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Abstract. We establish lower bounds on the complexity of orthogonal range reporting in the static case. 
Given a collection of n points in d-space and a box [a,, b,] x . x [ad, bd], report every point whose 
ith coordinate lies in [a,, biJ, for each i = 1, . . . , d. The collection of points is fixed once and for all 
and can be preprocessed. The box, on the other hand, constitutes a query that must be answered on- 
line. It is shown that on a pointer machine a query time of O(k + polylog(n)), where k is the number 
of points to be reported, can only be achieved at the expense of fl(n(logn/loglogn)d-‘) storage. 
Interestingly, these bounds are optimal in the pointer machine model, but they can be improved (ever 
so slightly) on a random access machine. In a companion paper, we address the related problem of 
adding up weights assigned to the points in the query box. 

Categories and Subject Descriptors: F.2.2 [Analysis of Algorithms and Problem Complexity]: Nonnu- 
merical Algorithms and Problems--sorting and searching; E. 1 [Data]: Data Structures 

General Terms: Algorithms, Theory 

1. Introduction 

Orthogonal range searching [l-5, 8-10, 12- 141 is a direct generalization of list 
searching. Let P = (p,, . . . , pnj be a set of rz points in d-space; assume that each 
point is given by its coordinates in a fixed Cartesian system of reference. Given a 
queryq= [a,, b,] X ++. X [ad, bd], report all the points in P n q. To motivate this 
problem, the classical scenario is to regard the points of P as the employees of a 
certain company. The coordinates of the points are important attributes of the 
employees, such as seniority, age, salary, traveling assignments, legal status, etc. 
Crucial to the well functioning of the company is the ability to provide fast answers 
to questions of the form: “Which senior-level employees are less than x years of 
age, make more than y dollars a year, have been abroad in the last z months, have 
never taken the Fifth Amendment, etc.?” 

For obvious reasons, this is called orthogonal range searching in report-mode, or 
more simply, orthogonal range reporting. To put this problem in perspective, let 
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us define a d-range as the Cartesian product of d closed intervals over the real line. 
Orthogonal range reporting refers to the task of reporting all the points of P fl q, 
given an arbitrary query d-range q. Evaluating the size of P n q is called orthogonal 
range counting. Both problems can be put under the same umbrella by associating 
a weight w(p) to each point p E P. Weights are chosen in a suitable algebraic 
structure (9 , +), such as a group or a semigroup. Given a query 
d-range q, orthogonal range searching is the problem of computing the sum 
c pEPnq w(p). The group (z, +) can be used for range counting, while the semigroup 
(2’, U) is suitable for the reporting version of the problem. The generality of range 
searching has other benefits. For example, given n points in 3-space, computing 
the highest point over a query rectangular region can be regarded as a two- 
dimensional range-searching problem. 

From a complexity viewpoint, range reporting must be studied separately be- 
cause, as opposed to, say, range counting, the query time is a function not only of 
the input size n, but also of the output size. The most efficient data structures to 
date capitalize on the fact that if many points are to be reported, the query time 
will be high, anyway, so the search component of the query-answering process does 
not need to be all that efftcient; this is the idea offiltering search [3], which is 
behind many algorithms for multidimensional searching. To introduce our main 
result, let us consider the case d = 2. As was shown in [3], there exists a data 
structure of size O(n log n/log log n)’ that guarantees a query time of O(k + log n), 
where k is the number of points to be reported. The algorithm operates on a pointer 
machine [ 111, which means that no address calculations are required. The factor 
log n/loglog n might look a little odd, especially in light of the fact that it can be 
removed in many variants of the problem. Indeed, there exist data structures of 
size O(n) and query time O(k +logn) if (i) the query rectangle is grounded, 
meaning that it is required to be in contact with a fixed line [9], or (ii) its aspect- 
ratio is fixed [5], or (iii) the query is a grounded trapezoid [6]. Again, in all cases, 
those linear-size solutions work on a pointer machine. Adding to the suspicion that 
the factor log n/log log n can be removed (or at least lowered) on a pointer machine 
is the fact that it can on a random access machine (RAM). If address calculations 
are allowed, then the storage requirement can be reduced to O(nlog’n), for any 
fixed t > 0 [4]. 

Putting these questions to rest, we prove the rather surprising result that if a 
query time of O(k + logn) is desired then the storage must be O(nlogn/loglogn). 
More generally, we show that in d dimensions, a query time of O(k + log’n), for 
any constant c, can only be achieved at the expense of R(n(logn/loglogn)‘-‘) 
storage, which is optimal. This comes in sharp contrast with the random access 
machine model, in which a query time of O(k + logd-‘n) can be achieved with 
only O(n(logn)“2+‘) storage [4]. These results show that orthogonal range reporting 
is inherently more difficult on a pointer machine than on a RAM. This is a rare 
separation result that sheds light on two of the most common models of sequential 
computation. 

The lower-bound proof is based entirely on control-flow considerations and relies 
on syntactic, rather than semantic, properties of pointer machine-based data 
structures. We believe that the underlying idea can be used for many other 
problems. As a starter, we recall a few basic facts about pointer machines and prove 
a result of general interest concerning the complexity of navigating through a 

’ All logarithms in this paper are taken to the base 2, unless specified otherwise. 



202 BERNARD CHAZELLE 

pointer-based data structure (Section 2). In two dimensions, the desired lower 
bound can be established by constructive means (Section 3). Things become a little 
more complicated in higher dimensions, so we turn to probabilistic arguments 
to prove the existence of “hard” inputs (Section 4). The issue of matching 
upper bounds is addressed in Section 5. We close with concluding remarks 
in Section 6. 

2. The Complexity of Navigation on a Pointer Machine 
We assume that the reader is familiar with the notion of a pointer machine, as 
defined in [ 1 I]. As long as we are only concerned with lower bounds, we have the 
freedom to increase the power of our machine at will. This is a good idea aimed at 
eliminating unessential particulars that might get in the way of a simple proof. The 
memory of a pointer machine is an unbounded collection of registers. Each register 
is a record with a fixed number of data and pointer fields. In this way, the memory 
can be modeled as a directed graph with bounded outdegree. At the cost of 
increasing the storage requirement by a constant multiplicative factor, we can 
always reduce the outdegree of each node of the graph to 0, 1, or 2 (why?). 

Let P= (p,, . . . , p,,) be a set of IZ points in Ed. A data structure for orthogonal 
range reporting is a digraph G = (V, E) with a source u. Each node u is assigned 
an integer, label(u), between 0 and n. If i = label(u) is not 0, the node u is associated 
with point pi. Note that many nodes can be labeled the same way. Given a query 
q, the answering algorithm begins a traversal of G at the source u. We place only 
two restrictions on the algorithm. To begin with, no node (other than the source) 
can be visited if a node pointing to it has not already been visited. Furthermore, 
completion cannot occur until each label i (pi E q) has been encountered at 
least once. During its execution, the algorithm is allowed to modify data and 
address fields as it visits them. It can also add new nodes to G by requesting 
them from a pool of free nodes with blank fields, the freelist. Let N(U) denote 
the set 1 w ] (u, w) E E ). For our purposes, the algorithm executes a program made 
up of the following instructions. Initially, W = (g): 

(i) Pick any u E Wand add N(u) to W. 
(ii) Request a new node u from the freelist and add it to IV. Initialize N(u) to 0. 

(iii) Pick any u, w E Wand, if l N(u)] < 2, add (u, w) to E (and u or w to I’, if 
necessary). 

(iv) Pick any u, w E Wand remove the edge (u, w) from E if it exists. 

Let W(q) denote the set W at termination. Correctness is ensured by the require- 
ment 

(i 1 pi E q) !Z (label(u) I U E W). 

This means that the query-answering algorithm must reach at least one rep- 
resentative node for every point to be reported. The query time is measured 
as I Wq)l. 

Let us make a few comments about this framework. Our first remark is that the 
model is more powerful than the standard pointer machine. (Once again, recall 
that this is a good thing in the context of lower bounds.) The “pick any” feature 
cannot be implemented in constant time on a real computer. After a while, W can 
grow to be very big, and “pick any” offers the full power of nondeterminism. The 
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fact that we add all of N(u) into IV, as opposed to any particular node is 
inconsequential, considering that 1 N(u) 1 5 2. The labeling scheme has a natural 
interpretation. Nodes labeled 0 are used internally by the data structure. The other 
nodes are used both internally but also as means of output. Suppose that pi E q. 
Then, the model requires the algorithm to reach at least one node labeled i. This 
assumption might seem unnecessarily exclusive: After all, why can’t we simply 
require that i be computed rather than discovered? Certainly, the output should 
give us direct access to the points of P rl q. However, the mere knowledge of their 
indices does not fulfill this requirement on a pointer machine. This is perhaps 
where the difference between a RAM and a pointer machine shines in its true light. 
If pi lies in q, what we want is either pi itself or a pointer to pi, but not just the 
integer i. In the model described above, we can store pi inside each record labeled 
i. If the coordinates of pi are huge or are defined implicitly, then we might want to 
keep P in a table and add a pointer from each record labeled i to the entry of the 
table where pi is stored. This model describes all the pointer machine data structures 
proposed in the literature for solving range-searching problems. 

Let a and b be two positive reals. We say that the data structure G = (I’, E) for 
P is (a, b)-effective if, for any query d-range q, we have 1 W(q) 1 5 a( I P II q I + 
logbn). This means that the query time is linear in the output size, aside from a 
polylogarithmic overhead. To establish our lower bound, intuitively, we want to 
argue that nodes labeled after the points of P rl q cannot be too much spread out 
in the graph; otherwise, it would be impossible to get to them in linear time. Our 
goal is to produce a large set of queries, no two of which share too many points of 
P. In this way, we are able to argue that the graph has many subsets of nodes with 
the following properties: (i) each subset is fairly compact (vertices are close to each 
other), and (ii) no two subsets share too many edges. This will imply that the graph 
has many edges. Now, by virtue of the bounded outdegree condition, this means 
that the graph has many vertices, and therefore the need for storage is large. Let 
s= (41, --., q5.3 be a set of queries and let CY be a positive real. We say that S 
is cY-favorable if, for each i, j (i Z j), 

(i) 1 P fl qi I 2 1og”n. 
(ii) 1 P n qi n qj I 5 1. 

The following result is the key to the lower-bound proof. It asserts that the storage 
requirement is at least proportional to the size of any b-favorable set of queries. 
The lemma suggests the remainder of the proof: finding large favorable sets of 
queries. Interestingly, the investigation of favorable sets is purely geometric, and 
does not involve the model of computation at all. 

LEMMA 2.1. Let a and b be two positive reals. If the data structure G is (a, b)- 
eflective and the set of queries S is b-favorable, then I VI > I S I (logbn)/2’6”+4, for 
n large enough. 

PROOF. We define the distance p(u, w) between two nodes u and w of G as the 
number of edges on the shortest directed path from u to w. If there is no such path, 
p(u, w) = +a~. The distance p(u, w) has serious deficiencies: It is not symmetric 
and it is not always finite. We correct for these flaws by introducing the new 
distance d(u, w) = min( p(z, u) + p(z, w) I z E V]. Note that because of the source 
g the new distance is always finite. Given a query q we define orbit(q) as the set 
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of pairs (u, w) E Vz such that 

(i) lUbel(U) E (i 1 pi E q}, 
(ii) I&el(+V) E {i 1 pi E q), 

(iii) label(u) < lubel( w), 
(iv) d(v, w) < 8~. 

BERNARD CHAZELLE 

Note that the pair (u, w) need not be an edge of G. The various conditions express 
the fact that (i)-(ii) both u and w can be used for the output, (iii) the pair is neither 
trivial nor repeated, (iv) u and w are within a constant distance of each other. 

Given a query q, consider the graph G before the algorithm begins. There exists 
at least one path from the source c to every node of W(q). This implies the 
existence of a directed tree T rooted at the source, whose node-set is W(q) (the 
reader will forgive us for leaving these facts as exercises). The tree T is called 
directed because all its edges are oriented in the same direction (pointing away 
from the root). Let uI, u2, . . . , urn be the sequence of nodes of the tree T 
corresponding to a first-order traversal. For each index in (i 1 Pi E q ), mark exactly 
one node uj such that lubeI = i. Let ~1, ~2, . . . , w/ be the subsequence of 
marked Q’S. Note that m = 1 W(q) I and E’ = I P n q I. Next, we define a distance 
6(u, w) over the tree Tin exactly the same way we defined d(u, w) over G. If u and 
w belong to T, it is clear that 

d(u, w) 5 6(u, w) < +m. (1) 

The distance 6 trivially satisfies the triangular inequality. Therefore 

C a(Wi, Wi+l) 5 C &(Ui, vi+,). (2) 
I sic/ lzsi-an 

The distance 6(Ui, ui+l) measures the number of edges on the path(s) from z to Ui 
and u. I+1, where z is the nearest common ancestor of ui and Ui+ I in T. Because of 
the first-order labeling, the sum C lai<m 6(ui, ui+ ,) counts each edge of T at most 
twice. Therefore, 

C &(Ui, Ui+l) 5 2(l w(q)I - 1). (3) 
I5iCrn 

Since G is (a, b)-effective, we have ( W(q) I I a( I P n q I + logbn). Assume now 
that I P n q I L logbn. We derive 

I Wq)l 5 2alPf7 41. (4) 

Combining (l)-(4), we find 

C d(wi, Wi+l)c4QIpn 41, Isi</ 

andhence, I(ild(wi,wi+l)Z8U}I < IPnq(/2.Since!= IPnq(,wefindthat 

I(iId(wi, W;+I)<QII > 2 
lpnqi _ 1 - (5) 

LetS={q,,..., qs] be a b-favorable set of queries. Relation (5) holds for each qi. 
Moreover, because no two points of P can belong to two distinct queries, the pairs 
( wi, Wi+, ) are all distinct. Since I P n q I goes to infinity with n, 

U orbit = C I orbit( > i lSllogbn, 
I5iSS Isis.7 

(6) 



Orthogonal Range Searching: I. Reporting 205 

for n large enough. Because of the bounded outdegree condition ( 1 N(u) 1 5 2, for 
each u E V), we have 

Il(u, w) E V214u, w) < 8011 
5 1 ((z, u, w) E V3 Ip(z, u) < 8a and p(z, w) < 8a) I I I V/12’6a+2. 

From (6) it follows that 1 VI > 1 S 1 (logbn)/2’6”+4, which completes the proof. 0 

Lemma 2.1 suggests an obvious line of attack for proving lower bounds on the 
size of the data structure. Since V is already a lower bound, it suffices to exhibit a 
large b-favorable set of queries. In the two-dimensional case (Section 3), we are 
able to define the points and queries by constructive means. In higher dimensions 
(Section 4), we can still define the queries explicitly, but we must rely on probabi- 
listic arguments to produce a hard set of points. 

3. Orthogonal Range Reporting in the Planar Case 

Although this section is superseded by the next one, we include it because it gives 
us a glimpse of what “hard” inputs look like. We define the points first; then we 
specify the queries and show that they form a b-favorable set. Let m = L210gbpl 
and X = L(logp)/( 1 + bloglogp)l, where p is an integer large enough so that m, 
X > 4. We define n as rn’.’ Each query will contain exactly m points. The defini- 
tion of the queries will be recursive, which explains why the choice of n as a 
power of m is particularly appropriate. For p large enough, it is easy to show that 
m 2 logbn and 

Xr 
L 

log n 
1 + bloglogn I ’ 

For any integer i (0 5 i < n) let pm(i) be the integer obtained by writing i in 
base m over X bits and reversing the digits. If i = ml m2 . - . mA, we have p*(i) = 
mA .-- m2m,. We now define the set of points P as ((p,(i), i)l 0 5 i < n). This 
definition generalizes the bit-reversal permutation. Figure 1 illustrates the case 
n = 33. Keep in mind that the point-set is two-dimensional: Edges have been drawn 
to exhibit the structure of the point system. 

We are now ready to define the queries. Going back to Figure 1, we notice that 
the cube has three principal 3-point sequences: (a, b, c), (a, d, e), and (a, f; g). 
Each sequence can be enclosed tightly by a query rectangle. Since we have 9 
translates of each sequence, we obtain a total of 27 queries. In general, we have 
Am’-’ queries. To see this, think of a tree T that encodes the x-coordinates of P in 
base m. Each internal node of T has m children, labeled 0, 1, . . . , m - 1 from left 
to right. The tree has depth X. The root of T is associated with P as a whole. A 
node u with ancestors labeled ml, m2, . . . , m,, from the root down, maps to the 
subset of points whose x-coordinates have the prefix m1m2 . - - m, in base m. For 
each internal node u, sort its associated set of points by y-coordinates and break it 
up into groups of size m: Each group can be enclosed by a query rectangle that 
does not contain any other point. Since a node with r ancestors has n/m’ associated 

’ Restricting n to be a power of m should not be viewed as a weakness of the argument. For one thing, 
the proof can be generalized to any n. Also, if we are concerned with lower bounds, we should be 
(reasonably) happy as long as we have an infinite number of input sizes for which the lower bound 
holds. But there is a third, more compelling reason: the results of the next section will supersede the 
results of this one, so why bother? 
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points, this will give us a total of 

C 
Olr<X 

(# nodes at depth r) x c = $ 

queries. It is immediate to check that, for n large enough, the set of queries is 
b-favorable. From Lemma 2.1 and the fact that m = O(logbn), we conclude 
that a query time of 0( ] P n q ] + polylog(n)) can be achieved only at a cost of 
O(n log n/log log n) storage. It follows from [3] that this lower bound is tight on a 
pointer machine. 

THEOREM 3.1. Given n points in E2 there exists a data structure of size 
O(n lognlloglogn) that allows us to answer any orthogonal range reporting query 
in time O(k + logn), where k is the number of points to be reported. The algorithm 
is optimal on a pointer machine. 
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4. Orthogonal Range Reporting in Higher Dimensions 

We now investigate the complexity of the problem in Ed (d > 1). We use the 
notation Ad to denote the Lebesgue measure in Ed. To begin with, we construct a 
set of candidate queries by interpreting the discrete criteria of b-favorability in 
“continuous” terms. In a second stage, we show that throwing in points at random 
makes a large subset of our queries b-favorable with high probability. To simplify 
the notation, we introduce the following parameters: 

I 
410gbn ‘Id (y= ~ ( ) n 

1 
’ = (logn)b+d 

4 a=- 
n logdn * 

The queries defined in Section 3 for the two-dimensional case can be regarded as 
the cells of X lattices; each lattice corresponds to a distinct level in the underlying 
tree T. The nice total order among lattices will be lost in dimension d > 2, so we 
will use a multi-index z E .Zd to refer to any particular lattice. The index z is a 
point on the discrete hyperplane 

y= (z,, . . ..zd)E% d/,&,zk=o}* 
Within a given lattice, a particular cell will be referred to by the integer coordinates 
of one of its corners, expressed as a vectorj E Nd. For each z = (zl, . . . , zd) E 7 
and j = (jr, . . . , jd) E A’“‘, let u(z; j) denote the d-range 

Our set of candidate queries is defined as 

F = (u(z; j) C [0, lIdI (z, j) E 7 x Nd). 

The elements of .Y are called cells. They all have the same (Lebesgue) measure, 
equal to ad. We need three technical results. Lemma 4.1 shows that two cells 
cannot overlap too much. This is the continuous equivalent of condition (ii) of 
favorable sets, that is, 1 P I-I qi rl qj ] 5 1. Lemma 4.2 asserts that the set of candidate 
queries is not too small. Finally, Lemma 4.3 states that only a few cells can intersect 
in one point. This will be useful for a later mop-up operation. The idea is that 
some of the points thrown at random will be judged bad and thus ignored. The 
lemma says that a single bad point cannot affect too many candidate queries. 

LEMMA 4.1. For any n large enough, the intersection of two distinct cells has 
measure at most 6. 

PROOF. Let c = U(Z; j) and c’ = u(z’ ; j’ ) be two distinct cells. If z = z’, then 
j # j ’ and obviously Ad (c rl c’ ) = 0. If now z # z’, we can assume without loss of 
generality that zI # z;, with, say, zI < z;. Let ck (resp., CL) be the projection 
of c (resp., c’) on the &-axis (1 I k 5 d). For yt large enough, we have the 
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following derivations 

therefore, hd(c rl c’) I pad. 0 

LEMMA 4.2. For any n large enough, we have 

’ .I71 ’ (b + d)4d(loglogn)d-’ ’ 

PROOF. We easily check that CXP’~ 5 $, for any zk E X such that 

1 
zk Z b+d (7) 

This shows that, for any z = (zr, . . . , zd) E 7 such that each zk satisfies (7), the 
number of cells of the form u(z;j) is at least 

The right-hand side of (7) is negative for n large enough. This gives us the following 
lower bound on the number of z E Y whose coordinates zk’s satisfy (7): 

log n 
dloglogn 

- e-z!!! - ;)J + 1)d-l > (,,(, :Odg;;oglogn)d-l. 
loglogn 

This implies that the number of cells in 5 exceeds 

n(logn)d-b-’ 
22d+‘dd-1(b + d)d-l(loglogn)d-l ’ 

from which the lemma follows. 0 

LEMMA 4.3. For any n large enough, no point can lie in the interior of more 
than (d log n/log log n)d-’ cells of z?. 

PROOF. Supposethatu(z;j)C[O, l]‘,forsomez=(z,,...,zd)EXdandjE 
Nd. Then, for n large enough, zk exceeds -3 log n/log log n (1 5 k I d ). The lemma 
follows from the fact that since z E 7 we have zk < (d - 1)/2 log n/log log n. 0 

The first criterion of b-favorability concerns the fact that a query should contain 
at least logbn points of P. We strengthen this requirement a little to shield us against 
the later removal of bad points. We say that a cell is heavy if its interior contains 
more than 210gbn points of P. As usual, P denotes the set of n input points. A 
random set of points in a compact set K is a shorthand for a set of points whose 
elements have been chosen randomly and independently from the uniform distri- 
bution in K. 

LEMMA 4.4. Let P be a random set of n points in [0, lld. If n is large enough, 
then with probability greater than 1 - 2/lo$n, more than half the cells of g are 
heavy. 
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PROOF. Let c be an arbitrary cell of ZY and let x be the number of points of 
P in the interior of c. We also define P as the probability that c is heavy (i.e., 
Pr(x > 210gbn)). The mean and variance of x are, respectively, n&(c) and 
nXd(c)( 1 - Ad(c)). Using Chebyshev’s inequality [7], we derive 

nAd(c)(l - Ad(c)) 
’ - T 5 (nXd(c) - 210gbn)2 ’ 

and hence ?r > 1 - l/logbn. Let II be the probability that more than half the cells 
of 5 are heavy. Since the expected number of heavy cells is equal to 7r ] .V 1, a 
straightforward Markov-type argument gives us 

( ) 1 - & 1g1-c aIF1 5 $1 - rI)l~I + ILIZ], 

which completes the proof. 0 

To satisfy the second favorability criterion, we make sure that no two points are 
too close to each other. The underlying metric is not the Euclidean metric. We 
define the range-distance between two points (xl, . . . , xd) and ( yI , . . . , yd ) in Ed 
to be the measure of the smallest d-range containing them, that is, HI =,&d I & - 
yk I. We say that a point p E P is stranded if its range-distance to any point of 
P\(p) exceeds 6. Finally, we say that P is p-difuse (0 I p 5 1) if it contains at 
least pn stranded points. 

LEMMA 4.5. Let p = 1 - I/&$. For any n large enough, a random set 
of n points in [0, lid is p-diffuse with probability greater than 1 - 2d+3/ sn. 

PROOF. Let L(d, y) denote the Lebesgue measure of {(x,, . . . , &) E 
[0, lid I nlSkSd & I y), with 0 < y < 1. We have the recurrence relation 
L(0, y) = 0 and, for d 2 1, 

L(d,y)=y+l’L(d- $)dx. 

Let M(d, y) = L(d, y) - L(d - 1, y), for d 2 1. We derive the simpler recurrence: 
M(1, y)= yand 

M(d,y)=l’M(d- l,f)dx, 

for d > 1. This gives 

M(d,y)=y~livM(d- l,;)dx, 

hence, 

MC4 v) = ~"y~--f+2x, x ..'i x xd-, dXd-, ... dx,. 

It is elementary to evaluate this integral directly. This leads to 
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assuming that O! = 1. Since l/6 goes to infinity with n, we have, for y1 large enough, 

L(d 
> 

@ < (-1)“‘d~ 
(d - I)! 

(In a)d-l < 26(log n)d-’ ; 

hence, 

8 
L(d, S) < - 

nlogn * 

Consider the locus of points in [0, lld whose range-distance to a given point of 
[0, lld is at most 6. Let V be the largest measure of such a set. It is immediate that 

V 5 2%(d, 8). (9) 

Let Y be the expected number of stranded points in P and let ir be the probability 
that P is p-diffuse. Obviously, 

v I (1 - 7r)pvl + 7ry1. (10) 

The probability that a given point of P is stranded exceeds 1 - nI’/; therefore, 
v > n( 1 - n I’). Combining this inequality with (8)-( 10) completes the proof. 0 

Lemmas 4.4 and 4.5 imply that with probability 1 - o( 1) a random pick P of n 
points is p-diffuse and makes more than half the cells of 5 heavy. Move outside of 
[0, lid every point of P that is not stranded, and let T be the cells of B whose 
interiors contain at least logbn points after the moving. 

LEMMA 4.6. For n large enough, we have 

n(logn)d-b-’ 
” ’ ’ (b + d)5d(logfogn)d-’ . 

PROOF. Mark each heavy cell of ZY that, prior to the moving, has at 
least half of its interior points stranded. Since P is p-diffuse, Lemma 4.3 
shows that the number of heavy cells left unmarked cannot exceed 
dd-‘,(logn)d-b-3’2/(loglogrz)d-‘, for n large enough. Because more than half the 
cells are heavy, the proof follows from Lemma 4.2. Cl 

The cells of I’ satisfy the first criterion of b-favorability. Lemma 4.1 justifies the 
notion of a stranded point. No two cells of I can contain the same pair of points 
of P (after the moving). We derive that I forms a b-favorable set of queries. The 
lower bound is now within reach. From Lemmas 2.1 and 4.6, we conclude that a 
query time of @output size + polylog(n)) can only be achieved at the expense of 
O(n(logn/loglog n)d-‘) storage. Although the set of input points is not random 
(because of the moving), it is not difficult to see how to modify the proof so that 
the lower bound holds for a random set P. This means that the lower bound is not 
confined to some pathological configuration of points, but applies to almost any 
point system. Another remark concerns the fact that orthogonal range reporting is 
defined over the reals (points of Ed). It is easy to see, however, that the proof 
technique discriminates among point sets only by means of coordinate compari- 
sons. This easily implies that hard inputs can be defined with integer coordinates 
over O(log n) bits. 

5. Upper Bounds 

Assume that our pointer machine has only O(n(logn/loglogn)d-‘) storage. How 
fast can we solve orthogonal range reporting in d-space? We already know 
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the answer in the case where d = 2 (Theorem 3.1). In [lo, pp. 471, Mehlhorn 
gives a general method for answering orthogonal range queries in time 
O(k + (2”/n~)~-‘log~n), where k is the number of points to be reported, using a 
data structure of size O(n(logn)d-‘/md-‘). The quantity m is a slack parameter 
that we can adjust at will. The assignment m = Itloglogn/(d - l)l, for any fixed 
c > 0, guarantees that the space requirement stays within the desired bounds. The 
query time is O(k + logd+‘n). 

As it turns out, Mehlhorn’s data structure was designed to support dynamic 
operations, and it can be slimmed down a little if it is to be used in a static 
environment. For the sake of completeness, we briefly sketch how this works. We 
assume that the reader is familiar with the notion of a range tree [ 11. We briefly 
recall the definition. Let ql , . . . , q,, be a set of n points in the plane. We can always 
relabel the points so that ql , . . . , q,, appear in order of nondecreasing x-coordinates 
(breaking ties arbitrarily). Let T be a binary tree whose leaves are associated 
bijectively with ql, . . . , q,,, from left to right. For each node u of the tree we define 
the node-set N(u) as the set of points associated with the leaves descending from u. 
The root has (q,, . . . , qnJ as node-set, while each leaf has a singleton. There is 
more to the story of range trees, but this is enough for our purposes. 

Returning now to orthogonal range reporting, we build a range tree with respect 
to the set ( p,, p2, . . . , pn) along the first dimension. For each node u of the tree, 
let N*(u) denote the set of (d - I)-dimensional points obtained by depriving each 
point of N(u) of its first coordinate. Next, for each node u of the tree whose depth 
is a multiple of the slack parameter m, attach a pointer to a data structure defined 
recursively with respect to N*(u). Note that the dimension of the sets decreases by 
1 with each recursive call. When the dimension is 2, instead of pushing the 
recursion further, we simply attach a pointer to the two-dimensional data structure 
of Theorem 3.1. 

From d = 2 on, each increment of 1 in dimension increases the search component 
of the query time by a factor of 0(2”(logn)/m). Similarly, the storage is multiplied 
by a factor of O((logn)/m). The same assignment of the slack parameter gives us 
a data structure of the desired size, O(n(logn/loglogn)d-‘). Its query time is in 
O(k + logd-‘+‘n). 

THEOREM 5.1. Consider a data structure for orthogonal range reporting on n 
points in Ed that operates on a pointer machine, and let c be an arbitrary constant. 
If the data structure provides a query time of O(k + log’n), where k is the number 
of points to be reported, then its size must be O(n(logn/loglogn)d-‘). The lower 
boundistightforanycr l,t!d=2,andanycrd- 1 +c(foranyt>O),if 
d> 2. 

6. Conclusions and Open Problems 

Theorem 5.1 says that, for the query time claimed, no data structure can be 
asymptotically smaller than stated. It does not say, however, that the query time is 
optimal. To reduce the upper bound in dimension greater than 2 is an interesting 
open problem. Another limitation of our proof technique is to require the query 
time to be linear in the output size. If instead of O(k + log’n), we allow a more 
general function such as O(f(k, n) + log’n), what can we say? If f(n, k) is small, 
say, O(kloglogn), the same technique will lead to a nontrivial lower bound. If 
f(k, n) = klogn, however, the technique breaks down completely. It is easy to see 
why. Store the points in the nodes of a perfectly balanced binary tree. Every point 
of the output is at most logn nodes away from the root; therefore, Q(n) is the only 
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lower bound on the storage requirement we can expect to derive. What goes wrong 
here is that our model of computation charges only for the number of memory 
cells visited, and not for the time spent figuring out which cells to visit. This is 
good in the sense that lower bounds have very broad applicability. On the other 
hand, more cost factors may sometimes be needed in order to obtain nontrivial 
lower bounds. This is certainly the case if we are interested in query times of the 
form O(klogn + log’n). 

Editor’s Note: Part II of Dr. Chazelle’s paper will appear in the July issue of J. ACM. 
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