing Height algorithms [6] pack squares in order of
decreasing size with perform ance no worse than 2 OPT(L). This perform ance is not bad in light of
the following theorem .

THEOREM 4: Let A be any on-line algorithm. For any S > 0 , there is a list L of squares ordered by
decreasing size such that

A(L) > (1 .5 -8) O PT(L).

Proof: This proof uses a list L consisting of two squares of size y + e and four squares of size y — e,

where 0 < e < y S . A n optimal packing into a bin of width 1, illustrated in Figure 6a, has height y .

For L ordered by decreasing size, the two y + e squares must be packed first. In order to achieve

A(L) < (1 .5—8) O PT(L), they would have to be colateral at height y + e —Si, for sufficiently small

83. Since this fills the bin to a width of y + 2e, there is not enough space left for a th ird piece at

height y + e — 8*. Thus, all four of the y — e squares must be placed with their bottom s at height at

least y + e. Because no four of the squares can be colateral, the best any on-line algorithm can do

- 6 -

is to have A (L) = l - € , as illustrated in Figure 6b. This gives

„ d i a , >
OPT(L)

□

Most of the algorithms thus far proposed have used lists ordered by decreasing width or
height. A n obvious alternative would be to pack pieces in order of increasing width or height. The
lower bound in this case is somewhat higher than the other lower bounds presented here for preor
dered lists.

Th e o r e m 5: For any on-line algorithm A , there is a list L ordered by both increasing width and
increasing height such that

A{L) > OPT(L) > 1.82 OPT(L).

Proof: Let e be fixed, 0 < e < For k - , consider the list of pieces L= LXL2L3L4, where

L \ consists of 4 pieces of size (1 - e , 1),
Jq

L2 consists of 2 pieces of size (1, —),

¿3 consists of 1 piece of size (l.Jfc—1),

L4 consists of 1 piece of size (1+€,&).

A n optim al packing of L into a bin of width 4 is illustrated in Figure 7a. Notice that

OPTCLO = 1,

O Y I(L xL2) = 2 ,

OFT(L,L2L ,) = 1 + 1

O P T (£) = k.

W e shall show that the assumption

max
' ¿ (¿ 1) M L iL2) A{LxL2L2) M L) Ì

OPTCLi) ’ OPT(LiL2) ’ OPT(L1L2L3) ’ OPT(L) J

1+V7
2

leads to a contradiction.

Since OPT(Z.1) =: 1, all L x pieces must be colateral at height 1 — Si for sufficiently small 5t . So
at height 1 —81, the bin is filled to a width of 4 - 4 e , which forces all rem aining pieces to have their
bottom s at height at least 1 (see Figure 7b). Thus, the L2 pieces must be colateral at height

k
l + - - 82, for sufficiently small 52; otherwise the above assumption would be violated, because the

k k
L2 pieces would reach height 1 + y + — , and

¿ (¿ ¿ 2) ^ 1+ 2 + 2 = l + ¿ > 1+V7
O P T C L ^) 2 2 2

In fact the L3 piece must also be colateral with the L2 pieces at height 1 + -—— 82, or else

2L 3) ^ 1 + 2 +(<: = = l + V?

O P T iL ^ L ,) k_ .k+2 2

2

But having the L2 and L3 pieces all colateral at height 1 + y • 82 means that there is not enough

- 7 -

w idth left to fit the L4 piece also at this height. This forces

1 + —+ /fc
A(L) > 2 = 3k+2 _ 1 + V 7

O PT(L) it 2k 2

So our assumption must be incorrect, which proves the desired result. □

Similarly, the lower bound for squares preordered by increasing size is higher than for squares
preordered by decreasing size.

Th e o r e m 6 : For any on-line algorithm A , and any 5 > 0 , there is a list L of squares ordered by
increasing size such that

A(L) > (i - S) O P T

Proof: For fixed e, 0 < e < m in {48, -g-}, consider the list of squares L = L iL2L3, where

L\ consists of 7 squares of size 1—€,

L 2 consists of 2 squares of size 2,

L 3 consists of 1 square of size 4.

Figure 9a illustrates an optim al packing of L into a bin of width 8 - € , and

OPTCLi) = 1—€,

O P T (I1I 2) = 2,

OPT(L) = 4.

Once again, we prove that

max
M L 1) M L \L2) A (L)] 1 _ ,

O P T (L i) ’ O P T (I 1L 2) ’ O P T (L) J 4

by assuming the contrary.

In order for < -7 » it must be the case that all Li pieces are colateral at height
O P T (L i) 4 F *

1 - € - 5 i , for sufficiently small 81. Thus each L2 square must have its bottom at height at least 1 - e .
For sufficiently small 82, the L2 pieces must be colateral at height 3 - e - 8 2, or else we would have

M L 1L2) (l - e) + 2+ 2 > 7 _

O PT(L1L2) 2 4 '

This m eans that the bin is filled to width 4 at height 3 - e - 8 2 (see Figure 8b), and so the square of
size 4 must be packed above an L2 square, giving

M L) ^ (3 —€)+ 4 _ ? - € 7 Q
OPT(L) 4 4 4 *

A s y m p to tic L o w e r B o u n d s

The lower bounds cited above are all bounds for absolute worst-case perform ance. If H , a ,
and (3 are constants such that, for every list L with pieces of height at most H ,
A (L) ^ a O PT(L)+{3, then a is called an asymptotic worst case bound. The absolute worst case
bound seems to be a better m easure of perform ance when the num ber of rectangles to be packed is
small, whereas the asymptotic bound is a better measure when the num ber of rectangles is large.

In this section we shall need the following definition. If horizontal lines are drawn across the
bin through the top and bottom of each piece, as illustrated in Figure 9, the region between two

- 8 -

successive horizontal lines is called a slice.

The results of Brown [4] and Liang [9] for one-dimensional bin packing can be in terpreted in
two dimensions to give the following result.

Th e o r e m 7: A ny on-line algorithm which packs rectangles in order of increasing or decreasing
height or increasing width has an asymptotic bound of at least 1.536.

The First-Fit Decreasing Height algorithm has an asymptotic worst-case bound of 1.7 [6],
which is not m uch worse than 1.536. If the widest rectangle packed has width at most 1Jm times the
bin width, where m is a positive integer greater than 1, then its asymptotic worst-case bound is
(m + l)/m [6]. Thus, the narrow er the pieces are with respect to the width of the bin, the better the
algorithm performs. N ote that for m = 2, the asymptotic bound is 1.5, which is better than the lower
bound of 1.536 for m = l .

For on-line algorithms without preordering, the asymptotic worst-case bound must also be at
least 1.536. By picking a param eter appropriately, the asymptotic perform ance of the First-Fit Shelf
algorithm can be m ade arbitrarily dose to 1.7 [3], again not m uch worse than the lower bound of
1.536.

Coffman [5] showed that for on-line algorithms which pack squares in order of decreasing
size, the asymptotic worst-case bound is at least 8/7. The Up-Down algorithm packs squares
ordered by decreasing size with an asymptotic worst-case bound of 1.25 [1], not much worse than
8/7. The following theorem generalizes Coffm an’s result based on the m aximum width of the
squares.

Th e o r e m 8: Consider any on-line algorithm A and a bin of width 1. Let m be a positive integer.
Let a and (3 be constants such that for every list L of squares of size at most 11m ordered by

decreasing size, A(L) ^ aO P T (L)+ (3 . If m > 1, then a s —---- ------ . If m = 1, then
mr—m + 1 '

Proof: Let m be an integer greater than 1, and let n be a positive integer divisible by m. Consider

the list L=L]L2, where L \ contains n squares of size — ^ - + me and L2 contains nm squares of size

— — e. N ote that OPTfLO = — (— ~ - + me) and O F IX L ^) < - + me). (See Figure
m + 1 m m + 1 m + 1
1 0 .)

L\ is packed first. Let hi be the total height of slices containing exactly one segment of a
square oi L \, and let h2 be the total height of slices with at least two segments of squares of L\ (see
Figure 9). Then

A{L{) s h\ + h2

> [n (- ~ Y + m e) - m / i 2]+ /i2

= —-----h W l—m)+m ne.
m + 1 '

Thus,

A (L ^ a O P T ^ O + P

m + 1
+ h2(l~ m) + mne ^ — (

1

m m + 1
+ m e) a + (3

h2

n

a e + -^— m e
n

m — 1

A slice containing k> 1 segments of squares of L x can contain at most m — k segments of
squares of L2. Therefore, after packing L\ and L2 the total height of pieces packed in the slices
composing h\ and h2 is at most {m-\- l)h \ + mh2. Since the total height of squares in L\ and L2 is

- 9 -

n (— ^ -- + m €)+ n m (— ~ — e), and at most m + 1 segm ents fit in a slice,
m + 1 m + 1

AiLiL-i) — /ti + /M ---- — €)—(m + l)h i — mh2]
v 1 u x 1 m + 1L v m+1 7 v m + 1 7 v 71 11

- ^2 n

Thus,

m + 1 m + 1

A(LxL2) ^ a O P T (I 1L2) + P

— ■——4 < a [— + nm e] + 0 .
m + 1 m + 1 m + 1

a >
— + l - - ^ (m + l)
_/z_____n_____

l + m (m + l)e

Substituting in for
h2

m a

a >

a >

m2- l m3— m

..A
m — 1

(m + 1)

™L---- A m2
m + 1 n

l + m (m + l)€

m2+m e

m3 —m + 1

m (m + 1)

Choosing n sufficiently large,

+ (m3—m+1)<

m

a >
m + 1

m3 — m + 1

m (m + 1)

-0(€) =
m'

m3—m + 1
- 0 (€)

Thus, for any 8 > 0 , a list of squares ordered by decreasing size, with each piece of size at most
m

can be found such that for any on-line algorithm A , A (L) < aO P T (L) + {3 implies
m3

a > —------------- 5.
mr — m + 1

N ote that for lists of squares of size at most 1, the asymptotic bound must be at least as large
23

as for lists of squares of size at most 1/2. Therefore, for m = l , a > —;---------= 8/7. □
23- 2 + l

The following result extends the lower bound of 1.536 for one-dim ensional on-line algorithms
[4,9] to two-dimensional algorithms which pack squares ordered by increasing size.

Th e o r e m 9: For any on-line algorithm, the asymptotic worst-case bound when packing squares
ordered by increasing size is at least 1.536.

Proof: It is sufficient to m ake some straightforward modifications to the proof of Brown [4] that in
the one-dim ensional case, every on-line algorithm has an asymptotic bound greater than 1.536.
Intuitively, wherever the one-dimensional proof requires summing over bins, this proof sums over
slices of varying heights.

Define the sequence of integers {an}, for «2:1, by

<2i = 2

an+l=l+IIa<
i=l

- 1 0 -

Define

Rt =

Ä a , - 1

Let 8 > 0

0 < e < min {

(1)

such thatand for any positive integer r ^ 3 , choose €
1 s

}. Let r be a multiple of (a , - ! - !) . Consider the list of
at(a , - l) (t - l) ’ t Rtßt-\

squares L = L xL2...L t, where L x consists of (at- l) r squares of size p \ =
1

consists of ra f+1_,- squares of size p-x =

OPT{LxL2...Lk)

1
af-l

at+i-i
•+€. Then, for

at+i-k~l
+ raf_ 1€.

— (/ — l)e and L,,

(2)

Let 5 be the set of all slices in the packing after L xL2...L t- x has been packed. A slice s e S in ter
sects mj(s) squares of size p {. For the set a , is defined to consist of those slices in S

which are at least half full and in which the smallest piece has size p t. Similarly, we define (3,- to be
those slices in S which are less than half full and in which the smallest piece has size p {. Let h (a {)
(A(0 ,)) represent the total height of slices in a,- (0 ,). For

and

Assume that

A {LxL2...Lk) = 2 (A (a ,)+ A (ß ,))
i=i

A (L xL2...L t) s r+ ^h icL i) .
i=i

A (L xL2...Lk)
max{— —— —----— < Rt- 8.

OPT (LxL2...Lk)

It follows from (3), (4), and (5) that for — 1,

and

O PT(L xL2.■ -Lk)(Rt - 8) > 2 (A (« i)+ * (ß i))
i=i

O PT(LxL2. . .Lt)(Rt—8) > r + 2 * (a i) .
i=i

Because there are ra f+1_, squares of size p t (2 < /< /) ,

1
[— *— + €]raf+1_, =

a t + l - i seS

(3)

(4)

(5)

(6)

(7)

(8)

where h(s) represents the height of slice s. Summing inequalities (6) and (7) and using (2) and (8)
gives

' •• 1
(* r - 8) 2 [— r + r a r - i e] ~ S ~ T T ra i+i-<i-------- + 6 1

¿ = 1 a t + \ - k I 1 = 2 a i f a t + l - i

> 2 2 [Ä(“ «)+Mß«)3 + r + 2 Ä(a /) “ 2 ~ i t 2 K + i -.(*)]*(*)•
¿=1 i = 1 i = l i = 2 a i J t5

(9)

By (1) and the choice of e <
tRtat-

•, the left hand side is less than

- 1 1 -

t t •

Rt l , ------- r - 2 - ^ 7
¿=ltff+l-* 1 (= 2 1

r — r.

Com bining (9) and (10)
r - l

2 2 ~ T T m'+ !-<•(>*) > 2 [0 '+ i) ^ (a f - ;) + X ß f-y)3.
stS i = 2 “ i 1 ; = 1

(10)

(11)

A t this point, it is possible to apply Brown’s original proof [4] which shows th at (11) leads to a con

tradiction for e < —r----- 7—— — . W e conclude that the assumption in (5) is incorrect, and the
af(af- l) (? - l)

asymptotic bound is at least R, > 1.536 for t ^ 5 . □

C o n c lu s io n s

The lower bounds show the extent to which it might be possible to improve on the current
packing algorithms. They suggest that decreasing height and width are likely to yield better algo
rithm s than increasing height or width.

In order to improve perform ance beyond the lower bounds presented here, it would be neces
sary either to violate the on-line conditions or to try other orderings of the lists. Sleator [8]
describes an algorithm which achieves an absolute worst case bound of 2.5 by first packing pieces at
least half as wide as the bin, and then packing the rem aining pieces in order of decreasing height.
Coffm an, Garey, Johnson and Tarjan [6] have investigated the Split-Fit algorithm which has an
asymptotic bound of 1.5. It groups pieces by width and then orders each group by decreasing
height, and is not on-line since it requires moving rectangles around. M ore recently, Baker, Brown
and Katseff [1] have proposed the Up-Down algorithm which groups pieces by width and orders
each group by decreasing height or width, but is on-line and has an asymptotic bound of 1.25. By
the result of Brown cited earlier, it is substantially better than any on-line algorithm which packs
solely by increasing or decreasing height or by increasing width.

N ote that the proofs of Theorem s 3 and 4 use pieces which are all of the same height. Thus,
these results also apply to algorithms for one-dimensional bin packing. Theorem s 3 and 4 give abso
lute lower bounds of 5/3 and 3/2 for lists ordered by increasing size and decreasing size, respectively.
Rem oving the epsilons from the^ heights in the proof of Theorem 8 gives an asymptotic one

dimensional lower bound of —r - ^ ------ for pieces of size at most Um ordered by decreasing size.
mJ—m + l

R e fe r e n c e s

[1] B.S. Baker, D .J. Brown, and H .P . Katseff, A 5/4 A lgorithm for Two-Dim ensional Bin Pack
ing, in preparation.

[2] B.S. Baker, E .G . Coffman, Jr., and R .L . Rivest, Orthogonal Packings in Two Dimensions,
SIAM J . Comp, to appear.

[3] B.S. Baker and J.S. Schwarz, Shelf Algorithms for Two-Dimensional Packing Problems,
Proceedings of the 1979 Conference on Inform ation Sciences and Systems, Baltimore (1979).

[4] D .J. Brown, On-Line One-Dimensional Bin Packing Algorithms, technical report ACT-19,
Coordinated Science Laboratory, University of Illinois (1979).

[5] E .G . Coffman, Jr., personal comm unication (1978).

[6] E .G . Coffman, M .R . Garey, D.S. Johnson and R .E . T arjan, Perform ance Bounds for
Level-Oriented Two-Dimensional Packing Algorithms, to appear in SIAM J. Comp.

[7] I. Golan, Orthogonal O riented Algorithms for Packing in Two Dimensions, draft (1978).

[8] D.S. Johnson, A . Demers, J.D . Ullman, M .R . Garey, and R .L . G raham , W orst-Case Perfor
m ance Bounds for Simple One-Dimensional Packing Algorithms, SIAM J. Comp 3,4 (1974),
299-326.

[9] F .M . Liang, A Lower Bound for On-line Bin Packing, Info. Proc. Letters 10,2 (1980), 76-79.

- 12 -

[10] D .D .K .D .B . Sleator, A 2.5 Times Optimal A lgorithm for Packing in Two Dimensions, Info.
Proc. Letters 10,1 (1980), 37-40.

[11] J.A . Storer, personal communication.

-13-

1 2 -

1 0 -

■■ P

-4- - - - - H

8 10 12 14

(a) One possible packing of list L.

4

2 ■■

-4-----4-

2

-4- - - - 4- - - - 1- - - - 1- - - - 4" -4- - - - » -

4 6 8 10 12 14

(b) An optimal packing of list L.

Figure 1. Packing list L =

with width x.:
l

and height y\:

(P 1 >P2 »P3 JP4 JP 5)

3 8 11 4 1

6 4 4 3 5

- 1 4 -

(a) A packing of L by an algorithm A.

(b) An optimal packing of L.

Figure 2. Packing list L of Theorem 1.

-15-

--------------------------- ----------- ---------- ---------------------

-i------- — i- - - - - - - - - - -J - - - - - - - - - - - 1— 1- 1— 1- - - - - - - - - - L*----------- m --------

2 4 6 8 10 12

(a) An optimal packing of L-̂ .

(b) An optimal packing of

(c) An optimal packing of L^L^L^.

(d) An optimal packing of = L.

Figure 3. Optimal packings of sub lists in Theorem 2.

-16-

-*-------- ,------- -------- 1— 1--------kJ------ 1— — i--------

4 6 8 10 12

(a) A packing of L^.

(b) A packing of L by an algorithm A.

Figure 4. Packing list L of Theorem 2.

-17-

(a) An optimal packing of L.

(b) A packing of L by an algorithm A.

Figure 5. Packing list L of Theorem 3.

- 18-

(a) An optimal packing of L.

(b) A packing of L by an algorithm A.

Figure 6. Packing list L of Theorem 4.

■

-19-

(a) An optimal packing of L.

(b) A packing of L by an algorithm A.

Figure 7. Packing list L of Theorem 5.

—

- 2 0 -

(a) An optimal packing of L.

(b) A packing of L by an algorithm A.

Figure 8. Packing list L of Theorem 6.

- 21 -

Figure 9. Division of a packing into slices.

- 2 2 -

2/3

1/3

4/3

1

2/3

1/3

Figure

+ 46

+ 26

+ 26

+• 36

+ €

+ 26

1/3 2/3 1

(a) An optimal packing of L^.

z y / / /

' Z Z Z Z 7

1/3 2/3

(b) An optimal packing of L-̂ L̂ .

10. Optimal packings of sublists in Theorem 8,

for m = 2 and n = 4.

