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Abstract 

WC present lower bounds on the number of rounds required to solve a decision problem in 

the parallel algebraic decision tree model. More specifically, we show that any parallel algorithm 

in the fixed degree algebraic decision tree model that answers membership queries in M’ CR” 

using p processors, requires s2(log 1 WI/H log( p;‘n)) rounds where 1 W 1 is the number of connected 

components of W. This implies non-trivia1 lower bounds for parallel algorithms that use a super- 

linear number of processors, namely, that the speed-up obtainable in such cases is not proportional 

to the number of processors. We further prove a similar result for the average case complexity. 

We give applications of this result to various fundamental problems in computational geometry 

like convex-hull construction and trapezoidal decomposition and also present algorithms with 

matching upper bounds. The algorithms extend Reif and Sen’s work in parallel computational 

geometry to the sublogarithmic time range based on recent progress in padded-sorting. A corollary 

of our result strengthens the known lower-bound of parallel sorting from the parallel comparison 

tree model to the more powerful bounded-degree decision tree. 

I. Introduction 

The primary objective of designing parallel algorithms is to obtain faster algorithms. 

Nonetheless, the pursuit of higher speed has to be weighted against the concerns of 

efficiency, namely, if we are getting our money’s (processor’s) worth. Ideally, one aims 

for speed-ups proportional to the number of processors, but in reality this often turns 

out to be an elusive goal. This is not because of any shortcoming of the algorithm 

designer; rather this bottleneck is a characteristic of the problem at hand. One of 

the celebrated results of this kind is the SZ(logn/ log logn) lower bound on the time 
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complexity for parallel summation of n bits using a polynomial number of processors 

in the CRCW PRAM model due to Beame and Hastad ([7]). This was a big setback 

for the algorithm designer who could not for example aim for an 0( 1) time algorithm 

for parallel sorting using even fi” processors (since sorting can be used to compress 

the n bits). Moreover, because sorting is such a fundamental problem, it implied a 

similar bound for a number of other problems as well. 

However, in the parallel comparison tree model (to be referred subsequently as 

PCT), the scenario was less grim in light of the results due to Alon and Azar [2] 

and Azar and Vishkin [6]. For example, their results implied that sorting can be 

done in 0( 1) time with n312 comparisons and moreover one cannot do much bet- 

ter. Since PCT model accounts for all comparisons, one has to accept this as an 

inherent limitation for any comparison-based parallel sorting algorithm (even in the 

PRAM model). The actual work of circumventing the lower bound of Beame and 

Hastad in the PRAM model required an alternative (more relaxed) notion of sort- 

ing called padded-sorting, first defined by MacKenzie and Stout [20] and subse- 

quently refined in the work of Raman and Hagerup [ 171. Roughly speaking, the prob- 

lem of padsort involves ordering the input of size n into an output array of size 

m 3n. When m = n, or when m is very close to n the lower-bound of Beame and 

Hastad applies. Hagerup and Raman [ 171 showed that one can padsort n elements 

with kn processors in expected time O(logn/ log k) in a CRCW PRAM as long as 

m > n + n/ logn. Actually, they give a trade-off between m/n and the number of 

processors. These bounds are asymptotically tight owing to the lower-bound results 

in [2,6,9]. 

Although the lower-bound results of Beame and Hastad had wide-ranging ramifica- 

tions, its implications were not clear in the case of several interesting problems, for 

example, in constructing the convex hull of a point set. It is well-known that a point 

lies on the convex hull iff it is not contained in any of the triangles defined by a 

three-tuple of input points. In a CRCW model, one can easily identify the boundary 

points in 0( 1) time using O(n4) processors. However, one cannot hope to compress 

the vertices in an ordered array in view of the lower bound. Yao [29] had proved that 

in the sequential context, the identification of the convex hull vertices was no easier 

than sorting, but our simple argument shows that such is not the case with parallel 

algorithms. Moreover, such a naive approach also does not shed much light on the 

actual complexity of this problem. 

Our main result implies an L?(log n/ log k) time bound for any deterministic or ran- 

domized algorithm for identifying the hull vertices using kn processors, where k> 1 

in the parallel algebraic decision tree model. Subsequently, we also establish its tight- 

ness by presenting a randomized algorithm with a matching upper bound. Both our 

lower and upper bounds are more general and apply to several other problems as well. 

Since the algorithms are based on the approach of Reif and Sen [24,23], we shall only 

outline the basic strategy and highlight the portions that require further refinement. 

Some of the previous techniques have to be carefully fine-tuned to obtain the required 

bounds. 
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2. Lower bounds 

The model of computation is the parallel analogue of the hounded-degree decision 

tree model (BDD Tree). At each node of this tree, each of the p processors compares 

the value of a fixed degree polynomial with 0. Accordingly each processor gets a a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA.si<~n 

E (0, +, -} depending on the result of the comparison being { =, >, < } respectively. 

Subsequently, the algorithm branches according to the sign tlector, that is by considering 

the signs of all the processors. The algorithm terminates when we reach a leaf node 

containing the final answer. If the polynomials are restricted to be of the form .x, ~ 

X, ~0, then it is the parallel comparison tree (PCT) model. While there is no cost 

for branching (that includes processor allocation and read-write conflicts), it does not 

have the arithmetic instruction set of the PRAM model. So, strictly speaking it is 

incomparable with the PRAM model. Notably, the known geometric algorithms in the 

PRAM model do not exploit this extra power so lower bounds in the BDD Tree are 

often regarded as binding in the PRAM model also. 

Our first lower-bound proof is for the Dominance problem on the PCT model that 

follows an approach of Boppana [9], who had considerably simplified the lower-bound 

proof of [2] for parallel sorting. We will first review Boppana’s elegant proof tech- 

nique which establishes a bound on the average-case complexity of parallel sorting and 

consequently the expected time bound of any randomized algorithm for the worst-case 

input. 

Fact 2.1. In u parallel comparison (BDD) tree qf 1 leaars and muximum uritj, N, the 

uceruge path-length is at least Q(log 1J log a). 

The urit). of a tree is the maximum number of children at any node. Given this 

fact (credited to Shannon), one needs a reasonably tight upper bound on the arity 

of the parallel comparison (BDD) tree model and a lower bound on the number of 

leaves to establish a lower bound of any parallel algorithm. The number of leaves 

is related to the number of connected components in the solution space in Rn where 

II is the dimension of the solution space (which is often the input size). The arity 

of this tree is the number of distinct outcomes of computations performed by p > I 

processors. For sorting, this tree has n! leaves. Bopanna used a result of Manber and 

Tompa [21] that upper bounds the number of ucyclic orientations of an undirected 

graph by (1 + 2m/n)” where n and m represents the number of vertices and edges, 

respectively. Sorting can be viewed as assigning directions to the edges of a complete 

graph on n vertices and taking the transitive-closure after every round of comparisons. 

Obviously, the graph will remain acyclic at every stage because of the total ordering. 

The arity can be bounded by (1 + 2p/n)” as each of the y processors can be viewed 

as assigning direction to at most one edge - the result of a single comparison. This 

immediately implies the required bound of L&log n/ log( p/n)). 

A point (xi, JJ,) is dominuted by another point (xi, +v,) iff xi <xi and y; <yi. Given a 

set of points in plane, the 2-D Dominance problem is to identify all those input points 
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that are not dominated by any other input point. If we stick to the parallel-comparison 

model for the 2-D dominance problem, we can prove a similar lower bound as a 

corollary. Indeed, all known algorithms for the maxima problem use only comparisons 

to arrive at the solution and hence our assumption is not unjustified. Since the x and 

the y coordinates are independent, the only useful comparisons are between the x 

and y coordinates separately. Hence, at each stage, we have two independent acyclic 

orientations corresponding to each of the coordinate axes. Maximizing product of the 

cardinalities of the two acyclic orientations is an upper bound on the arity which is 

less than (1 + ~/rz)~“. It is known that for the n-input dominance problem the number 

of leaves is G?((n/2)‘“‘2’) [19]. For p = k n we obtain the following result. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Lemma 2.2. In a parallel comparison-tree model, any algorithm that identijies the 

maximal points among a set of n points in a plane require Q(lognJ log k) time using 

kn processors. 

We now shift our attention to the BDD tree model. Note that comparison tree model 

is not a meaningful computing model for most problems in geometry like the convex 

hulls, that inherently involve polynomials of degree greater than one. For this, we will 

first prove a worst-case bound along the lines of Ben-Or [S] and subsequently extend 

it to the average case. The additional complication present in a BDD tree model is that 

each leaf node may be associated with several connected components of the solution 

set W. Even if we know (WI (the number of connected components of W), we still 

need a lower bound on the number of leaves. Ben-Or tackles this by bounding the 

number of connected components associated with a leaf using results of Milnor and 

Thorn. His result shows that even under these conditions the worst-case sequential 

lower bound is still about sZ(log (WI). 

If the parallel BDD algorithm uses p processors then the signs of p polynomials 

can be computed simultaneously. Each test yields a sign and we branch according to 

the collective possibilities of all the tests. We shall use the following result on the 

number of connected components induced by m fixed degree polynomial inequalities 

due to Pollack and Roy [25] to bound the number of such possibilities. 

Lemma 2.3. The number of connected components of all nonempty realizations oj 

sign conditions of m polynomials in d variables, each of degree at most b is bounded 

by ((O(bmld))d. 

This gives us a bound on the arity of the parallel BDD tree model as well as the 

number of connected components associated with a leaf node at depth h. The number 

of polynomials defining the space in a leaf-node at depth h is hp and hence the number 

of connected components associated with such a node is ((O(bhp/d))d. In our context, 

the number of processors and (hence the polynomial signs computed at each stage) is 

bounded by kn and d is the dimension of the solution space which is approximately 

the size of the input. This gives us the following theorem. 
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Theorem 2.4. Let W c R” be u set thut has / W 1 connected components. Then un~ 

parallel BDD tree ulgorithm that decides membership in W using kn (k3 1) proces- 

sors zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAhs time complexity .Q(log 1 WI/n log k). 

Proof. If h is the length of the longest path in the tree then from Lemma 2.3 

(ekn/n>h”(ehkn/n)” >, 1 WI, 

where e is a constant that subsumes the degree of the polynomials. The first expres- 

sion on the left-hand side represents the maximum number of leaves and the second 

expression is the maximum number of connected components associated with a leaf at 

depth h. By rearranging terms we obtain 

h log(ek) + log(ehk) 2 log 1 WI/n. 

Using h log(ek) > log(ehk) for h > 1. 

2h log(ek) 3 log 1 WI/n, 

from which we arrive at the required result. 0 

The above theorem immediately yields as corollary the !S(log n/ log k) worst-case 

bound for a number of problems for which 1 WI has at least (n/2)(“‘2). This holds for a 

slightly modified version (used previously in [19,27]) of the convex-hull identification 

problem where the objective is to determine if among a set of n points all the points 

belong to the convex hull. Note that this version is constant time reducible to the 

standard version in a CRCW PRAM model with p >n processors. The same holds 

true for dominance problem as well [ 19,271. 

Corollary 2.1. Any algorithm in the purallel BDD tree model thut constructs the 

conw.~ hull of n points using kn processors requires Q(log n/ log k) rounds. k 3 1. 

The sctme bound also holds for computing the set of masimal points in a set of II 

points in the plune. 

Clearly, a similar bound also holds for sorting n real numbers which strengthens the 

earlier lower bound for the PCT model [2,6,9]. 

Corollary 2.2. Any algorithm in the purullel BDD tree model requires sZ( log n/ log k ) 

steps to sort n numbers using kn processors, k > 1. 

To extend the above result to the average case we require a technical lemma that 

generalizes the following property of balanced trees - the balanced tree on N leaves, 

achieves the minimum average height among all trees with N leaves. We extend this 

property of balanced trees to the case where a leaf node at depth 1 has a weight I“ 
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associated with it where d is an integer significantly less than the arity of the tree. The 

total weight of a tree is the sum of the weights of its leaf-nodes and we will denote 

this weight function by Fd. The previous property can be viewed as a case where the 

leaves have unit weight or d = 0. 

Lemma 2.5. The tree that attains the minimum average height among all trees with 

total weight at least w for weight junction Fd (dejined above) and su$+iciently lurge 

arity (dependent on d) is u balanced tree. 

Proof. See the Appendix. 

In the context of the parallel algebraic decision trees, arity a is (ek)” and d = n. 

We can then bound the number of leaves of the BDD tree by a( 1 Wl/(enkL/n)“) where 

L is the average height. This yields a bound on the average complexity similar to the 

previous theorem. Using Yao’s [28] observation on the connection between average- 

case complexity and the worst-case complexity of randomized algorithms, we obtain 

the following result. 

Theorem 2.6. Let W c R” be a set that has 1 WI connected components. Then any 

parallel BDD tree algorithm for deciding membership in W using kn (k 3 1) proces- 

sors has average time complexity Q(log 1 WI/n log k). Consequently, this also lower 

bounds the expected running time of any rcmdomized algorithm for the worst-case 

input. 

Since / W( is at least (n/2) (n’2) for the two-dimensional convex hull problem, the 

average running time is at least SZ(logn/ log k) time. For sorting and the dominance 

problem, the same bounds hold. By a simple reduction of 2-D dominance to trapezoidal 

decomposition, we obtain a similar bound for the latter problem. (2-D dominance 

problem can be solved by constructing the vertical visibility map of the horizontal line 

segments whose right end-points are the input points and the vertical visibility map is 

obtained directly from trapezoidal decomposition.) 

The algebraic computation model is more powerful than the BDD model as it also 

allows arithmetic operations. This is as powerful as the PRAM model without the 

indirect addressing. We can view this as a tree where some of the nodes involve 

arithmetic operations and the others are branching nodes. Ideally, we would like to 

extend our previous results to the algebraic model. The main difficulty arises from 

rapid growth in the degree of the polynomials involved. For example, after t rounds 

(depth t in the computation tree), the degree could be as high as 2’ by repeated 

squaring. Ben-Or tackled this problem using auxiliary variables, that is by trading 

degree with dimension of the underlying space. This does not work in the parallel 

model because a large number of variables can be introduced in every round (equal 

to the number of processors). Consequently, we obtain a weaker result for the parallel 

algebraic computation tree by setting the degree of the polynomials to 2’ at depth t 

and rederiving the bounds. 



Theorem 2.7. Let W c R” he u set that has /WI connected components. Then trn~~ 

purallel ulqehruic computation tree ulgorithm for deciding membership in W using 

kn (k 3 I) processors bus time complexit!~ Q( 7 log 1 W1:n + log k ~ logk). 

Proof. Using the same notations as in the proof of Theorem 2.4 we obtain the follow- 

ing: 

,~~Iz’k)“,~~(2’k~~lWl 

j k/V!+ 1 [2”(h+’ )n:? ][2h92” - I] 3 1 WI 

+, ,@!?-~1 [2”‘+‘)(h+2)&] 3 , W, 

+(hn+ 1)logk+h2n>log/Wl 

using h2 > i(h + 1 )(A + 2). Solving the degree-two equation (in h) and using log k << 

log / IV1 yields the required bound. CT1 

Remark. For 2m = o(k), this bound matches that of the parallel BDD model 

using the fact that ( 1 + ,J)‘.” > I + y/2 - O(y’) for _r < 1. Here _r = log / WI/n log’ k. 

For 1 WI =.Q(n”), this implies that for 2&=0(k) the running time is .Q(logn,‘log k). 

3. Parallel algorithms in computational geometry 

Designing efficient parallel algorithms for various fundamental problems in compu- 

tational geometry has received much attention in the last few years. There have been 

two distinct approaches to this area of research, namely the deterministic methods and 

algorithms that use random sampling. A general approach for deterministic PRAM al- 

gorithms was pioneered by Aggarwal et al. [l], who developed new techniques for 

designing efficient parallel algorithms for fundamental geometric problems. A number 

of the most efficient deterministic PRAM algorithms are due to Atallah et al. [3], who 

extended the techniques used by Cole [I21 for his parallel mergesort algorithm. Their 

technique is called Cuscuded metying and has been subsequently used for a number 

of other problems. An informative account of many basic techniques employed for 

solving some fundamental problems appears in [4]. In an independent development, 

Reif and Sen [24] designed O(logn) expected time optimal speed-up algorithms for 

point-location and trapezoidal decomposition and subsequently ([23]) extended their 

methods to develop equally efficient algorithms for 3-D convex hulls on the CREW 

PRAM model. At the core of their algorithms were random sampling techniques and 

an efficient resampling technique called Polling. 

Note that a majority of the geometric problems in the context of research in parallel 

algorithms have a sequential time complexity of Q(n log n) and a typical performance 
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that one aims, for is O(logn) parallel time using an optimal number of processors. 

The issue of speeding up these algorithms significantly was ignored largely because of 

the Q(logn/loglogn) lower bound for parallel sorting in the CRCW model. Problems 

like the convex hull and 2-D dominance are known to have close relationship with 

sorting. 

The recent results in the area of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBApudded-sorting (to be referred to as padsort in fu- 

ture), inspired us to investigate its consequences in the area of geometric problems. To 

take advantage of the developments in padsort, we will modify the output specifications 

of the problems relevant to this paper. For example, in the case of two-dimensional 

convex hulls, we will allow the output to be an ordered sequence of the hull vertices 

which could be embedded in an array of slightly larger size. 

Our basic strategy also implies equally efficient algorithms for the following prob- 

lems - two- and three-dimensional convex hulls and trapezoidal decomposition which 

achieve a running time of O(logn/ logk) with kn processors in a CRCW PRAM. 

These in turn imply similar algorithms for two-dimensional Voronoi diagrams and 

triangulation of simple polygon. The algorithms extend the randomized divide-and- 

conquer techniques used in [24,23]. We will be somewhat terse in our description of 

the algorithms and we will focus more on the technical portions that will be crucial 

for the analysis. 

The rest of the paper is organized as follows. We begin by reviewing some con- 

sequences of padsort in a formal setting and present a direct application of padsort 

in developing an optimal parallel algorithm for the 2-D dominance problem. Follow- 

ing this, we review a general randomized divide and conquer strategy which forms 

the basis of our algorithms. Next, we present applications of the general strategy to 

individual problems starting with 2-D convex hulls. 

Notation. We will use the notation d in place of 0 to denote that the upper bound 

holds in the expected sense and moreover the probability of exceeding the expected 

value by a constant factor c decreases as n-’ where n is the input size. We will also 

refer to such bounds as high-probability bounds. 

4. Padded sorting and parallel algorithms 

A crucial factor in the performance of the padsort algorithm is the size of the output 

array m or more specifically the ratio m/n. If m = (1 + 3,)n then 1 is called the padding 

factor. A slightly weaker version of the main result of Hagerup and Raman can be 

stated as 

Theorem 4.1. Given n elements from an ordered universe, these can be padded-sort 

with kn CRCW processors in &log nj log k) time with a pudding-factor 1, d l/ log n. 

Moreover, between any logn consecutive input keys, there is no more than one empty 

cell in the output array. 
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A nice consequence of Theorem 4.1 is ordered searching. The output of the pad- 

sort algorithm makes it almost directly applicable to search for predecessor of a 

given key value. One simply probes the elements like a normal binary search ex- 

cept that when an empty cell is probed, we make an extra probe in the adjoining 

cell. By the consequence of Theorem 4.1, two adjacent cells cannot be empty. Al- 

ternatively, one may simply fill up the empty cells with the contents of the previous 

cell, and perform a usual binary search. The same holds true for any k-ary search. In 

summary 

Lemma 4.2. The output of the paddehsorting algorithm cun he used for prrjbrmimg 

k-rq, seurch on an n-element ordered urruy in O(log n! log k) steps. 

Equipped with the above results, we obtain a fast parallel algorithm for finding the 

dominating set in plane from a set of n input points. 

Algorithm Dominance 

(0) Sort the given set of points in increasing order with respect to x coordinate. 

(1) If the problem size is larger than a certain threshold, partition the problem into k 

(nearly) equal subproblems based on the x-coordinates and call steps I-3 recur- 

sively. Else solve directly and also compute the maximum y-coordinate and then 

return. 

(2) Let the maximum of the ?/ coordinate in each of the intervals and denote them 

as Y,, 1 <i 6 k. To merge the subproblems, we compare the _)’ coordinate of each 

element of the i-th subproblem with Yi, j > i. 

(3) For the surviving elements, (whose y coordinate is larger than Y,‘s) we compute 

the maximum y-coordinate. (This is the element which has the least x-coordinate 

among the survivors.) 

The analysis of this algorithm is quite straightforward. Each of the steps l-3 can be 

performed in 0( 1) time using kn processors. The partitioning in step 1 is trivially done 

and the maximum of a constant number of elements can be computed in 0( 1) steps. 

Using k processors per element and concurrent read and writes, each element can find 

out if it survives in constant time in step 2. To find out which is the least element that 

survives in terms of x coordinate, we can use the result on finding the smallest index 

‘ 1’ element in a boolean array. This takes constant time using n processors (see JaJ’a 

[ 18, Example 2.131). The recurrence for steps 2 and 3 can be written as 

T(n) = T(n/k) + O(l), 

which is O(log n/ log k). Note that only the first step is randomized so that the following 

theorem is almost an immediate consequence of the result of pudded sorting. An 

alternate approach would have been to compute prefix-maximum of y-coordinates after 

sorting (step 0). We used this example to introduce the simplest form of k-way divide- 

and-conquer. 
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Theorem 4.3. The dominating set of n points in a plane can be computed in 

@log nl log k) using kn CRCW processors und this is optimal. 

Processor allocation is a common problem that one encounters in most parallel algo- 

rithms. In this context, Hagerup [16] defines the problem of interval allocution as the 

following: Given n non-negative integers XI, . ,x,,, allocate memory blocks of sizes 

Xl...., x, from a base segment of size O(C’!= , , xj such that the blocks do not overlap. ) 

Bast et al. [14] give a very fast algorithm for this problem which can be stated as 

Lemma 4.4. The interval allocation problem of size n cun be solved in d(k) time 

using n logck’ n CRCW PRAM processors. 

We shall use this result for processor allocation in the context of our parallel algo- 

rithms especially as a substitute for exact prefix sums whenever we have to compute 

it faster than O(logn/ log logn). Note that, in such cases the number of processors 

exceed n logn so that there is no problem in applying the previous lemma. 

A common scenario for our algorithms is the following. Suppose s is the number 

of subproblems (s < n) and each of the input elements for the subproblems has been 

tagged with an index in 1,. . ,s. Then these can be sorted on their indices into an array 

of size S( I+ A) from Theorem 4.1 where S is the sum of the sizes of the subproblems. 

A processor indexed P is associated with the element in the cell numbered [P/S]. 2 

In most cases, S =n, so that if we have kn processors, then the number of processors 

allocated to a subproblem i of size si is at least sik/( 1 + A). The processor advantage 

which is defined to be the ratio of the number of processors to the subproblem size, 

is not as good as it was initially, namely it is k/( 1 + 2) instead of k. However, for 

our purposes it will make little difference because of the property that the number of 

recursive levels in our algorithm will be bounded by O(loglogn). Hence, the processor 

advantage at any depth of the recursion is no worse than k/( 1 + i)“(‘og’ogn) which is 

still Q(k) for /, d l/ log n. In our future discussions, we shall implicitly use this property 

for processor allocation. 

5. Ultra-fast randomized divide-and-conquer 

For a number of efficient algorithms in computational geometry, Reif and Sen [24,23] 

had used a versatile approach based on randomized divide-and-conquer. We shall re- 

capitulate the main general steps of their strategy for the problems under consideration 

( 1) Select O(log n) subsets of random objects (in case of 2-D hulls these are half- 

planes) each of size [ncJ for some 0 < E < 1. Each such subset is used to partition 

the original problem into smaller subproblems. A sample is ‘good’ if the maximum 

subproblem size is less than O(n’-” log n) and the sum of the subproblem sizes is less 

2 We will avoid using the ceiling and floor functions when it is clear from the context 
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than FFZ for some constant C. From the probabilistic bounds proved in [ 11,241, it is 

known that the first condition for a ‘good’ sample holds with high probability. From 

here it follows that the sum of the subproblems is no more than 6(n log n). However, 

the second condition which bounds the blow up in the size of the subproblems by a 

constant factor is known to hold with probability about i. 

(2) Select a sample that is ‘good’ with high probability using Pollirq. At least 

one of the logn samples in the previous case is ‘good’ with high probability. Polliruq 

[23] is a sampling technique which allows us to choose a ‘good’ sample efficiently. 

This high probability bound is crucial to bound the running time of the algorithms by 

O( log n). 

(3) Divide the original problem into smaller subproblems using the ‘good’ sample. 

The maximum size can be bound by O(F?‘~” logn). 

(4) Use a Filtering procedure to bound the sum of the subproblem sizes by some 

fixed measure like the output size or input size. The reason for this being that the 

probabilistic bound in step (1) bounds the sum of the subproblems by L%. If this 

increase by a multiplicative constant continues over each recursive stage, after i stages, 

the input size will have increased by a factor of 2 ‘(‘I If i is large (that is larger 

than a constant), then the parallel algorithm becomes somewhat inefficient affecting the 

processor time product bound. This filterimg procedure is problem dependent and uses 

the specific geometric properties of a problem. 

(5) If the size of a subproblem is more than a threshold, then call the algorithm 

recursively else solve it using some direct method. At this stage the subproblem sizes 

are so small ~ typically O(log” n) for some constant I*, that relatively inefficient methods 

work well. 

The procedure used for partitioning the problem to a set of subproblems can often 

be reduced to point location in arrangements of hyperplanes, namely, using a locus- 

based approach. In the locus-based approach to partitioning the problem, each region 

of the arrangement is labeled with a set of subproblems it spawns (see [23]). In the 

Dobkin-Lipton method of searching, then this reduces to searching in ordered lists 

and the preprocessing reduces to sorting (padsort suffices). The following result is a 

corollary of the the above observations. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Lemma 5.1. Given h hyperplunes in d dimensions, a dutu structurrfbr point Iowtion 

can hr constructed in 6)(d log n/ log k) time using kn- “‘- ’ processors. This dutu struc- 

ture cun hr used to do point locution in O(d log nl log WI) steps using m procrssors 

,fbr each point. 

Even though the processor complexity grows exponentially, for small (fixed) dimen- 

sion, this approach can be used effectively. 

Polling is a randomized technique for selecting a ‘good’ sample from the O(log n) 

subsets. The Polling lemma [23] guarantees that with high probability we can choose 

a good sample using this method. Since the test for ‘goodness’ is carried out inde- 

pendently for each of the sample, this part of the algorithm is inherently parallelizable 
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even on the networks. We select that sample which gives us the smallest (estimated) 

blow-up in the problem size. 

While Polling controls the blow-up within a constant factor, say cc (the second con- 

dition for a ‘good’ sample), over j levels this could grow up to Q(aj). For any 

non-constant j this could be significant. Hence, we need to further control the blow-up 

(to unity) which is achieved during this step which is done in the Filtering phase. Note 

that Filtering becomes redundant once the processor advantage exceeds log”(‘) n from 

the simple observation that the depth of recursion is bounded by log log n. 

In the remaining section, we shall look closely at a recurrence relation whose solution 

will be the crux of our analysis of the algorithms that follow in the next section. This 

is a generalization of the recurrence used by Reif and Sen for the special case, k = 1. 

We shall assume that the number of processors is kn with k > log”(‘) n. For k less than 

this we will outline suitable modifications. Let T(n,m) represent the parallel running 

time for input size n with m processors: 

+ a log n/ log k. 

Here c and a are constants larger than 1. The recurrence arises from the following 

property of our algorithms - when nz = nk, the maximum subproblem size is no more 

than n/(nk)“c with the processor advantage still k. Each recursive call, that is the 

divide step, takes no more than O(log n/ log k) time. The constant c is such, that given 

nc processors, one can solve the problem in constant time. For example, in the maxima 

problem, c is no more than 2 since one can determine, using n processors per point, 

if it is a maximal point. 

The reader can verify that the solution of this recurrence with appropriate stopping 

criterion is O(log n/ log k) by induction. 

In our algorithms, we sample roughly (nk) I,” input elements which we use to parti- 

tion the problem. From our earlier discussion the maximum subproblem size is no more 

than n/(nk)‘ic (actually we are ignoring a logarithmic factor which can be adjusted by 

choosing slightly larger sample) with high likelihood. Moreover, we shall show how 

to achieve the partitioning including Polling and Filtering in 6(logn/ log k) steps. 

Technically, we cannot use a deterministic solution of this recurrence directly for 

our purposes as our bounds are probabilistic. So we use a technique which is a simple 

extension of the solution outlined in [22]. View the algorithm as a tree whose root 

represents the given problem (of size n) and an internal node as a subproblem. The 

children of a node represents the subproblems obtained by partitioning the node (by 

random sampling) and the leaves represent problems which can be solved directly 

without resorting to recursive calls. 

Denote the time taken at a node at depth i from the root by K. It can be shown 

that 7; satisfies the following inequality: 

Pr[z > UCC(Ei log n/ log k] <2-‘:’ l”gncz, 



where a,c are constants and x a positive integer. Then extending the proof in [22]. we 

obtain the following. 

See the appendix for a proof. In other words, the algorithm terminates zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAin O(log 17, 

logk) time with very high likelihood. 

6. Optimal speed-up sublogarithmic algorithms 

In this section, we apply the methods developed in the previous sections to obtain 

very fast algorithms for a number of problems in computational geometry. We shall 

discuss only one of them, namely the two-dimensional convex hull more extensively 

and omit the details for the other problems. 

Given a set N of n points in two dimensions we would like to compute the convex 

hull of these points. For convenience, we shall assume that we are solving the dual 

problem, that is, computing the intersection of half-planes in two dimensions which 

are represented by linear inequalities. We will use C(N) to denote the intersection of 

the N half-planes. 

Following the genera1 strategy discussed in the previous section, we choose a 

sample S of half-planes and construct their intersection. For example, if we sample 

O((nk)“‘logn) (= s) half-planes then we can compute all the O(.s2) pairwise inter- 

sections using .s* processors. Then check which of them lie within the intersection 

using s processors per point in 0( 1) time. Hence, with 0(s3) or nk processors, we 

can determine the vertices of the intersection. Sorting these points gives a standard 

representation of the convex region (C(S)). By using padsort this can be done in 

@log n/ log k) steps. 

For the remaining set of N - S half-planes, we determine how they intersect with 

C(S). This is more easily done if we partition C(S) into triangular sectors and then 

determine where the lines defining the half-planes intersect the sectors. Note that each 

half-plane could intersect more than one sector (in fact an arbitrary number of sectors). 

Denote by N, the half-planes intersecting sector i. As a consequence of the random 

sampling lemmas, for all i, N, = d(t~/(nk)“~). To determine which sectors a half-plane 

intersects, we can use Chazelle and Dobkin’s [IO] Fihonacci Semrd7 which is easily 

modified to a k-ary search. It actually yields the intersection points of a line (defining 

the half-plane) and the convex region C(S). From here one can easily determine the 

set of sectors the half-plane intersects. For polling, the number (cardinality) of sectors 

suffices. 
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line 3 is filtered out by line 1 

in sector C but not in B 

sectors ABCD 

Fig. I. Illustration of the basic divide-and-conquer strategy for computing intersection of half-planes. 

To apply Polling, one actually selects O(logrr) random subsets and repeat the above 

procedure on a large fraction (about O(n/ log3 n)) of the N - S half-planes to select 

a ‘good sample’. Once the sample is selected, the problem is partitioned using the 

the locus-based approach mentioned previously. This is a more general method which 

is applicable to other problems unlike the Fibonacci sewclx Consider the duals of 

the vertices of the C(S). The a~angement of these lines in the dual space induces 

a partitioning such that a (dual of) point in a fixed region intersects the same set of 

sectors of C(S). Hence, the locus-based approach of the previous section is applicable 

directly in dimension two. This affects the size of the sample we choose initially as 

there is a big blow up in the number of processors required for preprocessing in 

Dobkin-Lipton algorithm. Hence, we will choose s = O((~?~)‘~~) but that will still 

allow application of Lemma 5.2. 

Next we will apply the filtering to further control xi N/ which is now d(n). Re- 

call that when k > logn we can actually skip this phase. After this step, we are 

left with at most one copy of a half-plane that does not show up in C(N), that 

is a total of 2n. The filtering step works as follows. For each sector i, one com- 

putes the intersections of the half-planes in Ni with the radial boundaries of the sec- 

tor. Let L(N,) and R(N,) represent these intersections and let L(N,) (R(Ni)) represent 

the ranks of the sorted sequence in the radial direction (distance from origin). So 

each half-plane is now associated with a tuple - the left and right ranks. We now 
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determine the maximal half-planes in each sector using the algorithm of Section 2. 

Clearly, the half-planes that are not maximal would not form a part of the output 

inside the sector and we can discard these. We attach one processor to each half- 

plane that contributes to one vertex in a sector and two processors otherwise. The 

former condition is determined easily by checking if it is visible in exactly one of the 

(radial) boundaries. During further recursive calls, this processor allocation strategy 

ensures that the number of processors is proportional to the output complexity within 

each of the subproblems and we have sufficient processors. Following filtering we call 

the algorithm recursively within each sector. 

For analyzing the algorithm we see that each of the phases can be carried out 

in time 6(lognj logk) and hence Lemma 5.2 can be applied to yield a running 

time of @logn/ logk). Moreover, the final convex hull is obtained as a sorted se- 

quence of vertices in an array which could have some empty cells like the padded-sort 

algorithm. 

Theorem 6.1. The convex hull of n points in u plune can be computed in 6(logn, 

log k) steps in u kn processors CRCW PRAM. The output of this alyorithm is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAUM 

ordered set zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof’ the hul/ vertices in un urruy qf slic]htl}’ luryer size. 

Remark. For the case when k < logn, the output of the algorithm is exact, that is the 

output vertices appear in a compact sorted array. 

6.2. 3-D Comes hulls ond 2-D Voronoi diqrams 

An almost identical approach works for computing the convex hull of points in 

three-dimensions - where the vertices of the convex hull is produced as the output. 

We actually compute the intersection of half-spaces in three dimensions once we know 

a point in the (non-empty) interior. We do encounter some difficulty in the Filtering 

step (see [23] for details) where we need to build a data structure for detecting inter- 

sections of half-planes with a convex polytope. Instead. we use a simpler scheme due 

to Amato et al. [5]. The Filtering step is essentially locating the half-spaces that are 

pinned to a pyramid (see [5] for details). The scheme involves detecting the closest 

vertex of a convex chain from a line that can be done in O(log nj log k) steps using 

the k-ary search. We use compaction to discard the redundant half-spaces within a 

pyramid and processor allocation is done using the observations of Reif and Sen [23]. 

Skipping further details, we state the following result. 

Theorem 6.2. The concex-hull of n points in thee dirnmsions cun he c.onstructrt/ in 

6(logn/ log k) steps by kn CRCW PRAM procrssors .fbr k 3 1. 

Note that the output of the algorithm produces a list of vertices in an array of 

slightly larger size. To compute the adjacency information (the edges), we require 

an application of integer sorting. The sorting is done on the list of 3-tuples (the 
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planes intersecting at that point) and we have all the six permutations corresponding to 

a tuple. If the adjacent tuple have two planes in common, they define an edge. 

As a consequence of the ‘lifting’ transformation, it implies an identical bound for 

2-D Voronoi diagram. Here the output is the list of the Voronoi vertices with their 

adjacency information. A Voronoi diagram without an associated point-location data 

structure is hardly of any use. We do address this issue in the next subsection, 

where we show how to build a point-location data structure in the same 

bounds. 

6.3. Trapezoidal decomposition and triangulation 

The problem of trapezoidal decomposition is a version of the vertical visibility prob- 

lem. Given n non-intersecting (except at end-points) segments, one has to determine 

for each end-point, which segment lies immediately above it, that is find the first 

segment intersected by a upward vertical ray. Reif and Sen [24] describe an algo- 

rithm which has the same basic structure as the previous algorithms. The modifi- 

cation we require is in the first step - that is, for building the data structure for 

point location in a trapezoidal map of s randomly chosen segments. We substitute 

the Cascaded Merging technique of [3] (which requires a fractional cascading data 

structure) by the simpler point-location data structure of Dobkin and Lipton [13]. 

This also simplifies the algorithm of Reif and Sen [24]. The Filtering step is sim- 

ply compaction - the reader is referred to [24] for details. So we have the following 

result. 

Theorem 6.3. The trapezoidal decomposition of n non-intersecting segments can he 

constructed in @log n/ log k) steps using kn CRCW PRAM processors. 

Combining this with a result of Yap [30], where he reduces the triangulation of 

a simple polygon to two calls of trapezoidal decomposition (one vertical and one 

horizontal) we obtain the following corollary. 

Corollary 6.1. The triangulation edges of a simple polygon on n vertices can be 

determined in @log n/ log k) steps using kn CRCW PRAM processors. 

Moreover, we can use a similar approach for building a point-location data structure 

for a planar subdivision. Actually, a by-product of the trapezoidal decomposition is a 

data structure that supports vertical ray shooting and hence one can do point location 

(see [3,24]) using this scheme. 

Corollary 6.2. Given a planar subdivision of size n, a data structure jar point location 

can be constructed in 6(1ogn/ log k) steps using kn CRCW PRAM processors. This 

data structure supports point location by z CREW processors in O(log nl logz) steps, 

where z is an integer greater than 1. 
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7. Conclusion 

We have presented a unified approach to speeding up various algorithms in com- 

putational geometry. Our method relies heavily on the results on pudded sorting and 

exploit the generic randomized divide-and-conquer techniques of [26]. In addition, we 

have demonstrated that these are the best possible in a fairly strong sense, namely 

average speed-up. Our algorithms can be made somewhat stronger by making the run- 

ning time hold with probability 1 - 2” for some i: > 0 instead of the standard high 

probability bounds derived in the paper. 

This paper leaves open various directions for further research, the most significant 

being matching deterministic algorithms. 

Regarding lower bounds, it will be interesting to extend these to the ul~qrhrtric 

umputcrtion m&l where we could obtain matching lower bounds for a number of 

processors exceeding a certain threshhold. We suspect that these are not tight but it 

is not clear if the techniques used in this paper can be extended further. Our al- 

gorithms do not match the lower bounds for small output instances for which one 

may be able to obtain better speed-up, namely O(logh/ log k) where h is the output 

size. 

The super-linear processor algorithms in this papers have found applications in ob- 

taining faster output-sensitive parallel algorithms for convex hulls [ 151. 
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Appendix 

Proof of Lemma 2.5. In the proof, we will use the following approach. We will start 

with a balanced tree .Y of height h for the given weight ~$1. Then we shall show that 

any unbalanced tree of the same weight must have a larger average height. 

An unbalanced tree T of the same weight will have leaf nodes at depth less than 

h and greater than h, where depth of a node is its distance from the root. For a leaf- 

node A at depth i (i < h), the corresponding subtree at A in 3 has ah-’ leaf-nodes 

at depth h, where CI is the arity of the tree. If T has to match the weight of 3, then 

this ‘weight-loss’ has to be compensated for by leaves at depth greater than h. This is 

the way we view it, i.e., the leaves in T at depths less than h have the corresponding 

subtree (in S) missing whose weights are made up of leaves at depths greater than h. 

More precisely, for leaf A at depth i, we have to make up for a weight a”-’ h” ~ i”. 
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So we can group with leaf A leaves at depth hi, hz,. , hl that will attain this weight. 

Notice that we can do this groupings for all leaves at depth less than h. However, 

some of these groups could be overlapping because the same node N (at depth greater 

than h) may be compensating fractionally for more than one group. In the remainder 

of this proof, we shall show that the average height of each group exceeds h which 

will imply the lemma. 

Let there be ci leaves at height hi (> h) compensating for A at height i. At most two 

ci could be fractional - the first and the last. For weight compensation ci h;‘+cz hi+. . .+ 

c/h;’ >ah-jhd - id where h < hl < hz. We want to show that xi cihi + i/ xi ci + 1 > h 

or by rearranging, xi ci(hi - h) > h - i. It suffices to show that max{ci} > h - i. Let 

cm be the maximum of ci. Clearly, c, >ah-“hd - id/h;’ + hf.. . hf. If I > 2h - i + 1, 

then clearly the average height of this group exceeds h. So we will only consider 

1<2h-i+l: 

.h-ihd _ id 

G?l 3 
(h-i+1)(2h-i+l)d’ 

Since id/ah-’ < id, inequality (A.l) can be written as 

cm 3 
&i(hd _ id> 

(h-i+1)(2h-i+l)d’ 

(A.11 

(A.21 

By minimizing hd - id and maximizing (2h - i + 1 )d (use i = h - 1 and i = 1, 

respectively), 

ah-‘d(h _ 1 y--l ah-i 

cm 3 

(h-i+1)(2h)“‘(h-i+1)3” 

when h < d. For sufficiently large arity a, namely a E (ek)” where e, k > 4, 

c,>h-i. 0 

Proof of Lemma 5.2. Setting ti = a(&)‘z(c - CO) log n/ log k, where CO is some constant, 

we obtain 

Pr[7; >aaac(e)’ log n/ log k + ti] <2-(C)““‘ogn ~2~~1 “gk”. 

If T is the total time for this worst-case chain of nested calls and m = l/(1 - E), 

the probability that it takes more than macq logn/ log k + t, is less than the sum of 

the probability of events where Cj t; = t. Below, we calculate the probability that 

amixcologn/log’k+t] <2’ 

C.t; = t. n~,=,2-f~‘ogk ad 

c2- 

f&k/a over tO(l’X(‘%‘fl/bk)) tuples. Thus, Pr[T > 

r’ogk/a+O(logflog(lognllogk)). Using t >am~(c _ co) log n/ log k > 

for large values of n and m > 1, we can rewrite the above expression as 

Pr[T > amclc log rz/ log k] < 2-“(c-co)‘ogn. 
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For c > 4~0, i.e. c - co > 3/4c, we have the following required bound: 

Pr[j” > u log n/ log k] <2+3’4)cr’og’f <nn”‘” 

assuming that a, m and c are larger than 1. 0 
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