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Abstract. The Hausdorff distance is a measure defined between two sets in some metric 

space. "Ibis paper investigates how the Hausdorff distance changes as one set is transformed 

by some transtormation group. Algorithms.to find the minimum distance as one set is trans- 

formed have been described, but few lower bounds are known. We consider the complexity 

of the graph of the Hausdorff distance as a function of transformation, and exhibit some 

constructions that give lower bounds for this complexity. We exhibit lower-bound construc- 

tions for both sets of points in the plane, and sets of points and line segments; we consider 

the graph of the directed Hausdorff distance under translation, rigid motion, translation 

and scaling, and affine transformation. Many of the results can also be extended to the 

undirected Hausdorff distance. These lower bounds are for the complexity of the graph of 

the Hausdorff distance, and thus do not necessarily bound algorithms that search this graph; 

however, they do give an indication of how complex the search may be. 

1. I n t r o d u c r u a  

The Hausdorf-f d~stance betwec.n two sets A and B is defined as 

H(A,  B) = max(h(~,  B), h(B, A)), 

where 

h(A, R) = sup i n f l l a  - bl l  
aEA beB 

and II �9 II is some norm (here restricted to be some Lp norm). This paper examines the 

" This work was supported in part by National Science Foundation PYI Grant IRI-9057928 and matching 

funds from General Electric, Kodak. and Xerox, and in part by Air Force Contract AFOSR-91-0328. 



136 w.J. Rucldidge 

case where A and B are compact subsets of the plane cons~.sting of either a finite number 

of points, or a finite number of points and nonintersecting line segments. 

h(A, B) is called the directed Hausdorff distance from the set A to the set B. H(A, B) 

is the undirected Hausdorff distance between the sets A and B. h (A, B) is small exactly 

when every point in A is close to some point in B; h(B, A) is small when every point 

in B is close to some point in A, and H(A, B) is small when both of these are true. 

In particular, h(B, A) < e exactly when for any b ~ B there is some a e A such that 

]la - bl[ < e. Let A ~ = A (D D(e) where (9 is the Minkowski sum, and D(e) is the 

closed disk of radius e (the set of all points x such that IIx II -< e). A key observation [ 1], 

[4] is that, for compact sets such as we are considering, h(B, A) <_ e iff B _c M.  

In many problems, we want to determine the transformation of one set which brings it 

into closest correspondence with the other set. Let G be some group of transformations. 

Then for any g e G define 

FG(g) = H(A, g(B)). 

In other words, we transform the set B by some transformation g and compute the 

Hausdorff distance between this transformed set and A. This defines a function of g, and 

we wish to determine the minimum value of this function, as the transformation which 

gives rise to this minimum value is the one bringing B into closest correspondence 

with A. Many approaches to determining this minimizing transformation are based on 

search!ng the graph of this function (for example, by enumerating the local minima, as 

in [5]). It is therefore of interest to know what the geometric complexity of this graph 

may be. Upper bounds have been determined for some transformation groups, but few 

lower bounds were known [5], [4]. We also consider the graph of the function 

fo(g) = h(g(B), A), 

which is the graph of the directed distance from the transformed set g(B) to A. 

We exhibit lower bounds for the complexity of such graphs as follows. Each con- 

struction is parametrized by two values, e and n (and possibly other parameters). For 

each one, we fix some values .for e, n, and any other parameters, and construct sets A 

and B having kn elements each, for some constant k depending on the problem. We then 

show that the set {g I f c  (g) < e} has f2 ((kn) t) = f2 (n t) complexity, for some constant 

l depending on the problem. We do this by showing that this set has f2 (n t) distinct con- 

nected components. Since each one must contain some local minimum of fG (g), this 

shows that there are ~(n l) local minima in the graph of f6(g). In some cases, we also 

show that the graph of Fc(g) may have this complexity. Previous constructions, such as 

those in [5] and [4], have been for the directed Hausdorff distance alone. 

The constructions for the undirected Hausdorff distance and the constructions for the 

directed distance on which they are based may have high complexity in a small space: 

for a fixed e, we can make F6 (g) have f2 (n t) Complexity in an arbitrarily small region of 

transformation space (i.e., this does not depend on just shrinking e). This is motivated by 

the observations in [2] and [7] that, for some groups G, if Fc (g) < 2, then g must lie in 

a small region in transformation space. If the undirected Hausdorff distance could have 

only small complexity in a small area, we might be able to obtain efficient algorithms: if 

the global minimum of Fo(g) is restricted to lie in a small area, then searching only this 
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Table 1. Lower bounds for the complexity of the Hausdorff distance between two sets of size n. "Eae only 
previously known lower bounds were those by Chew and Kedcm [4] for the directed distance under translation 

(for both sets of points, and sets of points and line segments). 

Point sets 
results for fG(t) and FG(t) 

except ~- for fc;(t) only 

Points and segments 
results for fa (t) only 

Transformation group L t L2 L~o Any Lp L2 

Translation ~(n 3) ~(n 3) fZ(n 3) f2(n 4) 

Rigid motion f2 (n 5) 

Translation and x, y scale ~(n 7) f2(n 7 ) ~2 (nT) v+ [2(n 8 ) 
Affine transformation f2 (n 9) ~ (n 9 ) f2 (n 9 ) f2 (n 12) 

s2 (n 6 ) 

area of its graph can take less time than searching the entire graph. The constructions 

here show that, in some cases, this is not possible. 

in this paper we deal with four transformation groups: the group Tr of translations, the 

group Rig of rigid motions (translations and rotations), the group Sc of translations and 

(x, y) scaling, and the group Aft of nondegenerate affine transformations. Table 1 shows 

the problems for which we present lower bounds; Table 2 shows the running times of  the 

algorithms which solve those problems. It can be seen that in most cases, the running 

times are nearly tight with the lower bounds. The exception is the bound for point sets 

under translation with the LI and Lot norms in [4], where an algorithm was g~ven which 

uses the structure of  the problem under these norms to avoid explicitly searching the 

entire graph. It may be possible to develop algorithms using similar techniques for some 

of the other problems, and so it should be emphasized that the lower bounds presented 

here are for the complexity of  the graph of  the Hausdorff distance, and do not necessarily 

give lower bounds for algorithms that determine the optimal transformation. 

2. Point Sets Under Translation 

Let t be a translation. Define 

FTr(t) = H(A,  B ~) t), (1) 

frr(t) = h(B ~) t, A) (2) 

as the (undirected and directed, respectively) Hausdorff distance between A and B as 

a function of  translation. This section describes two constructions of point sets A and 

Table 2, "lSme bounds for algorithms that find the exact minimum Hausdorff dista~nee under transformation 
between two sets of size n. 

Point sets Points and segments 

Problem L t,Loo L2 L bLot L2 

Translation O(n 2 log 2 n) [4] O(n 3 log n) [5] O(n4a(n)) [5] O(n 4 log 3 n) [I] 

Rigid motion O(n ~ log:'n) [3] O(n 6 log: n) [3] 
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B. each containing O(n) points, for which FT"r(t) and fr , ( t )  have ~ (n  3) local minima 

within an arbitrarily small area. The first construction is for the Ll or L ~  norm; the 

second is for the L2 norm. 

2.1. The L l and Loo Example 

We use the Loo norm throughout; rotating the point sets by 45 ~ gives the construction 

for Ll. 

Let A consist of two diagonal rows, each of n points spaced a apart (i.e.. cr apart in 

both x and y). The rows are 2e + 8 apart, where 8 < cr/n. A and A ~ are shown in Fig. 1. 

The area left uncovered by A ~ contains a staircase of g2 (n) steps, in the gap between 

the two sides. The width of this gap is 8. Note that by reducing ~, the two rows can 

be compressed inward, thereby making the stairsteps (and thus the total length of the 

staircase) as small as desired. 

Let B consist of two diagonal rows of points, each of n points, as shown in Fig. 2. 

The points in each row are slightly more than ~ apart, and are placed so that one row lies 

around the horizontal part of a stairstep, and the other lies around the adjacent vertical 

Fig. 1. The sets A and A E for the Loo lower bound for point sets under translation. 
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Fig. 2. The sets A ~ and B for the Loo lower bound for point sets under translation. 

part. Since the stairstep lengths are all or, and ~ < cr/n, each row of B is shorter (in 

height and width) than a stairstep segment. 

Consider translating B slightly upward or downward. The points around the vertical 

stairstep remain inside A s or outside it, as they were before, but the points around the 

horizontal stairstep move into and out of A t as B moves, similarly, as B moves left or 

fight, the points around the vertical stairstep move in and out of A t, but the points around 

the horizontal stairstep do not. We can thus see f~ (n a) different configurations of  B with 

respect to this one stairstep, since we can independently choose where the gaps lie in the 

two rows of B. B can also be translated so that it straddles any of the other stairsteps, 

each of which gives rise to f2 (n 2) configurations, for a total of'f2 (n 3) configurations. We 

only considei" configurations where there is at least one point of each row of B on either 

side of the gap. Each one of these configurations can be labeled with three numbers from 

1 to n - 1: the number of  points in the bottom row of  B that are inside the upper-left 

component of  A t (i.e., to the left of  the gap), the number of  points in the top row of  B that 

are to the left of  the gap, and the number of the stairstep which is straddled by B. f2 (n 3) 

such labels are possible. Suppose h and t2 are translations representing configurations 

with distinct labels. Then frr(tx) < e and fr,(t2) <_ e, since each translation places B 

entirely inside A t, but any path from tl to t2 must pass through a translation t where 

fr,(t) > e: either some point in one of the rows of B must cross the gap, in which case 

frr(t) > e when t is a translation placing that point inside the gap, or B must be moved 

so as to straddle another stairstep, in which case again at least one point of B must move 

through the gap. All these labels therefore label distinct regions. 

Another way to visualize this is similar to that used in [4]: define S(A, e, b) for some 

b ~ B t o b e A e ~ - b . T h e n t  ~ S(A, e, b)exactlywhenb+t ~ Ae.Thisset is thereforethe 

set of  all translations which map b into A e. Now define S(A, e, B) -~ Nb~s S(A, e, b). 

Then t ~ S(A, e, B) iff B ~ t c A t, or fr~(t) < e; S(A, e, B) is therefore the set of  all 

translations t which make h(B ~ t, A) < e. 

We can construct S(A, e, B) by making a copy of A t for every point in B, translating 

these copies and forming their intersection. Alternately, we can consider making a copy 

of the complement of A ~ for every point in B, translating these copies, and forming their 
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Fig. 3. Part of S(A. r B) for the Loo lower bound for point sets under translation. 

union. This union has a hole for every connected component of S(A, e, B). Figure 3 

shows part of such a union. Each jagged line represents one segment of the gap staircase 

of some translation of A e (i.e., portions of one copy of the complement of AC). There 

are two sets of translations of this staircase, corresponding to the two rows of B. These 

two sets intersect in f2 (n) crosshatches, each having f2(n 2) holes; Fig. 3 shows two of 

the crosshatches. 

We now note that d can be made as small as desired, thereby narrowing the staircase 

gap and reducing the lengths of the rows of B; and the staircase itself can be compressed 

as much as is desired by reducing a (as long as 8 stays smaller than a/n).  This means 

that, for a fixed n and e, we can compress the f2 (na)-complexity region down into an 

arbitrarily small area, bounded by a square nor on each side, since that is the length of 

the staircase. 

The area where the undirected Hausdorff distance Frr (t) is no greater than e can also 

have large complexity in a small space. Set cr < e/n so that the rows of A have length 

less than e, and add two points to B, one in the middle of each row of A. Then if the 

main body of B is translated anywhere on the staircase, these two extra points remain 

close to the rows of A. Since the rows have length less than e, there is always some 

point of B within e of any point of A, for any translation in the complex region. Thus, 

H(A, B ~ t )  > e exactly where h(B ~ t ,  A) > e (at least in this region of interest), since 

h(A, B ~ t) is always at most e. The undirected Hausdorff distance Frr(t) therefore has 

complexity ~2 (n3). 

2.2. The L2 Example 

In this subsection we show how the previous example can be modified so that it works 

with the L2 norm. The set A consists of two vertical rows ofn points, spaced cr apart; the 

two rows are staggered by tr/2 (see Fig. 4). The distance between the rows is set such 
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Fig. 4. The sets A and A c for the L2 lower bound for point sets under translation. 

that the circles of A e- are 8 apa~'t at their closest approach; the gap between the left and 

right sides is not of constant width. 

The set B again consists of two rows of n points. These rows are horizontal, and 

spaced ~/2 apart. The points in each row are slightly more than 28 apart. They are 

shown superimposed on A t in Fig. 5. The idea is that, no matter what values a ,  e, and 

n have, if 8 is small enough, then it is possible to choose n I and n2 independently, and 

position B such that B _c A t, there are n l points of the top row on the left side of the gap, 

and no_ points of the bottom row on the left side of the gap. This gives f2 (n 2) possible 

configurations of B around a single "wobble" in the gap; as there are f2 (n) such wobbles, 

there are f2 (n 3) different configurations of B with B __. AL A labeling argument, similar 

to that in the previous subsection, shows that these configurations are all distinct. 

This is difficult to visualize, so again we look at S(A, ~, B). We construct this, as 

before, by taking the union of O(n) copies of the gap, translated by various amounts, 

and showing that this union has ~ (n 3) disjoint holes. 

Since the actual gap has such a complicated shape, we deal only with a small part of 

it. In particular, we consider only the regions where the gap's width is between 8 and 

28 (recall that 8 is the width of the narrowest part of the gap). There are ~(n)  regions 

where this is true, each one centered around a place where the gap is at its narrowest. We 

bound each such region by a rectangle. These rectangles are 28 wide by ,1 long, where 
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Fig. 5. The sets A E and B for the L2 lower bound for point sets under translation. 

)~ is determined by e and 8, and is equal to ~ - 82. See Fig. 6 for an illustration of 

this region. Now, note that )~/8 = ~ .  Thus, for any fixed e, we can make ~./8 
as large as we like by making 8 small enough: as 8 decreases, the rectangles get both 

narrower and shorter, but their length-to-width ratio increases. 

The gap is narrowest exactly where a line from one point in the left row of A to 

one of its neighbors in the right row crosses it. The interesting rectangles are oriented 

perpendicular to such lines. There are two sets of such rectangles, one leaning to the 

left and the other leaning to the fight. The angle between these two sets decreases as ~r 

decreases, but is not significantly affected by 8. Suppose that we take n fight-leaning 

rectangles, and position them slightly more than 28 apart (the same spacing as the points 

of B), so that the right edge of one rectangle almost touches the left edge of the next. 

Then, for a small enough value of 8, .~/8 is large enough that one left-leaning rectangle 

can intersect all n of these right-leaning rectangles. 

In constructing S(A, e, B), we make n copies of the gap stacked slightly more than 

28 apart (corresponding to one of the rows of B), and have these intersect with another n 

copies, shifted down by tr/2 (corresponding to the other row), giving f2 (n 3) intersections: 

�9 each left-leaning rectangle from one of the copies intersects n fight-leaning rectangles 

from other copies, and vice versa. Figure 7 shows part of such an arrangement. There are 

f2 (n 2) holes in the crosshatch, and f2 (n) such crosshatches in the complete arrangement. 

As in Section 2.1, we can independently choose n l and n2, and position B in such a way 

that n I points from its top row lie in the left half of A ~, and n2 points from its bottom row 

lie in the left half. There are ~2 (n) such placements for any nl and n2 (1 _< nl, n2 < n), 

one around each wobble of the gap, for ~2 (n 3) different configurations. Going from some 

configuration to another with a different n I or n 2 involves some point crossing the gap. 
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Fig. 6. A closeup of the interesting region of the gap. 

Fig. 7. Part of S(A, ~, B) for the L2 lower bound for point sets under translation. 
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Also, since the points of B are spaced about 23 apart and the gap becomes wider than this 

between two adjacent wobbles, it is impossible to translate B from one configuration to 

another with the same n ~ and n2 without some point moving outside A ~. Thus, all these 

(n 3) configurations all belong to different connected components of S(A. e, B). These 

components are all contained in an area which is O(nr high by O(n3) wide. and so by 

a suitable choice of ~r, this region of high complexity can be made arbitrarily small. 

As in Section 2.1, if ha  < e, we may augment B by two points, one each in the middle 

of the two rows of A, such that h (A, B ~ t) < e for all translations in the complex region; 

this construction therefore similarly shows that the undirected Hausdorff distance can 

have large complexity in a small area. 

3. Sets of Points and Line Segments Under Translation 

This section describes a construction of two sets A and B, each consisting of 2n points 

and nonintersecting line segments, for which the graph of the directed Hausdofff distance 

as a function of translation fro(t) = h(B ~ t, A) has I2 (n 4) complexity. 

Fix t and n and pick 6 such that ~ < e In.  Now let A consist of a group of n horizontal 

segments, each of length (n - 1)(2e + ~), spaced 2t  + ~ apart, plus a similar group 

of n vertical segments. Under any Lp norm, A ~ then consists of n horizontal bars and 

n vertical bars, with gaps of width ~ between adjacent bars; the shape of the caps on 

the ends of the bars depends on the exact norm. Now, let B consist of a vertical row of 

n points, spaced 23 apart, located at the bottom-left comer of the group of horizontal 

lines in A, plus a similar horizontal row located at the bottom-left comer of  the group of 

vertical lines. Figure 8 shows B overlaid on A and A ~. 

There are f2(n ~) different configurations of B with respect to A: the vertical row 

of B can b e straddling any of the n - 1 gaps, and from 1 to n - 1 points can lie 

below the gap; similarly, the horizontal row can be placed in any one of g2 (n ~) different 

~ : ~ x ' - ~ , ~ : ~ > ~ s  ~ ~ : ~ - ~ . ~ ! ~ ; ~ -  ~ ::~- ..  

f ~ ~ ~  
~ ~ ~ ' ~ : ~  ...... : .... . ~ : ~ ,  . ~ ~ ' ~ ~ "  .=,. ~,. 

~ ~ ~ ~ ~ ~ : % ~ '  "~:~:~ .,,~;~.-. - ,~;- 

. : .~ : . . , . .~ :~.~.~.  �9 . . . . . . .  ~ . . . . . . . . . . . . . .  :~ . . . .  ~,-~ .~.-..:  . . . .  

~ , . ~  

Fig. 8. The sets A. A ~, and B for points and segments under translation. 
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configurations with respect to the vertical segments of A. Sliding B horizontally does 

not affect the configuration of the vertical row, and sliding it vertically does not affect 

the configuration of the horizontal row (as long as these rows remain within limits); the 

�9 configurations of the two rows may thus be chosen independently, for a total of f2 (n 4) 

different configurations. These are all clearly distinct, since any two differ in the number 

of points of B contained in one of the connected components of A ~. 

4. Point Sets Under Rigid Motion 

Let t be a translation and let 0 be an angle. Define 

FRig(t, O) = H(A, ro(B) ~ t), (3) 

fRi~(t, O) = h(ro(B) ~ t, A), (4) 

where ro (B) denotes the set obtained by rotating B by 0 counterclockwise about the 

origin. We use the L2 norm wherever we deal with rotation, since it is the only rotationally 

symmetric Lp norm. 

The.following construction shows that there can be f2 (n 5) distinct connected compo- 

nents in (t, ~9) space where the undirected Hausdorff distance FRig (t, 8) between two sets 

of ~ (n) points is less than e. It is based on an augmentation of A and B from Section 2.2. 

For clarity, we refer to the sets A and B constructed for the translational lower bounds 

as ATr and Brr. 

First, note that it is possible to rotate Brr from that construction by some very small 

angle 0rain about its centroid while still maintaining the ~ (n 3) Complexity of h (Brr 

t, Arr). This is because there must be, in the ~ (n 3) arrangement of connected components 

of S(A, e, B), some minimum distance between features, and so any rotation that does 

not move any feature of the arrangement more than half this distance cannot change the 

overall topology of the arrangement: none of the connected components merge, nor do 

any vanish. 

The augmentation to Ar~ consists Of n points along a vertical line, spaced less than 

e/(2n) apart. Placing a disk of radius e about each gives a shape with two vertical 

scalloped edges: the left and right sides are close to vertical, but have n slight bulges or 

lobes. Call this row of points A2. 

Now, if A2 is located sufficiently far from the origin, and perpendicular to the line 

joining it to the origin, then it is possible to pass a circular arc (centered at the origin) 

through the inner scalloped edge so that it passes through each of the n lobes and the gaps 

between them. The arc does not pass through these lobes evenly, but cuts deeper into 

some of them than others. However, by moving the row farther away and thus increasing 

the radius of the arc, we may control the magnitude of this effect, since the arcapproaches 

a straight line as A2 moves away. By slightly adjusting the radius .of the .arc, we may 

also control the ratio between the arc length contained inside the lobes and the arc length 

contained in the spaces between the lobes. We place A2 far enough away and position 

the circular arc such that the ratio between the arc length contained in any lobe and the 

arc length contained in the space next to that lobe is greater than 8n: 1. Let the shortest 

of the arc lengths contained in the lobes be I (see Fig. 9). As the arc becomes closer to 
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;I 

Fig. 9. The interaction between A[ and B2. 

a straight line (as A2 is moved away from the origin), the lengths of the arc segments 

contained in the lobes become more similar (and, at the limit, are all equal). A2 should 

be positioned far enough away that they are all within a factor of two of each other. The 

widest gap is then smaller than I/(4n). 
We now construct B2, which consists of n points positioned l/(2n) apart along this 

circular arc, initially located in the lowest lobe of A~. We also add an extra point to 

B2; this point is initially located at the lower end of A2. Now, as B2 rotates about the 

origin, this row of points moves along this circular arc. Since the spaces between lobes 

along this path are all less than l/(4n) across, and the enl~'e arc of points fits into a 

single lobe, only one point passes through a gap at a time, and there are ~ (n 2) different 

configurations of B2 with respect to this part of A~: there are n - 1 gaps to be straddled, 

and, for each gap, between 1 and n - I points of B2 can be above the gap. Note that all 

of these configurations have the property that all of the points of A2 are within e of some 

point of 82, specifically the extra point. 
Pick 8, the amount by which B~ is rotated about the origin, such that the points of 

B2 are straddling one of the spaces between lobes, and such that this straddling is even: 

the two points closest to the gap are equal distances away from the edges of the gap. 

They are at least 1/(8n) away from these edges. Now, consider translating the points of 

B2 vertically up or down by up to l/(16n). If the arc along which the points lie is close 

enough to a straight vertical line, then they will stay inside A S. Let d be the minimum 

horizontal "depth" inside A~ achieved for any point of 82 at any point in this translational 

range. Figure 10 shows this situation; the vertical bars are l/(8n) high (l/16n above and 

below the center). Let drain be the smallest such d value achieved for any of the ~ (n 2) 

possible such straddling configurations. Also, let w be the minimum distance between 

the circular arc and the bottom of the space between two lobes. 

We now construct Art and Brr as in Section 2.2 by choosing a and 8 so that the 

f2(n 3) complexity region of Frr(t) is at most l/(16n) high by min(dmj,/2, w/2) wide, 

and so that the centroid of Brr is at the origin. Let A = Art U A2 and B = Br, tJ B2. 
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Fig. 10. The.minimum depth of the points of B2. 

Let 0 produce one of the straddling configurations described above. Then, if 10l < 0rain, 

there are f2 (n 3) different connected components in t space where F~ig(t, 0) < e. This is 

because a slight translation of/32 with respect to A2 does not move any of the points of B2 

out of A~, and Brr and Art have been constructed so that the range of translations required 

is very small. Note that FRig (t, 0) is determined by fRis (t, 0) for all transformations in the 

range under considera.tion, as the directed distance from A to the rotated and translated 

B is always less than e. 

A labeling argument similar to that in Section 2.1 now shows that there are f2 (n 5) 

different connected components in (t, 0) space where FRig (t, 0) _< 6, f2 (n 3) correspond- 

ing to each of the f2 (n 2) such values of 0. A key point in the argument is that it is not 

possible for one of the points of B2 to sneak around the space between the lobes (through 

the main body of A~), since it would have to translate at least w away from the original 

circular arc, which would force at least one point of Brr to cross some gap. Thus, any 

two configurations which differ in how the points of B2 are straddling the gaps of A~ 

must belong to different connected components. 

There is a problem with this construction as it has been presented: A2 must subtend an 

angle of less than 0~,, which depends on tr and ~, which depend on l, drain, and w, which 

depend On the circular arc along which B2 is placed, which must have a larger radius for a 

smaller 0rain and thus depends on 0mi,; the parameters are thus interdependent. However, 

as A2 and B2 are moved farther out, l, dmjh, and w approach limit values, as the circular 

arc becomes closer to a straight line. Thus, we can initially place A2 and B2 where l and 

w are within some small factor (say, within 1%) of their limit values, then determine tz 

and 8 which work for any values of I and w between their original values and their limit 

values, and thus determine 0mi~. This gives us a minimum value for the radius of the 

circular arc, and we know that we can move A2 and B2 out farther if necessary without 

affecting the validity of the construction. 
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Fig. 11. The sets A. A ~, and B for points and segments under rigid motion. 

5. Sets of Points and Line Segments Under Rigid Motion 

This example is a modification of the example from Section 3, using the techniques from 

Section 4. Again, we refer to the sets A and B constructed in Section 3 as Art and Brr. 

As before, we observe that the set Brr may be rotated by some small angle 0~n about its 

centroid without changing the topology of the arrangement. 

Place Br, so that its centroid is at the origin (the center of rotation). Augment Ar~ by 

a group of segments A2 identical to the left-hand group of At,. A~ is placed so that it 

subtends a total angle of less than 0rain to the origin, and lies directly to the right of it. 

Let A = Ar~ LI A2. We also add n points to Br~ in a vertical row, in the same relative 

position to A2 as the first vertical row of Brr was to the left-hand group of A. Call this 

new row B2 and let B = Brr t_J B2. A, A ~, and B are shown in Fig. 11. 

Now, any translation t for which Br~ �9 t E A~r also has B ~) t E A ". Fix such a t and 

consider values of O where 101 < 0~n. As 0 changes through this range, the points in 

B2 sweep across the gaps in A~. Their spacing is such that only one point crosses a gap 

at a time. Thus, as we vary 0, the points of B2 achieve f2(n 2) different configurations 

with respect to the gaps of A~. For this choice of t, there are thus f2 (n 2) values of 0 for 

which fR~s(t, O) < e, since any rotation in this range keeps re(B) ~ t inside A'.  We can 

choose t to represent one of the f2 (n 4) distinct configurations of B with respect to A, 

and so this gives f2 (n 6) different configurations of B with respect to the gaps of A ~ for 

which fR~s(t, O) <_ e. These configurations are not connected in (t, 0) space, since any 

path from one to another must cause at least one point to cross some gap. 

6. Point Sets Under Translation and Scale 

In this section we consider the complexity of the graph of the Hausdorff distance between 

two sets of points as one set is translated and scaled with respect to the other. This scaling 

is with respect to fixed x and y axes. This transformation group is of interest because 

it has been used in image-recognition tasks, as described in [6]. It corresponds to the 

transformations that the image of an object may undergo as a camera is moved forward 

or panned about a vertical axis, under the weak perspective projection model. 

We present three different lower-bound constructions: one each for the L 1, L2, and Loo 

norms. They are all similar in concept, and are based on the constructions in Section 2, 
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using techniques from Section 4. The L j and L2 constructions show lower bounds for 

both the directed and undirected Hausdorff distance; the Lot construction, however, 

shows a lower bound for the directed Hausdorff distance only. 

Define the undirected and directed Hausdorff distance as functions of a translation t 

and two scale parameters sx and Sy as 

Fsc(t, s.~, Sy) = H(A, Ss:, (B) ~ t), 

fs~(t, sx, sy) = h(S,: , (B)  ~ t, A), 

(5) 

(6) 

where Ss:, (B) denotes the set [(sxx, Syy) [ (X, y) E B} (i.e., the set obtained by scaling 

B by a factor of sx in the x direction and sy in the y direction). 

The central idea behind these constructions is that changing sx slightIy has very little 

effect on points which are near the y axis, while it has a largely translational effect on 

groups of points which are located a large distance along the x axis ("large" here means 

that the distance of the group from the origin is large relative to the size of the group). 

6.1. The L2 Example 

This example is very similar to the example for point sets under rigid motion. Again, a key 

observation is that the construction of Art and Brr in Section 2.2 can be perturbed slightly 

without affecting the topology of the graph. In this case, this perturbation takes the form of 

a slight scaling of Brr in x and y. Suppose that the origin is placed at the lower-left corner 

of Brr. Then let stain be the valid range of such scaling: if 1 - stain < sx, s r _< t + stain, 

then there are [2 (n 3) translational configurations of Br, with respect to ATr for which 

replacing Br~ by Ss:, (Brr) does not change the configuration (i.e., the same points are 

on the same sides of the gap of A~-,). Smin clearly depends on the n, ~, and cr used to 

construct A r~ and Brr. 

Fh~st, we construct A2 as in Section 4, and place it so that the y axis cuts through the 

left-hand scalloped edge in a manner similar to that described in Section 4: each lobe of 

the scalloped edge contains a length l of the y axis, the smallest depth of any of the gaps 

is w, and the ratio between the axis length contained in any lobe (i.e., l) and the length 

contained in the space next to that lobe is greater than 8n: 1. Note that this construction 

does not depend on the location of this copy of A2 along the y axis. 

We next construct AT-, and Brr as in Section 2.2 such that the region of ~ (n 3) com- 

plexity occupies a region less than min(w/2, l/(Sn)) square, and position them so that 

the lower-left comer of this region in translation space is located at t = (0, 0), and the 

lower-left comer of Br, is at the origin. This determines a value for S~n. We then position 

the copy of A2 a distance of 2E/Stain above the origin, with the y axis cutting through it 

as described above. We also make a copy of A2, rotated by 90 ~ to the right of the copy 

of Art, with the x axis cutting through the lower scalloped edge in the same manner. A 

consists of Ar~ together with these two copies of A2. B then consists of Brr plus two 

rows of n points plus an extra point per row, as described in Section 4; one row and its 

extra point are positioned along the y axis inside the uppermost lobe of the first copy of 

A2; the other row and its extra point are in the corresponding position on the x axis, in 

the second copy of A2. Call these two rows B2. 
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Now, it is possible to choose independently seven numbers nl . . . . .  n7 from 1 to n - 1 

and construct a translation t and scale sz, sy of B with respect to A where fsc (t, sx, sy) < e 

in the following manner: 

I. hi, n2, and n3 determine the translation. They are used to position nl of the poin~ 

of the lower row of BT, to the left of the gap in A~r, n2 of the points of  the upper 

row to the left of the gap, and with the rows straddling the n3th wobble of the gap. 

2. /l 4 and n5 determine sy. They are used to position n4 of the points of the row of B2 

lying on the y axis below one of the gaps in the scalloped edge of the upper copy 

of A2. n5 selects the gap. Note that changing s.v acts as (essentially) a translation 

of this row, as its distance from the origin (and therefore its y coordinate) greatly 

exceeds its length. It is possible to do this no matter what translation was chosen 

above, since the range of translations is small. Also, any sy chosen in this manner 

does not exceed the range determined by s~,.  

3. n6 and n7 similarly determine sx, by positioning the points of the row of B2 lying 

on the x axis with respect to its copy of A2. 

If two such configurations are generated with different n i values, then it is not possible 

to move from one to the other without some point crossing a gap, and so they must belong 

to different connected components in transformation space where fsc(t, sx, sy) < e. 

Also, due to the extra points added to the various parts of B, h(A, S,,s,(B) ~ t) is no 

greater than e for all such configurations; Fsc therefore has f~ (n 7) distinct local minima. 

These can occur in an arbitrarily small region of transformation space for a fixed e. 

6.2. The L l Example 

This example is-quite sirnilar to the example in the previous subsection. The construction 

uses a copy of At,  and Br, from Section 2.1 (the translational example for Lot), rotated 

45 ~ Instead of Art being augmented by two rows of points, each generating a scalloped 

edge, it is instead augmented by two rows of points, each generating a sawtooth edge; 

however, these augmentations are used in the same manner. 

6.3. The L~  Example 

This example must be constructed differently from the previous two, since a vertical row 

of points, when dilated by e, generates a straight vertical edge, with no irregularities that 

can be exploited. Let A2 be a vertical row of n points spaced 2e + 8 apart, lying on the y 

axis, far away from the origin. A~ is then a row of n squares with a 8-wide gap between 

adjacent squares. Let B2 be a vertical row of n points spaced just over 8 apart, lying 

close to A2. As sy vanes, B2 moves mostly translationally, and its points therefore move 

through the n - 1 gaps in A S, one point at a time. ~2 (n 2) configurations of the points of 

B2 relative to the gaps of A~ are therefore possible. 

Let A be a copy of At, from Section 2.1, plus A2 as described above, plus a similar 

horizontal row of n points lying along the x axis. Similarly, let B be a copy of Brr 

plus B2 plus a row of points on the x axis. We first choose a translational configuration 
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of BT, with respect to Art, and initially set s~ and Sy to 1. We then choose one of the 

f2 (n 2) configurations of B2 with respect to A2, and adjust sy so that this configuration 

is achieved. We similarly choose one of the ~ (n 2) configurations of the parts of A 

and B lying along the x axis, and set Sx accordingly. Thus, there are f2 (n 7) different 

configurations of B with respect to A; fsc(t) therefore has f2 (n 7) distinct local minima. 

Unlike the other constructions for point sets, it is not possible to augment B by a few 

points so that h(A, t(B)) is always below e for the region of transformation space of 

interest. This construction is therefore valid for the directed distance only. 

7. Sets of Points and Line Segments Under Translation and Scale 

This example is quite similar to the previous example; we make a copy of Arr and Br, 

from Section 3, Shown in Fig. 8; these copies are placed near the origin, togethe r with 

a copy of the right-hand group of each (the group exploiting vertical gaps) placed some 

distance away along the x axis, and a copy of the left-hand group of each placed some 

distance away along the y axis. This construction gives f2 (n 8) distinct local minima for 

fs~ (f2(n 4) from AT, and Brr, and f2(n z) from each of the additional groups). As before, 

the exact norm being used is not relevant, since it does not affect the gaps between the 

segments. 

8. Point Sets Under Affine Transformation 

Here we are dealing with transformations which map B to M(B) ~B t, where M is a 

nonsingular 2 x 2 matrix defined by 

M = [moo mo,] 

ml0 mll.J 

and t = (t~, ty) is a translation. In other words, each point (b~, by) E B is mapped to 

(moob~ + molby + t~, mtobx + mllby'+ ty). AS before, we define 

F4~(t, M) = H(A,  M(B) EB t), (7) 

fAff(t, M) = h(M(B) ~ t, A). (8) 

The key observation here is that if B consists of three groups of points, one near the 

origin, one located a large distance along the x axis, and one located a large distance 

along th e y axis, then: 

�9 Changing moo slightly causes the second group in the transformed B to translate 

in x, but has little other effect. 

�9 Changing rn l0 slightly causes the second group to translate in y, but has little other 

effect. 
�9 Changing m01 or m tl slightly similarly causes the third group to translate in x or 

y, and has little other effect. 

�9 If M is sufficiently close to the identity matrix, then M(B) is essentially the same 

as B, with the relative positions of the three groups shifted around somewhat. 
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The magnitude of these translational motions with respect to their other effects can be 

increased by moving the corresponding group farther away from the origin along the 

appropriate axis. Thus, we have a six-parameter system (two translational and four linear 

parameters), which can be decomposed into three two-parameter translational systems, 

plus a small amount of slop, which can be made as small as required. In order to build an 

f2 (n 9) example, we simply take three copies of the appropriate Art and Brr, and arrange 

them as described above. Again, we can move copies 2 and 3 of Art and Brr out from 

the origin until all nontranslational effects are not significant, since as they move farther 

out, the amounts by which the mij values need to be adjusted are reduced. Since all the 

copies of Ar~ and BT~ have f2 @3) complexity under translation, for both the directed and 

undirected Hausdorff distance, and are essentially independent, this construction gives 

f2 @9) complexity for both fa r  and FA~,. 

9. Sets of Points and Line Segments Under Affine Transformation 

This example is constructed identically to the previous example. We simply take three 

copies of Art and Brr from Section 3 and position one at the origin, one out along the x 

axis, and one out along the y axis. This gives f2 (n 12) local minima of fA~', from three 

essentially independent f2 (n4) translational examples. 

10. Conclusion 

We have presented constructions which give lower bounds on the complexity of the 

directed (and, in many cases, the undirected) Hausdorff distance in several different 

contexts, summarized in Table 1. In a number of of the cases, we have shown that the 

directed and undirected Hausdorff distances can have large complexity in a small space. 

The large exponents in these bounds imply that, to solve these problems, either one 

will have to approximate the Hausdorff distance, or come up with algorithms that can 

somehow get around them. 
We have demonstrated the complexity of the Hausdorff distance as a function of 

transformation by constructing cases where it has a large number of local minima. A 

related question is the number of global minima that it can have. In some cases, such as 

the constructions for point sets under translation with the L 1 or L ~  norms, it is possible to 

make the function have equal values at all of the local minima that we have constructed, 

so that they are all (equal) global minima; in other cases, the number of global minima 

is an open question. 
The problems for which lower bounds on the complexity of the undirected Hausdorff 

distance were not shown were those involving sets of points and line segments, plus the 

problem of point sets under translation and scale with the L~  norm. A remaining.open 

problem is that of determining bounds for these cases. For example, can the undirected 

Hausdorff distance under translation between sets of points and segments have any 

complexity greater than f2 (n 3) .9 Also, is it possible to develop.algorithms such as those in 

[4] which find the minimum Hausdorff distance under the action of some transformation 

group in less time than that given by the complexity of the graph of the Hausdorff distance 

function? 
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