
Lower Bounds for Testing Computability by
Small Width OBDDs

Joshua Brody? and Kevin Matulef? and Chenggang Wu?

IIIS, Tsinghua University
[joshua.e.brody | matulef | wuchenggang0316] @ gmail.com

Abstract. We consider the problem of testing whether a function f :
{0, 1}n → {0, 1} is computable by a read-once, width-2 ordered binary
decision diagram (OBDD), also known as a branching program. This
problem has two variants: one where the variables must occur in a fixed,
known order, and one where the variables are allowed to occur in an
arbitrary order. We show that for both variants, any nonadaptive test-
ing algorithm must make Ω(n) queries, and thus any adaptive testing
algorithm must make Ω(logn) queries.

We also consider the more general problem of testing computability
by width-w OBDDs where the variables occur in a fixed order. We show
that for any constant w ≥ 4, Ω(n) queries are required, resolving a
conjecture of Goldreich [15].

We prove all of our lower bounds using a new technique of Blais,
Brody, and Matulef [6], giving simple reductions from known hard prob-
lems in communication complexity to the testing problems at hand. Our
result for width-2 OBDDs provides the first example of the power of this
technique for proving strong nonadaptive bounds.

1 Introduction

In this work we consider the problem of testing whether a function f : {0, 1}n →
{0, 1} is computable by a very limited type of computational device, a read-
once Ordered Binary Decision Diagram (OBDD), also known as a Branching
Program. We formalize this question in the language of property testing. The
goal of a property tester is to distinguish objects which have a property from
those that are “far” from having the property, with limited access to the object.
Here, the object is a boolean function f : {0, 1}n → {0, 1}, and we would like a
randomized algorithm that accepts f with high probability if it is computable
by a read-once OBDD, and rejects f with high probability if it disagrees with
any OBDD on an ε fraction of inputs. Property testing algorithms are adaptive
if queries are chosen based on answers to previous queries; otherwise, testers are
non-adaptive. The complexity of the algorithm is the number of times it queries
f , which should hopefully be a small function of n and ε.

? Supported in part by the National Basic Research Program of China Grant
2007CB807900, 2007CB807901, and the National Natural Science Foundation of
China Grant 61033001, 61061130540, 61073174.

Property testing, and in particular testing of boolean functions, has a long
history. Over the last two decades researchers have studied algorithms for testing
many different properties of functions, such as the property of being linear [7],
being monotone [16, 13], being a dictator, a monomial [22] or a k-junta [12, 4,
5], or being expressible in various different “concise” forms such as an s-sparse
polynomial, a size-s decision tree, etc. [9] (see, e.g., the survey of [24]).

The class of OBDDs has been studied in many areas of theoretical com-
puter science, particularly in computational learning theory (e.g. [11, 23, 3, 14,
8]), where there is a well-known connection to testing. In particular, Goldreich
et. al. [17] observed that any proper learning algorithm for a class of functions C
can be used to test whether f is in C versus far from C. Thus, the complexity of
a proper learning algorithm serves as an upper bound on the number of queries
required to test. However, this bound is often weak, since for many interesting
classes, the query complexity of testing is much smaller than the complexity of
learning (for instance, the class of linear functions is testable with O(1/ε) queries
[7], independent of n, even though any learning algorithm must see at least Ω(n)
values of f). It is natural to ask whether this is also the case for OBDDs.

1.1 Results for Width-2 and Width-3 OBDDs

The problem of testing whether a function f is computable by an OBDD was
first studied by Ron and Tsur in [25]. They point out that although previous
testing results have looked at the problem of testing whether f has a simple
form, it seems reasonable instead to fix a simple model of computation, and test
whether f is computable within the model. They focused on the model of width-2
read-once OBDDs, because this class has a simple structure, yet still generalizes
some previously well-studied classes, such as linear functions and monomials.

Ron and Tsur identified two variants of this problem. In the first, the tester
wishes to determine whether f is computable by an OBDD where the variables
must appear in a fixed, known order (say, x1 . . . xn). In the second, studied in
[26], the tester wishes to determine whether f is computable by an OBDD where
the variables can appear in any arbitrary order. Note that the complexity of the
former problem is not a priori related to the complexity of the latter, since a
function can be far from an OBDD with variables in order x1 . . . xn, but still be
equal to an OBDD when the variables are rearranged.1

For the first variant of the width-2 OBDD testing problem, where the vari-
ables must occur in a fixed order, Ron and Tsur gave an adaptive upper bound
of Õ(log n) ·poly(1/ε) queries [25] (here the Õ notation hides factors of log log n).
This is an exponential improvement over the Ω(n) queries required for learning
the same class.2 Their upper bound raises the obvious question of whether the

1 In general, if C′ is a subset of C, the complexity of testing membership in C′ may be
quite different than the complexity of testing membership in C. However, they are
often the same when the classes are conceptually related.

2 The learning bound is easy to show, since the class of width-2 read-once OBDDs
contains, for instance, all linear functions- a set of 2n functions which are all far from
each other.

Õ(log n) dependence on n is necessary, and indeed, whether any dependence on
n is necessary at all. Our first result provides an answer to this question.

Theorem 1. Any nonadaptive testing algorithm requires Ω(n) queries (and thus
any adaptive testing algorithm requires Ω(log n) queries3) to test

i. width-2 OBDDs with variables in a fixed order.
ii. width-3 OBDDs with variables in a fixed order.

For width-2 OBDDs, Theorem 1 is essentially tight in terms of n. As men-
tioned, for adaptive algorithms Ron and Tsur gave an upper bound of Õ(log n),
and for nonadaptive algorithms, a simple Occam learning algorithm yields an
upper bound of O(n).4

A few words are in order regarding the history of Theorem 1. In [25], Ron
and Tsur gave a lower bound of Ω(log n) for testing fixed-order width-2 OBDDs
with one-sided error. However, this proof was recently found to contain a flaw,
which we discuss in the full version of this paper. In subsequent work [28],
the same authors gave a different proof which improved the bound to Ω(n) for
nonadaptive testers, even with two-sided error, thus achieving the same bound as
in Theorem 1. The “no” instances (functions that are far from width-2 OBDDs)
we use in our proof are partially inspired by [28]. However, our proof technique
uses a different, more modular approach, as we shall discuss below.

For the problem of testing width-2 OBDDs when the variable order is un-
known, the lower bound of Ron and Tsur does not apply. Tackling this case was
posed as an open question in [28]. Our technique is able to handle this case as
well, as shown in our second main result.

Theorem 2. Any two-sided error, nonadaptive algorithm for testing computabil-
ity by width-2 OBDDs with variables in arbitrary order requires Ω(n) queries
(and thus, any adaptive algorithm requires Ω(log n) queries).

Remark: An earlier version of this paper claimed that the lower bound in
Theorem 2 was essentially optimal, since it matched an upper bound given by
Ron and Tsur in [26]. However, after reading a draft of this paper, Ron and
Tsur discovered a flaw in their upper bound in [26], and showed that in the
arbitrary-order case, Theorem 2 can be strengthened to Ω(n), even for adaptive
algorithms [27]. Their improvement is nearly optimal, since in this case one can
test using a simple Occam learning algorithm which makes O(n log n) queries.

3 It is well known, and simple to show, that any adaptive testing algorithm which
makes q queries can be transformed into a nonadaptive algorithm which makes
2q queries. Hence a nonadaptive bound of Ω(g(n)) implies an adaptive bound of
Ω(log g(n)). As our result shows, this exponential gap is sometimes necessary.

4 An Occam learning algorithm for a class C is simply a nonadaptive algorithm that
draws a set of random examples, and searches for a member of C consistent with f
evaluated on those examples. It is well known that such an algorithm will produce an
ε-accurate hypothesis with constant probability after seeing O(log |C|/ε) examples.

1.2 Results for Width-w OBDDs, for constant w ≥ 4

We also consider the problem of testing computability by width-w read-once
OBDDs, for constant w ≥ 4, where the variables must appear in a fixed or-
der. This problem was previously studied by Goldreich in the w = 4 case [15].
He showed that unlike the width-2 case, where testing can be done with expo-
nentially fewer queries than learning, testing width-4 OBDDs requires Ω(

√
n)

queries. He conjectured that the true bound is Ω(n). In this case, the complex-
ity of testing would be essentially the same as the complexity of learning, since
for any constant w, a simple Occam learning algorithm implies an O(n) upper
bound. Our final result confirms Goldreich’s conjecture.

Theorem 3. For any constant w ≥ 4, any adaptive algorithm for testing com-
putability by width-w OBDDs with variables in fixed order requires Ω(n) queries.

1.3 Techniques

All of our lower bounds are proven using a new technique developed by the first
two authors, along with Blais [6]. The result in [6] shows to reduce communi-
cation problems to testing problems, and thus leverage known lower bounds in
communication complexity to prove lower bounds in testing.

Traditionally, property testing lower bounds are proven using Yao’s Minimax
Lemma. One starts by designing two families of objects- one family of yes in-
stances (objects which have the property), and another of no instances (objects
which are far). In the next step, one defines a distribution over each family, and
then one must show that no deterministic algorithm can distinguish with high
probability whether a function is drawn from the yes or no family. This step
often involves nontrivial technical analysis. The philosophy put forth in [6] is
that one can often eliminate the work required in this step, by creating yes and
no instances which correspond to the yes and no instances of a communica-
tion problem. If strong lower bounds for the communication problem are already
known, no new technical analysis is required.

Roughly speaking, the technique given in [6] translates one-way communica-
tion lower bounds to nonadaptive testing bounds, and two-way communication
lower bounds to adaptive testing bounds. This was observed in [6], though no
examples were given there of nonadaptive bounds that did not also apply to the
adaptive case. For testing width-2 OBDDs in the fixed-order case, the nonadap-
tive complexity is much higher than the adaptive complexity. Thus, to prove
Theorem 1, we must reduce from a communication problem that is hard when
one-way communication is allowed, but easier when two-way communication is
allowed. Our solution is to use an asymmetric communication problem for which
this is known to be the case. Namely, we use the augmented-index problem, a
variant of the well-known index problem. These problems have long been useful
for proving streaming lower bounds [19, 21, 10], and now find a use in property
testing as well. (We note that our proof of Theorem 2 has a similar flavor, and
features a reduction from the index problem. However, as we remarked earlier,

Ron and Tsur have subsequently improved this to an adaptive lower bound of
Ω(n), via a reduction from the symmetric set-disjointness problem.)

2 Preliminaries

For two boolean functions f, g : {0, 1}n → {0, 1}, the distance between f and g,
denoted d(f, g) is equal to Prx[f(x) 6= g(x)].

We will work in the standard property testing model. Let P denote a property
(a subset) of boolean functions. Then a tester for P is a randomized algorithm
which when given query access to a function f : {0, 1}n → {0, 1} and a distance
parameter ε, outputs “accept” with probability at least 2/3 if f ∈ P, and “reject”
with probability at least 2/3 if d(f, g) > ε for all g ∈ P. A one-sided tester is a
tester which outputs “accept” with probability 1 if f ∈ P. A nonadaptive tester
is a tester which chooses its entire query set at the start of the algorithm.

We use Q(P) to denote the minimum query complexity of a (possibly adap-
tive) tester for P, and Qna(P) to denote the minimum query complexity of a
nonadaptive tester for P.

A two-party communication problem is defined by a function C : A × B →
{0, 1}. Alice has an input a ∈ A and Bob has an input b ∈ B, and they would
like to compute the value of C(a, b). We work in the public randomness model,
where Alice and Bob generate messages based on random bits they both see.

We use R(C) to denote the minimum number of bits they must communicate
for them both to compute C(a, b) with probability at least 2/3 on any input pair
(a, b). We use R→(C) to denote the one-way complexity- that is, the number of
bits Alice must communicate for Bob to compute C(a, b) with high probability
(without sending any message to Alice).

For more details on communication complexity, consult the standard work
of Kushilevitz and Nisan [20].

2.1 Reducing Communication Problems to Testing Problems

In this section, we give a sketch of the lower bound approach in [6]. We refer the
reader to that paper for a more formal treatment.

Lemma 1. Let C be a communication problem and P a property. Given func-
tions f : {0, 1}n → {0, 1} and g : {0, 1}n+1 → {0, 1}, define the function
h = h(f, g) : {0, 1}n → {0, 1} as

h(x) := g(f(x), x)

Suppose there is a way for Alice and Bob to create functions fa and gb based
on their inputs such that (i) h(fa, gb) ∈ P if C(a, b) = 1, and (ii) h(fa, gb) is
Ω(1)-far from P if C(a, b) = 0. Then,

1. R→(C) ≤ Qna(P), and
2. R(C) ≤ 2Q(P).

Remark: In most reductions, h is defined as h(x) := fa(x)⊕ gb(x) for some gb
independent of f(x); however, this need not always be the case. In Section 4, we
crucially rely on the asymmetry of the general construction.

Proof. (sketch) For the latter case, suppose there is an adaptive testing algorithm
A for P. Alice and Bob can cooperatively run this algorithm on h, using shared
randomness to decide which values of h to query. Every time A queries h(x)
on some x, Alice sends f(x) to Bob, who then computes h(x) and returns it to
Alice. In this way, both players maintain the list of query results {h(x)} and can
therefore generate successive values to query. If A is indeed a testing algorithm
for P, then at the end of the protocol they will know the value of C(a, b) with
high probability; the number of bits exchanged is twice the number of queries
made by A.

The former case is similar. The only difference is that since queries are gen-
erated nonadaptively, Alice can send Bob {f(x)} in a single message. Thus, the
communication cost equals the query complexity of the testing algorithm.

2.2 Communication Complexity Problems

To prove our lower bounds, we give reductions from some standard communica-
tion problems. First, the set-disjointness problem:

Set-Disjointness. Alice and Bob are given n-bit inputs a and b and must
compute

disj(a, b) :=

n∨
i=1

ai ∧ bi

It is well-known that the two-way communication complexity, R(disj), is Ω(n),
even with the promise that ai ∧ bi = 1 for at most one i [18].

For our width-2 OBDD bounds, where the nonadaptive complexity is larger
than the adaptive complexity, it is necessary for us to reduce from communication
problems where the one-way complexity (where Alice is allowed to send to Bob,
but not vice-versa) is larger than the two-way complexity. We use the following
two problems:

Index. Alice has an n-bit input a, and Bob has a log n-bit index i ∈ [n] (through-
out, we will use the shorthand [n] to denote the set {1, . . . , n}). Bob’s goal is to
compute

index(a, i) = ai

It is well-known that the one-way complexity, R→(index), is Ω(n) [1].

Augmented-Index. augmented-index is nearly identical to index, but Bob
is also allowed to see bits a1 . . . ai−1 without incurring any communication cost.
Even with this additional “free” information, the one-way communication com-
plexity, R→(augmented-index), remains Ω(n) [2].

2.3 Branching Program Basics

A binary decision diagram (BDD), or branching program, is a layered directed
acyclic graph with a distinguished source vertex and two sink vertices, labeled
0 and 1. Each internal vertex is labeled with an input variable and has out-
going edges to vertices in the next layer of the BDD. These edges are labeled
with possible outcomes for the variable. In an ordered binary decision diagram
(OBDD), all vertices in a layer are labeled with the same input variable. The
width of an OBDD is the maximum number of vertices in any layer. An OBDD
is read-once if vertices in different layers are labeled by different variables. In
this work, we are only concerned with read-once OBDDs, and so we will often
drop the “read-once” modifier.

We will use some basic definitions and claims developed by Ron and Tsur.
The following can be found in [25]. The proofs of the facts are left as exercises.

Definition 1. A function f : {0, 1}n → {0, 1} is a linear function of x1 . . . xn
if it can be written in the form f(x) = b0 +

∑n
i=1 bixi where b0 . . . bn ∈ {0, 1}.5

Fact 4 A function f : {0, 1}n → {0, 1} is computable by a width-2 OBDD with
variables in fixed order x1 . . . xn if and only if it can be written as

f(x) = fn(xn, fn−1(xn−1, . . . f2(x2, f1(x1))))

where f1 is a boolean function on one bit and f2, . . . , fn are boolean functions on
two bits. f is computable by a width-2 OBDD with variables in arbitrary order
if and only if it can be written in the same form after some permutation π ∈ Sn

is applied to the variables.

We will slightly abuse notation, and use fi both to refer to a function on 2
variables (the i’th variable and fi−1), as well as a function on the first i variables.

Definition 2. Consider a function f : {0, 1}n → {0, 1} expressed in the form
given in Fact 4. We say that a level i is relevant if the function fi depends on the
value of xi. Relevant levels can be either linear or blocking. A relevant level is
a linear level if fi is a linear function of xi and fi−1. Otherwise, it is blocking.

Fact 5 If i is a blocking level, then fi is either the and or or of a ∈ {xi, xi}
and b ∈ {fi−1, fi−1}. Thus, if i is blocking level, there exists a setting t ∈ {0, 1}
for xi such that fi is constant, regardless of the value of fi−1.

Definition 3. Let f : {0, 1}n → {0, 1}. We define the influence of variable i in
f as Inff (i) := Prx[f(x) 6= f(x⊕i)], where x⊕i denotes x with the i’th bit flipped.

Lemma 2. Let M be a width-2 OBDD with variables in order x1 . . . xn. Let
j < i and suppose level i is a blocking level. Then Inffi(j) ≤ 1

2 Inffi−1
(j).

Fact 6 Let f, g : {0, 1}n → {0, 1} and suppose there is a variable xi such that
|Inff (i)− Infg(i)| = τ . Then d(f, g) ≥ τ/2.

5 In this definition and throughout the paper, addition is taken to be over GF (2).

3 A Lower Bound for Testing Fixed-Order Width-2 and
Width-3 OBDDs

In this section we prove Theorem 1. The proof will be via a reduction from
augmented-index. The main idea is that Alice will use her input to form a
linear function, and Bob will use his index (plus extra knowledge) to form a linear
function plus an AND of two consecutive variables. They then take the xor of
their two functions. If ai = 1, then in the resulting function the AND will appear
before the linear part, so it will be computable by a width-2 OBDD. However
if ai = 0, then in the resulting function the AND will appear after a variable in
the linear part, so it will be far from any width-2 or width-3 OBDD (where the
variables must appear in a fixed order). To show that our “no” instances are far,
we make use of the following lemma.

Lemma 3. Let h : {0, 1}n → {0, 1} be a function of the form h(x) = xi+(xi+1∧
xi+2) +

∑
k∈S xk for some i ∈ [n− 2] and S ⊆ {i+ 3, . . . , n}. Then,

i. h is 1/4-far from any width-2 OBDD, with variables in fixed order x1 · · ·xn.
ii. h is 1/8-far from any width-3 OBDD, with variables in fixed order x1 · · ·xn.

In the case of width-2 OBDDs, Lemma 3 essentially appears as Claim 6 in
[25]. We leave the proof of Lemma 3 to the full version of this paper. We are
now ready to prove Theorem 1.

Theorem 1 (Restated). Any nonadaptive testing algorithm requires Ω(n)
queries (and thus any adaptive algorithm requires Ω(log n) queries) to test

i. width-2 OBDDs with variables in a fixed order.
ii. width-3 OBDDs with variables in a fixed order.

Proof. Let n′ = b(n− 3)/4c. We will show a reduction from augmented-index
on n′ variables. Since the one-way communication complexity of augmented-
index is Ω(n′), and n′ is linear in n, this will imply an Ω(n) testing bound.

First, Alice uses her input a ∈ {0, 1}n′ to form the function f , and Bob uses
his input i ∈ [n′] (plus knowledge of a1 . . . ai−1) to form the function g as follows

f(x) :=

n′∑
k=1

x4k+3ak
and g(x) := (

i−1∑
k=1

x4k+3ak
) + (x4i+1 ∧ x4i+2)

Bob can then solve augmented-index by running a testing algorithm on the
joint function h(x) = f(x) + g(x) and having Alice send him the value of f(x)
whenever he needs to query h. It is easy to see that if ai = 1, then h(x) =

(x4i+1∧x4i+2)+x4i+3 +
∑n′

k=i+1 x4k+3ak
, so h is a width-2 OBDD. On the other

hand, if ai = 0 then h(x) = x4i + (x4i+1 ∧ x4i+2) + (
∑n′

k=i+1 x4k+3ak
), so by

Lemma 3, h is far from any width-2 or width-3 OBDD.

4 A Lower Bound for Testing Arbitrary-Order Width-2
OBDDs

In this section we prove Theorem 2. The proof will be via a reduction from
index. The main idea is that Alice will use her inputs to form a width-2 OBDD
on pairs of variables corresponding to the indices where ak = 1. Then Bob will
use his index i to append two more variables to the end of the OBDD. If ai = 0,
then no variable will be used more than once, so the resulting function will
remain a width-2 OBDD. If ai = 1, then two variables will be used twice, which
will cause the resulting function to be far from any (read-once) width-2 OBDD.

Theorem 2 (Restated). Any two-sided error, nonadaptive algorithm for test-
ing computability by width-2 OBDDs with variables in arbitrary order requires
Ω(n) queries (and thus, any adaptive algorithm requires Ω(log n) queries).

Proof. Let n′ = b(n−1)/2c. We will show a reduction from index on n′ variables.
Since the one-way communication complexity of index is Ω(n′), and n′ is linear
in n, this will imply an Ω(n) testing bound.

First, Alice uses her input a ∈ {0, 1}n′ to form the function

f(x) := x1 +

n′∑
k=1

ak(x2k + x2k+1)

Then Bob uses his index i ∈ [n′] to form the combined function

h(x) := (f(x) ∧ x2i) + x2i+1

We claim that Bob can solve index by running a testing algorithm on h. To
see this, first note that f is just a linear function on some subset of variables. If
ai = 0, then the variables x2i and x2i+1 do not appear in f , so the resulting h
is clearly a read-once width-2 OBDD.

If ai = 1, then the variables x2i and x2i+1 do appear in f . In this case, we
can write f(x) = f ′(x) + x2i + x2i+1, where f ′(x) is a linear function on some
non-empty subset of variables not involving x2i or x2i+1 (note that the variable
x1 is included in f just to guarantee that f ′ is always a linear function on at
least one variable). We can thus express the resulting h as h(x) = ((f ′(x)+x2i +
x2i+1) ∧ x2i) + x2i+1, which simplifies to the following

h(x) =

{
x2i+1 if x2i = 0

f ′(x) + 1 if x2i = 1

We claim that h is 1/8-far from a read-once, width-2 OBDD. To see this, first
note that any variable xk relevant to h has Infh(k) = 1/2. This is easily checked,
since (i) x2i+1 is influential if and only if x2i = 0, (ii) the variables relevant to
f ′ are influential if and only if x2i = 1, and (iii) x2i is influential if and only if
x2i+1 6= f ′(x) + 1, which happens exactly half the time (as x2i+1 and f ′(x) are
linear functions on disjoint subsets of variables).

Assume for contradiction that h is 1/8-close to some width-2 OBDD `. With-
out loss of generality, we can assume that `’s irrelevant variables come at the
beginning. This means that the last level of ` must be a blocking level. Other-
wise, if it is a linear level, the variable at that level will have influence 1 in `,
but only influence 1/2 or 0 in h, so by Fact 6, h and ` will be 1/4-far.

Since the last level of ` is blocking, there must exist a setting t ∈ {0, 1} for
the variable at the last level which makes the function ` constant. However, for
any fixed setting of any single variable in h, the resulting function is at least
1/4-far from constant. This is easily checked, since (i) fixing the value of x2i
induces either x2i+1 or f ′(x) + 1, both of which are 1/2-far from constant, (ii)
fixing the value of x2i+1 still allows h to be balanced when x2i = 1, so in this
case h is 1/4-far from constant, and (iii) fixing the value of a variable which
appears in f ′ still allows h to be balanced when x2i = 0, so in this case h is
also 1/4-far from constant. Since h and ` disagree on at least 1/4 of the settings
where `’s last variable is set to t, this implies they must be 1/8-far.

5 A Lower Bound for Testing Fixed-Order Width-w
OBDDs, for constant w ≥ 4.

In this section we prove Theorem 3, via a reduction from set-disjointness.
To perform the reduction, Alice and Bob will use the elements in their sets to
produce a set of and clauses. They then run a testing algorithm on the xor of
these clauses. Crucially, they will construct the clauses in such a way that when
their sets intersect, they produce at least k := blog2 wc clauses with interleaving
variables. This large number of interleaving variables forces the hard instances
to be far from computable by (fixed-order) width-w OBDDs.

In order to show that our hard instances are far, we make use of the following
technical lemma, which we prove in the full version of this paper. The lemma is
a generalization of the w = 4 case proved in Theorem 4.2 of Goldreich [15].

Lemma 4. Let k := blog2 wc and n′ := bn/2kc − 1. For boolean variables
x1, . . . , x2k, define predicates σ1, σ2, σ3, σ4 as

σ1(x1, . . . , x2k) := 0, σ2(x1, . . . , x2k) := (x1 ∧ xk+1) + . . .+ (xk−1 ∧ x2k−1)

σ3(x1, . . . , x2k) := xk ∧ x2k, σ4(x1, . . . , x2k) := (x1 ∧ xk+1) + . . .+ (xk ∧ x2k)

and for v1, . . . , vn′ ∈ {1, 2, 3, 4}, define a boolean function h = hv1,...,vn′ as

h(x) := x1 +

n′∑
i=1

σvi(x2ki+1, . . . , x2ki+2k)

i. If vi ∈ {1, 2, 3} for all i, then h is computable by a width-w OBDD.
ii. If vj = 4 for a unique j, then h is 1

2w2 -far from any width-w OBDD.

Theorem 3 (Restated). For any constant w ≥ 4, any adaptive algorithm for
testing computability by width-w OBDDs with variables in fixed order requires
Ω(n) queries.

Proof. Let k := blogwc and n′ := bn/2kc − 1. We will reduce from set-
disjointness (with the promise that Alice and Bob’s sets intersect in at most
one place) on n′ variables. Since n′ is Θ(n), this will imply an Ω(n) lower bound.

Let S, T ⊆ [n′] denote Alice’s and Bob’s inputs respectively. Then Alice
constructs the function f and Bob constructs the function g as follows

f(x) :=
∑
i∈S

(x2ki+1 ∧ x2ki+k+1) + . . .+ (x2ki+k−1 ∧ x2ki+2k−1)

g(x) :=
∑
i∈T

(x2ki+k ∧ x2ki+2k)

We will show that they can solve set-disjointness by running a testing algo-
rithm for width-w OBDDs on h(x) := x1 + f(x) + g(x). Note that each set of
2k consecutive variables (x2ki+1, x2ki+2, . . . , x2ki+2k) depends on a unique co-
ordinate from [n′], and that h contains σ4(x2ki+1, . . . , x2ki+2k) if and only if
i ∈ S ∩ T . The theorem thus follows from Lemma 4.

Acknowledgments

We would like to thank Dana Ron and Gilad Tsur for helpful discussions, and
for sharing their manuscript [28] and their improvement to our Theorem 2.

References

1. Farid Ablayev. Lower bounds for one-way probabilistic communication complex-
ity and their application to space complexity. Theoretical Computer Science,
175(2):139–159, 1996.

2. Z. Bar-Yossef, T. S. Jayram, R. Krauthgamer, and R. Kumar. The sketching
complexity of pattern matching. In 8th International Workshop on Randomization
and Computation (RANDOM), 2004.

3. Francesco Bergadano, Nader H Bshouty, Christino Tamon, and Stefano Varric-
chio. On learning branching programs and small depth circuits. In Computational
Learning Theory: Proc. Third European Conference. Lecture Notes in Articial In-
telligence, pages 150–161. Springer-Verlag, 1997.

4. Eric Blais. Improved bounds for testing juntas. In Proc. 12th International Work-
shop on Randomization and Approximation Techniques in Computer Science, pages
317–330, 2008.

5. Eric Blais. Testing juntas nearly optimally. In Proc. 41st Annual ACM Symposium
on the Theory of Computing, pages 151–158, 2009.

6. Eric Blais, Joshua Brody, and Kevin Matulef. Prop-
erty testing lower bounds via communication complexity.
http://web.mit.edu/matulef/www/papers/PTviaCC.pdf, 2011.

7. Manuel Blum, Michael Luby, and Ronitt Rubinfeld. Self-testing/correcting with
applications to numerical problems. J. Comput. Syst. Sci., 47:549–595, 1993. Ear-
lier version in STOC’90.

8. Nader H. Bshouty, Christino Tamon, and David K. Wilson. On learning width two
branching programs. Inf. Process. Lett., 65:217–222, February 1998.

9. Ilias Diakonikolas, Homin Lee, Kevin Matulef, Krzysztof Onak, Ronitt Rubinfeld,
Rocco Servedio, and Andrew Wan. Testing for concise representations. In Proc.
48th Annual IEEE Symposium on Foundations of Computer Science, pages 549–
558, 2007.

10. Khanh Do Ba, Piotr Indyk, Eric Price, and David P. Woodruff. Lower bounds
for sparse recovery. In Proc. 21st Annual ACM-SIAM Symposium on Discrete
Algorithms, 2010.

11. F Ergün, R Kumar, and R Rubenfeld. On learning boundedwidth branching pro-
grams. In in Proc. 8th International Conference on Learning Theory, pages 361–
368, 1995.

12. Eldar Fischer, Guy Kindler, Dana Ron, Shmuel Safra, and Alex Samorodnitsky.
Testing juntas. J. Comput. Syst. Sci., 68:753–787, 2004.

13. Eldar Fischer, Eric Lehman, Ilan Newman, Sofya Raskhodnikova, Ronitt Rubin-
feld, and Alex Samorodnitsky. Monotonicity testing over general poset domains. In
Proc. 34th Annual ACM Symposium on the Theory of Computing, pages 474–483,
2002.

14. Ricard Gavald‘a and David Guijarro. Learning ordered binary decision diagrams.
In In 6th International Workshop on Algorithmic Learning Theory, Lecture Notes
in Artificial Intelligence No. 997, Jantke, Shinohara, Zeugmann (Eds. Springer-
Verlag, 1995.

15. Oded Goldreich. On testing computability by small width OBDDs. In Proc.
14th International Workshop on Randomization and Approximation Techniques in
Computer Science, pages 574–587, 2010.

16. Oded Goldreich, Shafi Goldwasser, Eric Lehman, Dana Ron, and Alex Samorod-
nitsky. Testing monotonicity. Combinatorica, 20(3):301–337, 2000.

17. Oded Goldreich, Shafi Goldwasser, and Dana Ron. Property testing and its con-
nection to learning and approximation. J. ACM, 45(4):653–750, 1998.

18. Johan H̊astad and Avi Wigderson. The randomized communication complexity of
set disjointness. Theory of Computing, pages 211–219, 2007.

19. Daniel M. Kane, Jelani Nelson, and David P. Woodruff. On the exact space com-
plexity of sketching and streaming small norms. In Proc. 21st Annual ACM-SIAM
Symposium on Discrete Algorithms, 2010.

20. Eyal Kushilevitz and Noam Nisan. Communication Complexity. Cambridge Uni-
versity Press, Cambridge, 1997.

21. Frédéric Magniez, Claire Mathieu, and Ashwin Nayak. Recognizing well-
parenthesized expressions in the streaming model. In Proceedings of the 42nd
ACM symposium on Theory of computing, STOC ’10, 2010.

22. Michal Parnas, Dana Ron, and Alex Samorodnitsky. Testing basic boolean formu-
lae. SIAM J. Disc. Math., 16(1):20–46, 2002.

23. Vijay Raghavan and Dawn Wilkins. Learning branching programs with queries.
In Proc. 6th Annual Workshop on Computational Learning Theory, 1993.

24. Dana Ron. Algorithmic and analysis techniques in property testing. Foundations
and Trends in Theoretical Computer Science, 5(2):73–205, 2009.

25. Dana Ron and Gilad Tsur. Testing computability by width two obdds. In 13th
International Workshop on Randomization and Computation (RANDOM), 2009.

26. Dana Ron and Gilad Tsur. Testing computability by width-2 obdds where the
variable order is unknown. In 7th International Conference on Algorithms and
Complexity, 2010.

27. Dana Ron and Gilad Tsur. Personal communication. 2011.
28. Dana Ron and Gilad Tsur. Testing computability by width-two obdds. (Journal

version). Manuscript, 2011.

