
ARTlCLE zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACommunicated by Wulfram Gerstner

Lower Bounds for the Computational Power
of Networks of Spiking Neurons zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Wolfgang Maass zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
lizstitiite for Theoretical Computer Science, Technische Uniuersitaet Gmz,
Klosteriuiesgasse 3212, A-801 0 Graz, Aus tvia

We investigate the computational power of a formal model for net-
works of spiking neurons. It is shown that simple operations on phase
differences between spike-trains provide a very powerful computa-
tional tool that can in principle be used to carry out highly complex
computations on a small network of spiking neurons. We construct
networks of spiking neurons that simulate arbitrary threshold circuits,
Turing machines, and a certain type of random access machines with
real valued inputs. We also show that relatively weak basic assump-
tions about the response and threshold functions of the spiking neu-
rons are sufficient to employ them for such computations.

1 Introduction and Basic Definitions

There is substantial evidence that timing phenomena such as temporal
differences between spikes and frequencies of oscillating subsystems are
integral parts of various information processing mechanisms in biolog-
ical neural systems (for a survey and references see, e.g., Kandel et al.
1991; Abeles 1991; Churchland and Sejnowski 1992; Aertsen 1993). Fur-
thermore, simulations of a variety of specific mathematical models for
networks of spiking neurons have shown that temporal coding offers in-
teresting possibilities for solving classical benchmark problems such as
associative memory, binding, and pattern segmentation (for an overview
see Gerstner et al. 1993). Very recently one has also started to build artifi- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
cial neural nets that model networks of spiking neurons (see, e.g., Murray
and Tarassenko 1994; Watts 1994). Some aspects of these models have
also been studied analytically (see, e.g., Gerstner and van Hemmen 1994;
Gerstner 1995), but almost nothing is known about their computational
complexity (see Judd and Aihara 1993, for some first results in this di-
rection). In this article we investigate a simple formal model SNN for
networks of spiking neurons that allows us to model the most important
timing phenomena of neural nets, and we prove lower bounds for its
computational power.

Quite a number of different mathematical models for networks of
spiking neurons have previously been introduced within the frameworks

Neural Computation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA8, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1-40 (1996) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA@ 1995 Massachusetts Institute of Technology

2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAWolfgang Maass

of theoretical physics and theoretical neurobiology (see, e.g., Lapicque
1907; Buhmann and Schulten 1986; Crair and Bialek 1990; Gerstner 1991;
Gerstner zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAet zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAal. 1993; for a survey and the relationship between these and
related models see, e.g., Tuckwell 1988; and Gerstner 1995). The com-
putational model SNN that we consider in this article is most closely
related to the spike response inodel of Gerstner (1991) and Gerstner e f 01.
(1993). Similarly as in Buhmann and Schulten (1986), we consider in this
article only the deterministic case (which corresponds to the limit case zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
J i zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAixj for the inverse temperature) j in the spike response model, and
respectively, the noise-free case). We refer to Maass (1995d) for results
about the computational power of the noisy version of this model.

However, in contrast to these preceding models we do not fix par-
ticular (necessarily somewhat arbitrarily chosen) response and threshold
functions in our model SNN. Instead, we want to be able to use the SNN
model as a framework for inzwtigating the computational power of var-
ious different response and threshold functions. In addition, we would
like to make sure that various different response and threshold functions
observed in specific biological neural systems are in fact special cases of
the response and threshold functions in the formal model SNN. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

1.1 Definition of a Spiking Neuron Network (SNN). An SNN N zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0 a finite directed graph (V.E) (we refer to the elements of V as

0 a subset V,, C V of i n p u t neurons
0 a subset Vout 2 V of output neiirons
0 for each neuron z1 E V - V,, a thresholdfiiizction O,, : zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAR+ -+ R U {x}

0 for each synapse zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(ti. ZI) E E a response fiiiiction zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAzrr ,, : R+ - R and a

We assume that the firing of the input neurons z i E V,, is determined
from outside of N , i.e., the sets F,, C R+ of firing times ("spike trains")
for the neurons z, E V,, are given as the input of N. Furthermore we
assume that a set T C R+ of potential firing tiines has been fixed (we will
consider only the cases T = R+ and T = { i . p : i E N} for some

For a neuron zj E V- V,, one defines its set F,, of firing times recursively.
The first element of F,, is inf{t E T : P , (t) 2 O,(O)}, and for any s E Fi,
the next larger element of F,, is inf{t E T : t > s and P,,(t) 2 O,,(t - s)}.
where the potential ftinction P,, : R+ + R is defined by

consists of

"neurons" and to the elements of E as "s~yitapses")

(where R+ := {x E R : x 2 O})

zoeight fiinction zuII : R+ -+ R.

> 0).

[the trivial summand 0 makes sure that P , (t) is well-defined even if F,, = d,
for all 11 with (z1.u) E El.

Coinputational Power of Networks of Spiking Neurons zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3

The firing times (”spike trains”) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAF,, of the output neurons zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE V,,, that
result in this way are interpreted as the output of N.

Regarding the set T of potential firing times we consider in this ar-
ticle primarily the case T zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAR+ (SNN with continuous time), and only in
Corollary 2.5 the case T = {i . / I : zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi E zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAN} for some zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp > 0 (SNN with discrete
time).

Our subsequent assumptions about the threshold functions O,, will
imply that for each SNN N there exists a bound TN E R with 7 , ~ > 0
such that O,,(x) = 00 for all x E (0 . 7 ~) and all u E V - Vi, (TN may be
interpreted as the minimum of all ”refractory periods” TWf of neurons in
N). Furthermore we assume that all ”input spike trains” F , with u E Vi,
satisfy IF, n [O. t]j < ocj for all t E R+. On the basis of these assumptions
one can also in the continuous case easily show that the firing times are
well-defined for all u E V - V,, (and occur in distances of at least 7A.l.

In models for biological neural systems one assumes that if x time-units
have passed since its last firing, the current threshold O , (x) of a neuron
u is ”infinite” for x < Tref (where 7,f = refractory period of neuron zi),
and then approaches quite rapidly from above some constant value. A
neuron u ”fires” (i.e., it sends an ”action potential” or ”spike” along
its axon) when its current membrane potential PU(t) at the axon hillock
exceeds its current threshold 8, . P,(t) is the sum of various postsynaptic
potentials wl,,~,~~ll,,(t -s). Each of these terms describes an excitatory (EPSP)
or inhibitory (IPSP) postsynaptic potential at the axon hillock of neuron u at
time t, as a result of a spike that had been generated by the ”presynaptic”
neuron u at time s, and which has been transmitted through a synapse
between both neurons. Recordings of an EPSP typically show a function
that has a constant value c (c = resting membrane potential; e.g., c =

-70 mV) for some initial time interval (reflecting the axonal and synaptic
transmission time), then rises to a peak value, and finally drops back to
the same constant value c. An IPSP tends to have the negative shape of
an EPSP (see Fig. 3). For the sake of mathematical simplicity we assume
in the SNN model that the constant initial and final value of all response
functions E ~ ~ , : , is equal to 0 (in other words, E ~ ~ . ~ , models the difference
between a postsynaptic potential and the resting membrane potential
c). Different presynaptic neurons u generate postsynaptic potentials of
different sizes at the axon hillock of a neuron ZI, depending on the size,
location, and current state of the synapse (or synapses) between u and u.
This effect is modeled by the weight factors W ~ , , ~ , (S) .

The precise shapes of threshold, response, and weight functions may
vary among different biological neural systems, and even within the same
system. Fortunately one can prove significant upper bounds for the com-
putational complexity of SNNs N without any assumptions about the
specific shapes of these functions of N. Instead, for such upper bounds
one only has to assume that they are of a reasonably simple mathematical
structure (see Maass 399410, 1995~).

4 Wolfgang Maass

To prove zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAlower boziizds for the computational complexity of an SNN
N one is forced to make more specific assumptions about these func-
tions. However, we show in this article that significant (and in some
cases optimal, see Section 3) lower bounds can be shown under some
rather weak basic assurnptions about these functions, which will be fur-
ther relaxed in Section 4. These basic assumptions (see Section zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2) mainly
require that EPSPs have an arbitrarily small time segment where they
increase linearly, and some arbitrarily small time segment where they
decrease linearly. Since the computational power of SNNs may poten-
tially increase through the use of time-dependent weights, l o u w bounds
for their computational power are more significant if they do not involve
the use of time-dependent weights. Hence we will assume throughout
this article that all 7iieight-fiiizctioizs I L~ , , . , , (S) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAhave a constant value w,,,,,, 7iihich
does not depend on the time s.

Apart from the abovementioned condition on the existence of linear
segments in EPSPs, the basic assumptions that underlie the lower bound
results of this article involve no other significant conditions on the shape
of response and threshold functions. Hence one may argue that these
basic assumptions are biologically plausible. In addition, we will show
in Section 4 that the same lower bounds can be shown if also phenom-
ena such as "adaption" of neurons, or a "reset" of the potential after a
firing are taken into account. Thus the more critical points with regard
to the biological interpretation of these lower bound results appear to
be the relatively simple firing mechanism of the SNN model, which, for
example, ignores for the sake of simplicity nonlinear interactions among
postsynaptic potentials such as integration of potentials within the den-
dritic tree of a neuron, and various possible sources of "imprecision"
in the determination of the firing times. The latter issue can partially
be taken into account by considering the variation of the SNN model
with discrete firing times as in Corollary 2.5 (although the implicit global
synchronization of this version is not completely satisfactory). In this
variation of the SNN model with discrete firing times i zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi E N one
can view a firing of a neuron at time i . p as representing a somewhat
imprecise firing time in a small interval around time i . p.

The computational complexity of another neural network model where
timing plays an important role has previously been investigated by Judd
and Aihara (1993). Their model PI" is also motivated by biological spik-
ing neurons, but it employs a quite different firing mechanism. There are
no response functions in this model, and instead of integrating all incom-
ing EPSPs and IPSPs in order to determine whether it should "fire," a
neuron in a PPN randomly selects a single one of the incoming "stimu-
lations'' of maximal size, and determines on the basis of that stimulation
whether it should fire. Consequently, computations in this model PI"
proceed quite differently from computations in models of spiking neu-
rons such as the spike response model of Gerstner and van Hemmen
(1994), or the model SNN considered here. Judd and Aihara (1993) con-

Computational Power of Networks of Spiking Neurons zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5

struct PPNs that can simulate Turing machines that use at most a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAconstant
number s of cells on their tapes, where s is bounded by the number of
neurons in the simulating PPN. However a Turing machine with a con-
stant bound s on its number of tape cells is just a special case of a finite
automaton, and hence this result does not show that a PPN of finite size
can have the computational power of an arbitrary Turing machine. In
contrast to the quoted result about PPNs, it is shown in Theorem 2.1 of
this article that with arbitrary response and threshold functions that sat-
isfy the basic assumptions of Section 2, one can construct for any given
Turing machine M an SNN n / ~ of finite size that can simulate any com-
putation of M in real-time (even if the number of tape cells that M uses
is much larger than the number of neurons in NM). In addition, at the
end of Section 4 we will describe a way in which a simulation of arbi-
trary Turing machines can also be accomplished by finite SNNs whose
response and threshold functions are piecewise constant. If we understand
the model of Judd and Aihara (1993) correctly (their description is some-
what unclear), then our method for proving this (see also Maass and Ruf
1995) can also be used to show that with the help of a module that de-
cides whether two neurons have fired simultaneously, one can simulate
(although not in real-time) any Turing machine M (where M may use an
unbounded number of tape cells) by some PPN PM of finite size, thereby
improving the lower bound for the computational power of PPNs due
to Judd and Aihara (19931, from finite automata to Turing machines.

The focus in the investigation of computations in biological neural
systems differs in two essential aspects from that of classical computa-
tional complexity theory. First, the timing constraints for computations
in biological neural systems are often tighter than for computations in
digital computers, and many complex computations have to be carried
out in ”real-time” with relatively slow “switching elements.” Secondly,
one is not only interested in separate computations on unrelated inputs,
but also in the ability of the system to learn to react appropriately to a
sequence of related tasks.

Hence the custom to evaluate the computational power in terms of
”complexity classes” such as P or P/poly appears to be less suitable for
the investigation of models for biological neural systems, and we there-
fore resort to an analysis in terms of refined concepts such as ”real-time
computations” and “real-time simulations.” In this way we get not only
information about the relationship between the “large scale” complex-
ity classes (e.g., polynomial time) for these models for biological neural
systems, but also about their behavior in terms of common notions of
”low-level complexity” such as sublinear or real-time.

Furthermore, with the help of our refined analysis of real-time simu-
lations one also gets information about the “adaptive” or “learning” abil-
ities of the considered models. Assume for example that ((x(i) .y (i))) , tN
is the protocol of some real-time ”learning process” of a system M, where
the y(i) are the ”responses” of M to a sequence x (i) of ”stimuli.” If one

6 Wolfgang Maass

has shown that another model M' can simulate M in real-time, then this
entails that the same "learning process" can also be carried out in real-
time by M'. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

1.2 Definition of Real-Time Computation and Real-Time Simula-
tion. Fix some arbitrary (finite or infinite) input alphabet A,, and output
alphabet Aout (for example they can be chosen to be (0, l}, (0. l}' or
R). We say that a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAiizacliiize M processes a seqw ice ((x(i)>y(i))) lEN of pairs
(x(i). y(i)) E zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA,, x A,,, iiz real-time Y, if M outputs y(i) for every i zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE N
within r computation steps after having received input zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx (i) [for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi > 0 we
assume that x(i) is presented at the next step after M has given output
y(i - 1)l.

We say that a macliiiie M' siiiiiilates a machine M i i i real-tinze (wifl i delay
factor A) if for every I' zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE N and every sequence that is processed by M in
real-time r, M' can process the same sequence in real time A . r.

In the case of SNNs M we count each spike in M as a computation
step.

We first would like to point out that these notions contain the usual
notions of a computation and simulation as special cases. Let {0.1}*
be the set of all binary sequences of finite length. If zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAM computes a
Boolean function F : (0. l}" 4 (0.1) in time t (n) (in the usual sense
of computational complexity theory), then one can identify each input
(z , , z , ~) E (0.1}* with an infinite sequence (x(i)) lEN where s(i) = 2 ,

for i 5 i i and x(i) = B for i > i i (assume that M gets one input bit per
step, B := "blank). Furthermore one can set y(i) = B for those steps
i where M s computation is not yet finished, and y(i) = F ((z 1 z , ,))

for all later i [in particular for all i 2 t(tz)l. Obviously M processes this
sequence ((x (i) . y (i))) l t N in real-time 1. Hence, if another machine M' can
simulate M in real-time with delay factor A, then M' can compute the
same function F : (0. l}' + (0. l} in time A.t(iz). This implies that a real-
time simulation is a special case of a linear-time simulation. In particular,
every computational problem that can be solved by M within a certain
time complexity can be solved by M' within the same time complexity
(up to a constant factor).

In addition, the remarks before the definition imply that when we
show that M' can simulate M in real-tiiiie, we may conclude that any
adnptiue behazk~r (or leariiing algorithm) of M can also be implemented on
M'. Finally we would like to point out that for the investigation of specific
computational and learning problems on specific models for biological
neural nets one would like to also eventually get estimates for the size
of the constant r in real-time processing and the size of the delay factor
A in a real-time simulation. Such refined analysis (which will not be
carried out in this paper) appears to be also of interest, since it is likely
to throw some light on the specific advantages and disadvantages of
different models for biological neural systems (e.g., networks of spiking

Computational Power of Networks of Spiking Neurons zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA7

neurons versus analog neural nets), which are shown in Maass (199413,
1995c), to be equivalent with regard to the preceding notion of a real-time
simulation.

In contrast to the usual notion of a simulation, a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAreal-time simulation of
another computational model M by an SNN implies that the simulation
of each computation step of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAM requires only a fixed number of spikes in
the SNN. In particular, the required number of spikes does not become
larger for the simulation of later computation steps of M.

1.3 Input and Output Conventions. For simulations between SNNs
and Turing machines one may either assume that the SNN gets an input
(or produces an output) from {O. l } * in the form of a spike train he., one
bit per unit of time), or that the input (output) of the SNN is encoded
into the phase difference of just two spikes. The former convention is
suitable for comparisons with Turing machines that receive a single input
bit and produce a single output bit at each computation step. For com-
parisons with Turing machines that start with the whole input written
on a specified tape, and have their whole output written on another tape
when the machine halts, it is more adequate to assume that the SNN
receives at the beginning of a computation the whole tape content of the
input tape encoded into the time difference zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcp between two spikes (using
the same encoding as we will use in Section 2 to represent the content of
a stack), and that the SNN also provides the final content of the output
tape in the same form. Real-vnlued input or output for an SNN is always
encoded into the phase difference of two spikes.

1.4 Notation. We employ in this article the following common nota-
tion: We write N for the set of natural numbers (including 0), Q for the
set of rational numbers, and R for the set of real numbers. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAR+ is defined
as zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA{x E R : x 2 O}. For any x E R+ we write [xl for the least zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI I E N with
II zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 x.

{0.1}* denotes the set of all binary strings of finite length.
For any set S we write 3x E S(. . .) instead of 3x(x E S and . . .), and

Vx E S(. . .) instead of Vx(x E S + . . .).
For two functions f . g : N i N we write f = O(g) if there is some

constant c such that f(n) 5 c . g (i i) for all except possibly finitely many zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
I Z E N.

1.5 Structure of This Article. In Section 2 we specify our basic as-
sumptions about the response and threshold functions of an SNN, and we
construct SNNs that can simulate in real-time arbitrary threshold circuits
and Turing machines. In Section 3 we relate the computational power
of SNNs for real-valued inputs to a specific type of random access ma-
chine. In Section 4 we discuss variations of the preceding constructions

8 Wolfgang Maass

for related models of spiking neurons, and in Section 5 we outline some
conclusions from the results in this article. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
2 Simulation of Threshold Circuits and Turing Machines by Networks
of Spiking Neurons

To carry out computations on an SNN, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAsoiiie assumptions have to be
made about the structure of the response and threshold functions of its
neurons. It is obvious that for example neurons with response function
E,,,,, such that E,,,,,(s) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 0 for all s 2 0 cannot carry out any computation.
We will specify in the following a set of basic assumptions, which suffice
for the constructions in this article. Some variations of these conditions
will be discussed in Section 4.

We assume that there exist some arbitrary given constants Amin. A,,,, E
R with 0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 Amin < Amax so that we can choose for each “synapse”
(u.11) E E an individual “delay” A,,,,, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE [Amin.AmaX] with cl,.,,(x) = 0 for
all x E [O. A,,,,,]. This parameter A,,,,, corresponds in biology to the time
span between the firing of the presynaptic neuron zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI (and the moment
when its effect reaches the trigger zone (axon hillock) of the postsynaptic
neuron zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu. This time span is known to vary for individual neurons in
biological neural systems, depending on the type of synapse and the ge-
ometric constellation. The constants Amin and A,,, can be interpreted as
biological constraints on the possible lengths of such time spans. No re-
quirements about Amin and Amax are needed for our construction, except
that Amin < Amax.

We assume that except for their individual delays the response
functions E,,,,, (as well as the threshold functions @,,) are stereotyped, i.e.,
that their shape is determined by some general functions and (3.
which do not depend on 11 or u. More precisely, we assume that we can
decide for any pair (u . zi) E E whether E~,.,, should represent an excitatory
“EPSP ~.rspoiisrfiiizction,’’ or an inhibitory “IPSP respoiise fiincfioiz.” In the
EPSP case we assume that

E~,,,,(A~,,,, + x) = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAzE(x) for all x E zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAR’

and in the IPSP case we assume that

I E~, , , , (A,~,~, + x) = r̂ (x)

In either case we assume that

for all x E R+.

cl,,,,(x) = 0 for all x E [O, A,,,,,].

Furthermore, we assume for all neurons ZI E V - Vi, that

@,,(x) = O (x) for all x E RS

Computational Power of Networks of Spiking Neurons 9

Figure 1: Illustration of our notation for the basic assumptions on zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0. F~~ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5' (the
functions shown are quite arbitrary and complicated, but nevertheless they
satisfy our basic assumptions).

We assume that the three functions icE zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAR+ -+ R+, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAicl : R+ i zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA{x E
R : x 5 0) and 0 : R+ + R+ U {co} are some zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAarbitrary functions with
the following properties: There exist some arbitrary strictly positive real
numbers Tref, Tend, gi, gz, g 3 . 71, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA72, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA7 3 , L, sup, Sdol\7n with 0 < Tref < Tend,

(TI < ~ 7 2 < 0 3 , zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA71 < 72 < 7 3 (see Fig. 1 for an illustration), which satisfy the
following five conditions:

1. 0 (x) 2 0 (0) > 0 for all x E R+, 0 (x) = cc for all x E (0.~~~~). and

2. ~ ~ (0) = 8 (x) = 0 for all x E [Q. oo), and there exists some E,,,,, E R+

3. ~ ~ (0 , + z) = ~ ~ (0 1) + sup z for all z E [- L . L]

4. ~ ~ (v ~ + z) = ~ ~ (~ 7 2) - sdown . z for all z E [-L. L]

5 . $ (O) = ~'(x) = 0 for all x E [~ 3 . ooj, $(xj < o for all x E (0.73). E' is

0 (x) = C3(0) < m for all x E [~ ~ , , d . cc)

so that 3x E R+[cE(x) = smax] and V y E R + [E ~ (~) 5 ic,,,,,]

nonincreasing in [O. 711 and nondecreasing in [TZ . 731.

We assume in addition that 0(0), E ~ (o ~) , cE(a2), sup, sdorvn E Q.

It should be pointed out that no conditions about the smoothness,
the continuity, or the number of extrema of the functions 0, cE, E' are
made in the preceding basic assumptions. However, if one demands in
addition that cE is piecewise linear and continuous, then conditions (3)
and (4) become redundant. The assumption that 0 (0) , sE(a1), ~ € (r r 2) , sup,

10 Wolfgang Maass zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

I

Figure 2: Examples tor mathematically \ w y simple functions zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(3, :', and :' that
satisty the basic assumptions. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
bLI,>, , , , are rationals will be needed unlp t o ensure that certain weights can
be chosen to be zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAr-ntrorrirls (see Section 2.9).

Examples of mathematically particularly simple (piecewise linear)
functions :'. .-' and (-) that satisfy all of the above conditions are ex-
hibited i n Figure 2.

The subsequent construction shows that neurons with the very sim-
ple response nnd threshold functions from Figure 2 can, in principle, be
used to build an artificial neural network with some finite number zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi r i 4

of spiking neurons that can simulate in real time any other digital com-
puter (even computers that employ many more than ! I ; , memory cells or
computational units).

We have formulated the preceding basic assumptions on the response
and threshold functions in a rather general fashion to make sure that
they can in principle be satisfied by a wide range of EPSPs, IPSPs and
threshold functions that ha1.e been observed i n a number of biological
neural systems (see, e.g., Fig. 3).

The currently available findings about biological neural systems (see,
e .g, Kandel zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc - t (11. 1991, and the discussions in Valiant 199.1) indicate that
in general a single EPSP alone cannot cause a neuron to fire. In fact,
it is comnionlv reported that 30 to 100 EPSP have to arrive within a
short time span at a neuron to trigger its firing. These reports indicate
that the weights zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx i , , in our model should be assumed to be relatively
small, since they cannot amplify a single EPSP to yield an arbitrarily high
potential P,,. Hence for the sake of biological plausibility one should

Coinputational Power of Networks of Spiking Neurons 11 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
mV
-68 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA70

- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA72

Figure 3: Inhibitory and excitatory postsynaptic potentials at a biological neu-
ron. [After Schmidt (1978). zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAFirrirlnrnrrztals of Neurophysiology. Springer-Verlag,
Berlin].

assume that the values of all weights w,, , in an SNN belong to some
bounded interval [O. w ~ ~ , ~ ~ ~] . For simplicity we assume in the following
that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAzu,,,, = 1. This convention just amounts to a certain scaling of the
values of the response functions in relation to the threshold functions. In
any version of this model where a single neuron is not able to cause the
firing of another neuron, one necessarily has to assume that each input
spike is simultaneously received by several neurons (since otherwise it
cannot have any effect).

In spite of this convention we will occassionally assign much larger
values to certain weights zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAzuU,,. We will then (silently) assume that u does
in fact represent an nssembly of [7 ~ , , ~ , 1 neurons that all fire concurrently
([w) is defined as the least natural number zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 x) . Furthermore, we assume
in those situations that all edges from neurons in this assembly to neuron
v have the same delay, and the same weight W ~ , , ~ , / [W , ~ . ~ ~ E [0,1]. The
main difference between this type of construction and a construction
with arbitrarily large weights is that in our setup the (virtual) use of
large weights blows up the number of neurons that are needed. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Theorem 2.1. I f the response and threshold fuizctiorzs of the tzeurons satisfy the
previously described basic assumptions, then one can build from such neurons for
any g i z m d E N an SNN N T M (d) of finite size that caiz simulate with a suitable
assigizmeizt of rafionnl values frorii [O. 11 to its weigkts any Turing mnchine with
at most d tapes in real-time.

F u v t l z e r ~ n o r e N ~ ~ (2) can cornpiite any function F : (0.1)' -+ (0, l}' zuith n
suitable nssignment of real values from [0,1] to its weigkts.

The proof of Theorem 2.1 is rather complex. Therefore we have di-
vided it into Sections 2.1 to 2.10, which are devoted to different aspects
of the modules of the construction. Several of these modules are also
useful for other constructions. The global construction of NTM(~) with
the properties claimed in Theorem 2.1 is described in Section 2.10.

12 Wolfgang Maass

We will discuss in Section 4 some methods for alternative construc-
tions of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAN&(d) that are based on different assumptions about response
and threshold functions. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

2.1 Conditions on the Neurons. We assume that we can decide for
any pair zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(zi. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAv) of neurons whether there should be a “synapse” between
both neurons (i.e., (u 3 v) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE E) . Self-referential edges of the form (u . zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu) will
not be needed. In this proof the weights w,,,,, on edges (2 4 . z1) are always
assumed to be time invariant, and they are only assigned values from
[O. 11. We assume that the response and threshold functions satisfy the
previously described basic assumptions.

2.2 Delay- and Inhibition Modules. We will construct in this section
two very simple modules that will be used frequently (and often silently)
in the subsequent constructions. From the general point of view the
existence of these two modules shows that our very weak assumptions
about Amin and Amax (we have only required that 0 5 Amin < A,,,) as
well as our very weak assumptions about the shape of E’ in condition
(5) are in fact sufficient to create in an SNN arbitrarily long delays, and
arbitrarily fast appearing or arbitrarily fast disappearing inhibitions of
arbitrarily long duration.

of neurons so that
(z i i . zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi i i + l) E E, E,,,,,,,+, is an EPSP response function, and w, ,,,,,, +, := @(O)/E,,,
for i = 1.. . . . k. Since each delay A ,,,,,,, +, can be chosen arbitrarily from
[Amin. A,,,], the total ”delay” between the firing of u1 and the arrival of
an EPSP at zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi ik+1 can be chosen to assume any value in a certain interval
of length k . (A,,, - Amin). It will cause no problem that the total trans-
mission time from u1 to uktl grows along with k, since in the subsequent
constructions time will essentially be considered only m o d d o a certain
constant TPM.

We next construct for any given real numbers 6,A > 0 and h: < 0
“inhibition modules” 1 6 . t i . ~ and PA. I s , ~ . A can be used to transmit to any
desired neuron zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAzl a volley of IPSPs that sum up to a potential which
changes from its initial value 0 to some value 5 h:, within a time interval
of length 6, and then maintains a value 5 h: for at least the following
time interval of length A. l D , n , ~ consists of a neuron 21 that transmits
EPSPs simultaneously to several ”relay neurons” u1 , . . . % uf, which are
triggered by this EPSP to send an IPSP to some given neuron v. If I and
the delays between the neurons are chosen appropriately [as a function
of 6. ti. A, ~’(6) and the parameter 711, this module will have the desired
effect on neuron v.

Dually, one can also build for any 6, X > 0 and ti, < 0 an inhibition
module Ib*“tX that sends IPSPs to any specified neuron v whose sum stays
5 K for a time interval of length 2 A, and then returns to 0 within a time

A ”delay-module” is simply a chain u l ~

Computational Power of Networks of Spiking Neurons 13

Figure 4: Graph structure of an oscillator consisting of one neuron (a) and two
neurons (b).

interval of length zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6. Here we exploit the fact that according to condition
(5) the function zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA~ ' (x) is nondecreasing and strictly negative for x zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[7*. n) . zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

2.3 Oscillators. Consider subgraphs of an SNN of the structure
shown in Figure 4. Both types of subgraphs can be used to build an
oscillator. The first one is somewhat simpler, but we will not use it in
our construction since it would require a self-referential edge zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(ZI. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA11) E E.

In the second type of oscillator (Fig. 4b) we assume that w~,,~, , U I ~ ~ . ~ , zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
O(O)/E,,,~~, and that both E,,,,, and E,,,,, are EPSP response functions. Thus
after an initial EPSP through edge a both neurons will fire periodically.
More precisely, z) will fire at times t o + i . 7r for i = 1.2. . . ., until it is halted
by an IPSP through edge 11. We refer to 7r as the oscillation period of this
oscillator.

We will distinguish one such oscillator as the "pacemnker" for the con-
structed SNN, which we denote by PM. We write T ~ M for its oscillation
period. We assume that the oscillation of PM is started at "time 0 by
the first input spike to the SNN, and that it continues without interrup-
tion throughout the computation of the SNN. PM emits EPSPs through
edge e, which will then be broadcast as a timing standard throughout the
SNN. We will say in the following that some other neuron ZJ in the SNN
fires "at unit fimr" or "synchronously" if the considered firing of z, occurs
at a time point t of the form i . TPM for some i E N.

In N T M (d) we will use oscillators in two ways as storage devices.
First we use them as "registers" for storing a bit (via their two states
dormant/oscillating), for example in the control of h $ ~ (d) . Second we

14 Wolfgang Maass

use oscillators 0 with oscillation period zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBATPM to store arbitrary numbers zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
p zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE [o. T p M] via their phnse difference to PM (i.e., neuron ZI of oscillator
0 fires at time points of the form i . TPM zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi E N). In this way
oscillators can for example store the time difference between two input
spikes to the SNN, and the program and tape content of a simulated
Turing machine, respectively.

2.4 Synchronization Modules. A characteristic feature of a compu-
tation on a feedforward Boolean circuit of the usual type is that the fiining
of its computation steps is independent of the unlues of the bits that occur
in the computation. For example, the timing of the output signal of an
OR gate does not depend on the values of its input bits. This feature
is very useful, since with its help one can arrange that all input bits for
Boolean gates on higher levels of the circuit arrive simultaneously, and
therefore it allows us to build complex circuits from simple modules.

If one wants to carry out computations on an SNN with single spikes,
one would like to interpret the firing of a neuron at a certain time as the
bit "1" and nonfiring as "0." Thus one might, for example, want to simu-
late an OR gate by a neuron zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu that fires whenever it receives at least one
EPSP. However, when that neuron z j receives fzuo EPSPs simultaneously
(corresponding to tzuo input bits being 1) it would in general fire slightly
earlier than in a situation where it receives just a single EPSP. This effect
is a consequence of having EPSP response functions E,,,?,(x) that are not
piecewise constant. In addition, if ZI has already fired just before, then
the fact that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAO (x) is in general not piecewise constant also contributes to
this effect. Unfortunately this effect makes it impossible to simulate on
an SNN in a straightforward manner a multilayer Boolean circuit (where
the bit "1" is signaled by a spike, and "0" by the absence of a spike at the
corresponding time): the input "bits" for neurons that simulate Boolean
gates on higher layers of the circuit will in general not arrive at the same
time. Furthermore it is not possible to correct this problem by employing
delay modules of the type that we had constructed in Section 2.2, since
the required length of the delays depends on the current values of the
input bits.

We will solve this problem with the help of the here constructed syn-
chronization module. In fact, we will show in the next section that with
the help of this module an SNN suddenly gains the full computational
power of a Boolean feedforward tkreskold circuit, and therefore is able to
carry out within a small number of "cycles" substantially more complex
computations than a regular Boolean circuit.

On first sight it appears to be impossible to build a synchronization
module without postulating the existence of an EPSP response function
that has segments of length 2 T P M where it is constant, or increases or de-
creases linearly. However the following "double-negation trick" allows
us to build a synchronization module without any additional assump-
tions.

Computational Power of Networks of Spiking Neurons 15

Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5: Structure of a synchronization module.

Consider the graph of an SNN on the left hand side of Figure 5. We
arrange that as long as no EPSP is transmitted through its "input edge" zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
E, the neuron zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu fires regularly with period TPM as a result of EPSPs from
the pacemaker PM. These EPSPs induce the inhibition module 12 to send
IPSPs to neuron zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAZI that "cancel out" the EPSPs that arrive at u directly
from PM. Therefore in the absence of an input through edge e this neuron
u does not fire.

Assume now that at some arbitrary time point an (unsynchronized)
EPSP arrives through edge e. This EPSP triggers the inhibition module
11, which then sends out IPSPs that prevent neuron 14 from firing for a
time interval of some fixed length zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA> T P M . Therefore at least one of the
EPSPs that arrive at neuron u from PM is not cancelled out by IPSPs from
the inhibition module 12, and neuron u emits at least one synchronized
spike (i.e., u fires at least once, and with a proper choice of delays only
at unit times of the form i . TPM with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAN).

A closer look shows that the mechanism of this module is in fact a bit
more delicate. It can, in principle, happen that at neuron u the beginning
or the end of a negative potential from II coincides with an EPSP from
PM in such a way that it leads to a small shift 0 in some firing time of
u (besides canceling other firings of u) . This could shift the time interval
of the activity of l2 by a certain amount p. One has to make sure that
this shift cannot lead to a competition at neuron zi between the negative

16 Wolfgang Maass

potential from zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA12 and the EPSP from PM that results in an zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAuizsynchronized
firing of v. One can solve this technical problem by designing 11 and so
that their output is the superposition of the output of a module l,,h.X and
of a module I"."~'. In this way their strongly negative output potential
(of value 5 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAK) both builds up and disappears at neuron Z J within time
intervals of length zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA;1. This parameter zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1, provides then an upper bound for
the length p of the possible time shifts of these negative potentials. By
choosing zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAb sufficiently small (and by arranging the lengths and delays
of these inhibitions appropriately), for ni iy arrival time of an input spike
through edge e and for any EPSP from PM the resulting inhibition from
12 either cancels the corresponding firing of ZJ, or it lets Z J fire without
shifting its firing time (canceling some other firings of ZJ instead). For
that purpose one chooses the weight ziJ E [0.1] on the edge from PM
to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAzl so that the resulting function U J . z E crosses O(0) while it is in the
middle of its linearly increasing segment [see condition (3) of our basic
assumptions].

The timing of this synchronization module can be specified with more
precision as soon as one selects concrete response and threshold func-
tions that satisfy our basic assumptions. However, the preceding analy-
sis shows that it will do its job in any case. One should keep in mind
that our basic assumptions are relatively weak. For example, they do
not even prescribe the relationships between the sizes of the parameters
03, ~ 3 , and Ten<{ that denote the lengths of the nontrivial segments of the
response and threshold functions.

It turns out that the previously described module may output not just
one, but a larger finite number of synchronized spikes as a result of one
unsynchronized input spike. This effect causes no serious problem in
our subsequent applications of this module (and it might occasionally
be helpful for speeding up a computation), but it is easier to verify a
construction if this module never outputs more than oize synchronized
spike for each input spike. This additional requirement can be satisfied
by adding after neuron v a device with three neurons zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA~ 1 . ~ 2 . zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAv3 as indicated
in the right-hand side of Figure 5. With suitably chosen delays and
parameters for its inhibition module 13, this device removes all except the
first spike from any sequence of successive synchronized spikes. It lets
the first one of these spikes emerge from neuron u3 as a single syiihronized
output spike.

2.5 Simulation of Boolean Threshold Circuits by SNNs. If one just
wants to simulate in a straightforward manner the control of a Turing
machine on an SNN, one can reserve one neuron for each possible state
of the control, and simulate state transitions with the help of neurons that
simulate Boolean AND and OR gates. However Horne and Hush (1994)
have pointed out that many fewer neurons are needed if one simulates
the control with the help of a Boolean feedforward threshold circuit with
gates of unbounded fan-in (see Section 2.8). In addition, the ability of

Computational Power of Networks of Spiking Neurons 17

SNNs to simulate threshold circuits in an efficient manner is of substantial
interest for various other reasons (see Corollary 2.4 and the lower bound
for the VC dimension of SNNs in Maass 1994b). Therefore we describe
the simulation of a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAthreshold circuit on an SNN, rather than considering
first the simulation of the special case of a Boolean circuit with gates of
bounded fan-in (which would suffice for the proof of Theorem 2.1).

A feedforward Boolean threshold circuit (threshold circuit for short)
consists of a directed acyclic graph with nodes of arbitrary fan-in, that
correspond to linear threshold gates (tkreshold gafes for short) with ar-
bitrary weights. A threshold gate with fan-in m computes a threshold
ftiizctioii of the form zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

111

1. if zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC a , . x , > n o

0. otherwise
(0. l},,' 3 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(XI?. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA. . %XI,) H T%(X,,XI,,) =

with arbitrary parameters 00. o,,, E zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAR (or equivalently: cue. . . . , (I,,, E zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Z).

It is obvious that the common Boolean operations AND, OR, NOT
are special cases of threshold functions. Therefore the common types of
feedforward Boolean circuits (even with ANDs and ORs of arbitrarily
large fan-in) are special cases of threshold circuits. Hence, since every
Boolean function can be defined by a Boolean formula in disjunctive
normal form (see, e.g., Lewis and Papadimitriou 1981) it is clear that
~wery Boolean function can be computed by a threshold circuit of depth
2 (i.e., with one "hidden" layer).

There are several different possibilities for simulating a threshold cir-
cuit on an SNN, providing subtle tradeoffs between the amount of de-
mands imposed on the response functions, the noise robustness of the
construction, and the number of neurons needed for the simulation. We
describe one simple construction based on our basic assumptions, and
we will indicate a variation in Section 4.

Consider first a "monotone" threshold function, i.e., a threshold func-
tion T" with oi > 0 for all "weights" o l oj,,. If ci0 5 0 then T" always
outputs "1," and is therefore superfluous. Hence we may assume that
0 0 > 0.

By condition (2) each EPSP response function s , ~ , ~ , has some maximal
value E~~~ > 0 that does not depend on zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBALL or zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu. We employ for the
computation of T" on an SNN m + 1 neurons zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 1 , u,, and u with (2 4 :
(u.11) E E } = {u,. unr}. We assume that all response functions E,,+

are EPSPs and that the weights w,,+ are chosen so that wIL+ . crmax =
(I, . o(O)/ao (slightly larger values should be chosen if one has to deal
with imprecision). Furthermore, we assume that the "delays" are
chosen to be the same for i = 1. . . . , in. Consider then some arbitrary set
S C (1. n r } . Assume that the neurons u, with i E S fire simultaneously
at some time to, that the neurons I I , with i E (1 % . . . ni} - S never fire in

18 Wolfgang Maass

the time interval zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- (~ 3 . to + a?], and that neuron zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu did not fire in the
time interval [to + all, - Te1,d. t o + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa,,, *,I. Then u fires at some point in
the time interval (t o + A,,, i,. to + All, ?, + 03) if and only if CIES wll, . zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE~~~ 2
(->(0). The latter inequality is equivalent to CItsru, . O(O)/tro > 0(0),
hence to C I t s ~ , > NO. Thus we have constructed a module of an SNN
that computes an arbitrary monotone Boolean threshold function T“.

This module has the disadvantage that its proper functioning is guar-
anteed only if all u, with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi E S fire at a cuininun time to. On the other
hand the firing time of u depends not only on to, but also on S (i.e., on its
”input bits”). In general a larger set S gives rise to a slightly earlier firing
time of u (because the function zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcE does not jump immediately from 0 to
cmax). Obviously these two facts together cause problems if one wants
to use compositions of the previously constructed module to simulate a
multilayer monotone threshold circuit (i.e., a threshold circuit where all
gates compute monotone threshold functions). Therefore one has to use
synchronization modules between any two layers of modules to simulate
a monotone threshold circuit on an SNN.

We will now describe the simulation of an arbitrary threshold circuit
C, where threshold functions T’* with ”weights” zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(I, of arbitrary sign are
computed by gates of C. It is well-known (see Hajnal et al. 1993) that
such a circuit C can be simulated by a monotone threshold circuit C,,, of
the same depth, provided that C,,, also receives for each Boolean input
variable x, its negation 1 - x,. Proceeding from the input layer to the
ouput layer one can then replace each threshold gate g of C by two gates
that both compute monotone threshold functions: one of them provides
the same output as g, and the other one provides the negation of that
output.

Thus in order to simulate C on an SNN, one needs in addition to the
preceding construction a preprocessing device that computes the nega-
tion 1 - x for each input bit x E (0, l} under the considered bit encoding
(where ”x = 1” is encoded by a firing of a neuron u at a certain time t ,
and “x = 0” by the nonfiring of u within a certain time interval around
f). For that purpose one connects u to an inhibition module whose out-
puts cancel out an EPSP from PM at another neuron u’ (similarly as in
Section 2.4). Then u’ will fire if and only if it is not inhibited via a firing
of u, hence u’ computes ”1 - x.”

2.6 Modules for Comparisons and Multiplication of Phases with
Arbitrary Constants. We will construct in this section a module for an
SNN that can compare the phase difference zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp of an oscillator 0 with some
given constant a [COMPARE(> n)] , and a module that can multiply
p with some given constant [MULTIPLY(P)]. Such modules [more
precisely: modules for the operation COMPARE(> 2-l-‘) for a certain
constant c, as well as modules for MULTIPLY(2) and MULTIPLY(1/2)1
will be needed in the next section to simulate a stack on an SNN.

Computational Power of Networks of Spiking Neurons 19 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

> zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
t * t

Figure 6: Mechanism of the module for COMPARE(zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 a) .

Let o E zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[O; L / 2] be some arbitrary real constant. We construct a module
that can decide whether the phase difference zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp E [O.L/2] between PM
and some oscillator 0 with oscillation period T ~ M is > zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAN. More precisely,
this module for the operation COMPARE(> zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc r) will send out a spike
within some time interval of some given length 2 0 if and only if p zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 0.

Consider neurons zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA~ 1 . 2 1 2 . and z' with (u i . 2 ~) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE E for i = 1.2. Assume that
i l l is induced to fire at a certain time tl by a spike from the pacemaker
I'M. Furthermore, assume that 112 is induced to fire at a certain time
t 2 by a spike from the oscillator 0. Finally we assume that the delays
A,,,,,, and Al12,,, have been chosen so that in the case p = Q one has for
t, :=!, +A,,,,,, that there exists some f * 2 max(i1,j2) so that t* - t l = o1 and
f' - f ? = 02. We choose weights ZLJ ,,,. > 0 so that UI,, , .~, . sup = 7 ~ , , ~ . ~ . . s ~ I ~ ~ . ~

and w,,,,~, . c E (a l) + w , , ~ , ~ . sE(02) = O(0) (see Fig. 6).
According to our general convention at the beginning of this section

we actually have to replace in the case z(~,,,,, > 1 the neuron iii by an
assembly of [r 0 ~ (~ , ~ , 1 neurons with weights from [O, 11 on their edges to u.
However, for the sake of simplicity, we will ignore this trivial complica-
tion in the following.

We arrange that for - - an arbitrarily given parameter 0 > 0 inhibition
modules I b , h , ~ and I"'.' (with suitable values of their parameters) are
triggered by spikes from I'M to send II'SI's to u so that u is not able to fire
within the time intervals [f*-L/2-D, t ' - L / 2) and (f *+L /2 , t*+L/2+D\
even if the firing time t2 of neuron u2 is arbitrarily shifted, but so that

20 Wolfgang Maass

these inhibition modules have no effect on the potential zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP, at neuron zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAZI

during the time interval zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[t* zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- L/4. t* + L/4].
Consider now what happens if the phase difference zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA9 of the oscillator

0 is not fixed at p = 0, but assumes any value in [0, L/2]. Then by choice
of the parameters zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAZ L J , , , ?). w , , ~ ',, and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf*, and by the conditions zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(3) and (4) of
our basic assumptions, the sum of the EPSPs from u1 and u2 at neuron ZI

has in any case a constant value within the time interval [f*-L/2, f*+L/2].
Furthermore, this constant value is 2 O(0) if and only if p 2 a. Hence
the neuron u will fire within the time interval [f * - L/2. f* + L/2] if and
only if p 2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(1. Furthermore, by the choice of the inhibition modules the
neuron I J fires within the time interval [f * - L/2. f * + L/2] if and only if
it fires within the time interval [f" - D. t* + D] .

We now assume that some arbitrary real number j > 0 is given,
and we construct a module that carries out the operation MULTIPLY(-I) .
This module also consists of neurons 1 1 1 . u 2 . u with (z i z . z i) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE E for I =
1.2 so that 1 4 1 is triggered to fire at some time f l by a spike from the
pacemaker PM, and u2 is triggered to fire at some time f2 by a spike from
an oscillator 0 that has oscillation period 7rpM and some phase difference
E [O.min(L/2,L/2/j)] to PM. We want to achieve that for any value

p E [0, min(L/2. L/2d)] of this phase difference the "output neuron" 11 of
this module fires at a time t + /j p, where f does not depend on p.

The construction of the module for the operation MULTIPLY(j) is
slightly different for the two cases J > 1 and 1 E (0.1 I We consider
first the case 11 > 1. Assume for the moment that the phase difference
9 E [O. L/2,3] between 0 and PM has value 0, and choose delays A,,, L, so
that there exists for i, := t, + A,,, 1, some f' 2 max(il. I,) with f' - ;I = "2

and f * - i2 = 01. Furthermore, we choose weights ZL'~,! zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 , > 0 so that

(2.1) ZO,,, 7, . 2 (t * - 71) + Z U l f 1 , . € E (t * - i,) = O(0)

and

(2.2)

Since j > 1, equation 2.2 implies that 0 < ~ 1 , ~ ~ . sdown < w,,? <, . sup. Hence
we have

~ i ~ , , , ~ , ~ ~ ~ (t * - ~ ~ + z) + z i ~ , , ~ ~ , ~ ~ ~ (t * - ~ ~ + :) < O(0) for all z E [- L O) (2.3)

We would like to arrange that u does not fire during the time inter-
val [f * - Tend. f*), where has the property that (->(x) = @(o) for all
x E [~ ~ ~ d . m) [according to condition (l)]. Furthermore, we would like to
make sure that this property holds even if the firing of 112 is delayed by
some arbitrary amount p E [0, L/2/j]. However, even if one assumes that
only the considered EPSPs from 111 and 242 are influencing P,,(fj, this as-
sumption allows us to derive this fact only with the help of equation 2.3
for the interval [t* - L/2. t *) , since we did not make more detailed as-
sumptions about the shape of the function cE. Therefore we arrange that

Computational Power of Networks of Spiking Neurons zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA21

Figure 7 Multiplication of a phase zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAy with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAB zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA> 1 (i.e., zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt, - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf* = i ? . zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA9).

at a suitable time an inhibition module ILI2," '~nd sends IPSPs to u, which
makes it impossible for u to fire during the time interval [t" t* -L/2)
(no matter at what time u2 fires), but which does not influence the poten-
tial P,,(t) at times t 2 t ' . Furthermore, we arrange that no other EPSPs or
IPSPs contribute to P U (t) for t zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE [t* f *] . In this way u can fire during
the time interval [f * - Tend. t ') (even if the firing of u2 is delayed by some
p E [O. L/2/??]). Therefore in the case p = 0 our assumption (equation 2.1)
implies that neuron u will fire at time f * .

We now consider what will change if the firing of u2 at time f2 is
replaced by a slightly later firing at time t2 + p, whereas the firing time of
u1 and of the inhibition module remain unchanged. We will show that
for any p E (0. L/2@ this delay will cause a somewhat delayed firing of u
(see Fig. 7). Consider the time point t,, which is defined by the equation

(2.4)

By equation 2.1 and conditions (3) and (4) of our basic assumptions we
have for t , - f * E [-L.L]

wlgl,*, . " (t , - t l) + wuz D ' "E[t, - (t, + p)] = O(0)

w,, 3 ' "(f, - i,) = w,, z, ' E E (f * - T I) - w,,,, ' Sdown ' (t , - f') (2.5)

and for 9, f, with f, - t' - p E [-L. L] we have that

w " ~ ~ , . E ~ [~ , - (~ ~ + (P)] = w ~ ~ ~ ~ . E ~ (~ * - / ~) + w , ~ ~ , . s , , ~ . (t , , - t * -p) (2.6)

22 Wolfgang Maass

Figure 8: Multiplication of a phase zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA9 with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAH E (0.1).

These two equations in conjunction with 2.1, 2.2, and 2.4 imply that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
t zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- t* = I] ' $, 9

It is obvious that for 9 E [O. L/2P] one has that d . zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp, , I . 9 - p E [-L. L] .
Furthermore, it is clear from our construction that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAzl cannot fire during
the time interval [t" - t* + d . 9). Therefore t , := t* + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA/j. p is in fact
the firing time of ZI if 1 ~ 2 fires at time t2 + p. Hence the described module
carries out the operation MULTIPLY(/j) in case that ,j > 1.

To carry out the operation MULTIPLY(1j) for some arbitrarily given
, I E (0.1) we just change the delay A,,, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAl , in the previously described
module so that t' - i, = g1 (instead of t* - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi, = ~ 2) (see Fig. 8). We choose
weights ZU, , , ,~ , > 0 so that equation 2.1 holds and

(2.7)

As before, we consider the time point t , that is defined by equa-
tion 2.4. Then equation 2.6 holds, but instead of 2.5 we have

7/7,,,,,, ' s E (f , - i,) = w,,,,,, . sE(t* - i,) + w,,,.,, . s"p ' (tP - t *) .

f P - t* = / j .p.

The latter two equations in conjunction with 2.1, 2.4 and 2.7 imply that

Hence the described module carries out the operation MULTIPLY (/ j) for
an arbitrarily given /-I t (0.1).

Computational Power of Networks of Spiking Neurons zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA23 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
2.7 Simulation of a Stack with Unlimited Capacity by an SNN of

Fixed Size. The simulation of a stack (also called pushdown store, of first
in-last out list) is the most delicate part of the construction of NTM(d),
since it requires the construction of a module in which the lengths zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI' of
the bit-strings zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(b,, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA. . . bl) that are stored and manipulated are in general
much larger than the number of neurons in this module (in fact, (I can be
arbitrarily large). Of course NTM(~) needs to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAhave a component with this
property, since otherwise the SNN N T M (d) (which will consist of a fixed
finite number of neurons) cannot simulate the computations of Turing
machines that involve tape inscriptions of arbitrary finite length. The
content (bl % bt) E {0.1}* of a stack zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS (where bl is the symbol on top
of the stack) will be stored in the form of the phase difference

e
ps = C b, . 2-'-'

i=l

of a special oscillator 0 s . More precisely, we assume that 0 s fires with
the same oscillation period TPM as the pacemaker PM, but with a delay zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
ps. The parameter c E R+ is some arbitrary constant that is sufficiently
large so that 2-' 5 min(L/2, T P M) .

We will now describe the mechanisms for simulating the stack oper-
ations POP and PUSH on a bit string (b, ~. . . .be) that is stored in ps.

The stack operation POP determines the value of the top-bit bl, and
then replaces the stack content (b , ~ br) by (b2. . . . , bc). In an SNN one
can determine the value of bl from ps by testing whether 9 s 2 2-'-'.
For that purpose one employs a module that carries out the operation
COMPARE(2 2-'-') (see the preceding section).

To change the phase-difference ps from & b, .2-'-' to Cp=;' bi+l.2-'-'
one first replaces cps by xf=2 bi.2-'-' . For the case bl = 1 this can be carried
out by directing an EPSP from 0s through a suitable delay module, by
halting simultaneously the oscillation of 0 s with the help of an inhibition
module, and by restarting the oscillation of 0 s with an EPSP from the
considered delay module. Note that we can employ at this point a simple
delay module as described in Section 2.2, because in the case bl = 1 the
length of the desired shift of the phase difference does not depend on its
current value.

It remains to carry out a SHIFT-LEET operation, which replaces the
phase difference C,=* b . . 2-1-C by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

c I -1
2 . 1 b, . 2-i-c = 1 bi+l . 2-i-c,

r=2 i=l

This operation cannot be implemented by a delay-module, since it has to
shift the phase difference by an amount that depends on the values of l
and b2, . . . ,be. Instead, we have to employ a module that carries out the
operation MULTIPLY(2) (see Section 2.6).

24 Wolfgang Maass

To simulate the stack operation PUSH one has to replace for a given zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
ho zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE (0.1) the current phase-difference ps zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= cf=l b, . zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2-'-' of the oscil-
lator 0 s by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1;:; b,_l . 2-'-c. Our simulation of PUSH consists of two
separate parts: a SHIFT-RIGHT operation that changes the current phase
difference to C,"=',' b,-l . 2+', and a subsequent ADD(?) operation that
adds y := bo . 2-1-c to this phase difference. Obviously ADD(?) can be
implemented in an analogous way as the subtraction of bl .2-'-' from pi
in the previously described simulation of POP.

Thus it just remains to simulate a SHIFT-RIGHT operation, i.e., to
replace the phase difference ps = Cf=, b, . 2-r-L of size 5 L / 2 by ps/2 =

c,=2 (+I k l f zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2-I-[. For that purpose we employ a module for the operation
MULTIPLY (1 /2), as constructed in the preceding section.

2.8 Simulation of an Arbitrary Fixed Turing Machine by an SNN.
We will show in this section that the previously constructed modules
suffice to construct for any given Turing machine M an SNN NM (whose
structure may depend on M) that can simulate M in real-time. Accord-
ing to the notion of a real-time computation (see Section 1) we assume that
the given Turing machine M processes a sequence ((x(j),~(j))),~~ with
XI)). y(j) E (0. l}" in real-time. We assume that the inputs xu) are pre-
sented to M on a read-only input tape, and the outputs y (j) are written by
M on some write-only output tape. We will assume that the simulating
SNN NM receives each input x (j) E {0,1)* in the form of a time difference
p between two input-spikes, with p = cf=l b, .2-'-' for XI)) = (b l , b,).
We will arrange that NM delivers its outputs yI)) in the same form (as a
time difference between two output spikes).

It is easy to see that any Turing machine M , with any finite number zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
d of two-way infinite read/write-tapes, can be simulated in real-time by
a similar machine which has 2d stacks, but no tapes (see, e g , Hopcroft
and Ullman 1979). We will call the latter type of machine also a Turing
machine. In this simulation one uses two stacks for the simulation of
each tape: one stack for simulating the part of the tape that lies to the left
of the current position of the tape-head and another stack for simulating
the part of tape to the right of the tape-head.

In principle it would suffice to consider a Turing machine with 1
tape (or 2 stacks), since this type of Turing machine can simulate any
other Turing machine (although not in real time). However, it is known
that various concrete problems (especially several pattern-matching prob-
lems) can be solved faster on a Turing machine that has more than one
tape (see, e. g., Hopcroft and Ullman 1979; Maass 1985; and Maass ef
al. 1987). Therefore, and because it does not cause any extra work, we
simulate an arbitrary Turing machine M with any number k of stacks by
an SNN N M .

At any computation step the Turing machine M may POP or PUSH a
symbol on each of its zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAk stacks. We assume for simplicity that the stack-
alphabet of M is binary (i.e., M can push 0 or 1 on each stack, and pop

Computational Power of Networks of Spiking Neurons 25

a binary symbol, or receive the signal "bottom-of-stack if the stack is
empty.) Furthermore, we assume that the input for the computation of
M is given as the initial content of the first one of the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAk stacks, and that
the output of M consists of the final content of the last one of the k stacks
(at the moment when the machine halts).

If Q is the (finite) set of states of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAM, then after assigning a number
in binary notation to each state in Q the transition function of M can be
encoded by a function zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAF M zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA: (0. l } ~ ' n g ~ Q l ~ + k --+ (0. I}l"glQllfk. We assume
here that the state of M indicates on which of the stacks a POP or PUSH
has to be carried out.

Thus to simulate the finite control of M by an SNN, it suffices to
employ a module that can compute an arbitrary given function from
(O.l}llnglQll+k into itself. We assume here that the rloglQl1 + k input
and output bits of this function are stored in a corresponding number of
oscillators with two states (dormant/oscillating). According to Lupanov
(1973), one can compute any function F : (0. l }~ logIQl l+k + (0. l}ilnglQll+k

on a feedforward threshold circuit with O(IQ/'/*. 2k/2) gates. In addition,
Horne and Hush (1994) have shown that any such function F can be
computed by a threshold circuit of depth 4 with O[IQ/'/2.2k/2.(log lQl+k)]
gates, using only weights and thresholds from (-1.0. I}. Hence our
previously described simulation of an arbitrary threshold circuit on an
SNN in Section 2.5 allows us to simulate in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBANM the finite control of M
with a module of O[lQI'/' . 2k/2] neurons (provided the SNN may use
arbitrarily large weights). Furthermore, the quoted result by Horne and
Hush in conjunction with our construction in Section 2.5 implies that
with O[IQ1'/2 . 2k/2 . (log IQI + k)] neurons one can implement in N M the
finite control of M in such a way that only very simple weights from
[O, 11 are needed in NM, and that the simulation of each computation step
of M requires only O(1) "machine-cycles" of N M . More precisely, each
computation step of M is simulated by NM in a time interval in which
the pacemaker I'M fires 5 K times, where K is some absolute constant
that is independent of IQl,k, the length of the current input of M, and
the number of the previously simulated computation steps of M.

Apart from the finite control component, the SNN J\/M consists of a
module of O(1) neurons for each of the k stacks, and O(1) neurons that
implement the pacemaker PM. In addition N M uses O(1og IQI + k) neurons
for other oscillators that serve as temporary registers for bits. Thus N M

consists altogether of at most O[IQ11/2 . 2k/2 . (log IQI + k)] neurons, and
the simulation of any computation step of M involves at most O[lQ]1'2 .
2k/2 . (log IQI + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAk)] firings of neurons in NM. After NM has simulated
every computation step of M on the current input x (j) E {0.1}*, it has
generated on an oscillator OS, which corresponds to the stack S on which
M writes its output y(j) = (bl, bi), a phase-difference cps = ZfZl b,.2-'-'
with regard to the pacemaker PM. NM outputs two spikes, where one is
generated by PM and the other one by OS, before receiving its next input.
Since for fixed M the parameters IQI and k can be viewed as constants,

26 Wolfgang Maass zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
I -

. - .. . - - -- -
I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt + t, t

Figure Y: Mechanism of the weight-to-phase transformation module.

.*,, just uses Oi 1) spikes tor the simulation of each computation step of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
M. Hence .I*,, simulates M in real-time. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

2.9 Weight-to-Phase Transformation. At this point the only missing
link for the construction of the desired SNN . l&(d) is a module that
allows us to generate from suitable weights of an zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASNN the encoding of
arbitrarily long (even infinitely long) bit strings, which may, for example,
represent the program of a Turing machine, or an infinitely long "look-
up table." The weight-to-phase trmsformation module constructed here
will be able to generate within a fixed number of "machine cycles" any
given phase difference ; = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC:=, b, . 2-'+' of an oscillator (for arbitrary
i E N u {x } and k , E (0.1)) from suitable weights between 0 and 1.
Furthermore, these weights can be chosen to be rational i f / E N. This
module will exploit effects of the firing mechanism of a neuron in an
SNN that are closely related to those that we had used in Section 2.6
to multiply the phase of an oscillator with a constant factor. To allow a
i i r f i q f i e decoding of ;rifin;fd,g /mis bit sequences from phase differences ;
we adapt the convention that h1 == 0 for all zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi E N in case that I = x.

We consider the same configuration with neurons i f 1 . 1 1 2 . ~ 1 , and an
inhibition inodule as for MULTIPLY(. j) in Section 2.6. However, instead
of shifting the firing time of i f ? , we are now interested in the consequences
of multiplying the weight on the edge from i l l to 5' with some factor
ii' E i0. 1) (see Fig. 9). We choose values for the delays so that
tor t , := t , 7 A?(:. there exists some t' >_ max(t1. t 2) with t' - t l = m2

- -

Computational Power of Networks of Spiking Neurons 27

and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt* zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi, = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(71. Furthermore, we choose positive weights w,,, ,, so that
w,,, i 3 sup = 2w,,, l 3 . Sdown and

zL7,,, <, ' € L (t * - ? I) + w,,, ', ' 2 (t * - i,) = 8 (O) .

To analyze the consequences of multiplying the weight w,,, ,, with
some w zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE [O.1], we consider for arbitrary w E [O.1] the point t,,, > f *
that satisfies

Together with the preceding equations and conditions zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(3) and (4) from
our basic assumptions on zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcE this yields

or equivalently

Then analogous arguments as in Section 2.6 show that if w E (0.11 is
chosen so that the right hand side of this equation has a value in [O. L/2],
then the value for t,,, that results from this equation is, in fact, the uniquely
determined firing time of u in [t*. t*+L/2] if the weight on the edge (u1. v)
is multiplied with w. In particular, the value t,,, - t* = L / 2 of the shift in
the firing time of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu is achieved for

Thus wL E [O. l), and the function w H f,,, - t* maps [WL. 11 one-one onto
[O. L / 2] .

The inverse of this map is defined by

One can derive from the basic assumptions on 0 and E~ that w,,, z, E Q.
Hence the preceding formula in combination with these basic assump-
tions implies that one can achieve any rational phase shift t , - t* E [0, L/2]
with a rational weight w . w,, ?, on the edge (u1. v).

Finally, by our choice of c one has xf=l b, . 2-'+' E [O. L/2] for any
values of P E N U {co} and b, E (0. l}. Hence in a preprocessing phase
of an SNN any given finite or infinite bit sequence (b l , b2.. . .) can be
"loaded [with only Ojl) spikes involved] from the value of a certain
weight of the SNN into the form of a phase difference cps = CP=, b, .2-'-'
of an oscillator 0 s . For that purpose one has to ensure that the considered
firings of neurons u, and u2 (as well as of the involved inhibition module,
see the corresponding construction in Section 2.6) are triggered by EPSPs
from the pacemaker PM. Thus we have shown that the weights of an
SNN can essentially play the role of a "read-only memory" of unlimited
capacity.

28 Wolfgang Maass zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
2.10 Construction of NTM(~). In this last part of the proof of Theo-

rem 2.1 we construct an SNN zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBANTM(LI) that has those properties that are
claimed in Theorem 2.1. Let d zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt N be any given constant. Let zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAMu be a
"universal Turing machine" with d zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+ 1 tapes that can simulate any Tur-
ing machine with d tapes in real-time. More precisely, MLI is a Turing
machine that receives two finite binary strings s and e on two different
tapes as input, and which simulates for any e zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE {0.1}* the d-tape Turing
machine whose program is encoded by e in real-time on input x (with
some suitable default convention for the case that e is not the encoding
of some Turing machine program). The construction of such universal
Turing machines Mu is a standard part of the proof of the time hierarchy
theorem for Turing machines (see, e.g., Hopcroft and Ullman 1979, or
Lewis and Papadimitriou 1981). The desired SNN N T M (d) will basically
be the SNN that one gets by applying the construction from Section 2.8
to the Turing machine M := Mu, but with 2d + 2 stacks instead of the
d + 1 tapes.

The only additional work that remains to be done to satisfy the claim
of Theorem 2.1 is to change the way in which NM,, receives its input.
Ordinarily NM,, would expect to get its second input e = (el.e l) E

{0.1}* in the same way as its first input x E {O. l }* , in the form of two
input spikes with time distance Cf=, el .2-'-'.

In contrast to that, the constructed SNN N&(d) receives only a single
input x in the form of a time difference between two input spikes. On the
other hand its weights may depend on the simulated Turing machine M.
Thus we may choose a rational weight zu E [O. 11 that can be transformed
with the help of the module from Section 2.9 into a phase difference
t,,, - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf* = C' 1=1 e zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI .2-!-(. This transformation can be carried out in a pre-
processing phase within O(1) firings of PM. After that, the computation
of N T M (d) proceeds exactly like that of NM,, .

To prove the second part of the claim of Theorem 2.1, one exploits
the obvious fact that niiy function F : {0.1}* + {0.1}* can be computed
by a Turing machine MF with infinitely many bits of "advice," i.e., by
a Turing machine MF that has at the beginning of each computation on
one of its tapes the same infinite sequence (el)rEN of bits el E (0. l} as
initial tape inscription. This sequence (e!)rtN may for example encode a
look-up table for all pairs (x . F (x)) , x E {O.l}*. We may assume that
(el)ltN also encodes the program of the Turing machine MF, and that MF
altogether has only 2 tapes. As usual, the Turing machine MF receives on
another tape the input x E {0,1}*. To simulate this Turing machine MF
on the SNN N T M (d) , we just have to equip NTM(~) with a suitable real
weight w E [O. 11 that can be transformed (as described in Section 2.9) in a
preprocessing phase within O(1) firings of PM into the phase difference
f zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA71' - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf * = C" r=l e I . 2-2r-c of an oscillator. After that, N T M (~) will simulate
the computation of the Turing machine MF (with initial tape content
(el)lEN on one of its tapes) in the usual manner. Thus NTM(~) will output
F (x) for any given input x E {O> l } * . Hence N&(d) can compute the

Computational Power of Networks of Spiking Neurons 29

(arbitrarily given) function zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAF zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(0: 1)" + (0; 1 >*. This concludes the proof
of Theorem 2.1. 0

An important measure for the complexity of a neural network in the
context of learning is its Vapnik-Chervonenkis dimension (VC-dimen-
sion), see Vapnik and Chervonenkis (1971). Various results from statisti-
cal theory suggest that the VC-dimension of a neural net is proportional
to the number of examples needed to train that neural net (for references
and a brief survey see, e g , Maass 1995a). zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Corollary 2.2. One can construct with any type of neurons whose response and
threshold functions satisfy our basic assumptions an SNN N offinite size, so that
the VC-dimension of the class of Boolean functions that are computableon N (with
different assignments of rational values from [O. 11 to its weights) is infinite.

A proof of the following result is contained as a special case in the
proof of Theorem 2.1 (see especially Section 2.8).

Corollary 2.3. Any deterministic finite automaton with q states can be simulated
in real-time (both for decision problems, or with intermediate output as a Mealy or
Moore machine) by an SNN with O(q'/2) neurons for zuitk 0(q1/* .logq) neurons
if only weights from [O: 11 are permitted].

The following corollary exhibits another result of independent interest
that was shown in the preceding proof (Section 2.5).

Corollary 2.4. One can construct with any fype of neurons whose response and
threshold functions satisfy our basic assumption for any given feedforward Boolean
fhreshold circuit C with arbitrary weights, s gates and d hidden layers an SNN Sc
with O(s) neurons that simulates any computation of C within a time interval of
length O(d) . Furtkermore, one can also simulate C witlziii time O(d) by an SNN
Sl, with polynomial(s) neurons that uses only weights w zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE [O. 11.

Finally we observe that an application of the techniques from the
proof of Theorem 2.1 to SNNs with discrete time (see the definitions in
Section 1) yields the following result.

Corollary 2.5. One can construct for any Turing machine M with any type of
neurons whose response and fhreshold funcfions satisfy our basic assurnptions an
SNN NM so that for any s E N the SNN NM with discrete firing times from
{ i zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA11, : i E N} for some pa with 1 / p = 2'+*(') and Amax - Amin 2 211, can simulate
in real-time arbitrary computations ofM that involve at most s tape cells of M .

For the proof of Corollary 2.5 one exploits the fact that because of the
condition Amax - Amin 2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 ~ 1 the same construction as in Section 2.2 yields
modules that achieve any given real-valued (!) delay 2 Amin. With the
help of such delay modules one can then arrange that the time points t' in
the subsequent constructions of other modules, as well as the time points
when the EPSPs reach their maximal value E~~~ (for the simulation of a

30 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAWolfgang Maass

threshold circuit), all belong to the set zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA{ i zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA. / / : i E zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAN}. For the simulation
of a stack of a Turing machine hrl the construction from the proof of
Theorem 2.1 works without changes for SNNs with discrete time steps
of length 11, provided that 2-'--' E { i : i zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE N} for the maximal length l
of any bit string that is stored in a stack of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAM. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0

3 Beyond Turing Machines __ -~

We have shown in Theorem 2.1 that one can build from arbitrary neu-
rons, whose response and threshold functions satisfy certain basic as-
sumptions, an SNN that can simulate any Turing machine. However
SNNs are strictly more powerful than Turing macliines for two reasons:

1. An SNN can receive RW! numbers as input, and give red numbers
as output (in tlie form of time differences between pairs of spikes).

2. We had constructed in Section 2.6 modules for an SNN that can
carry out the operations COMPARE (2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(1) and MULTIPLY(, j) , for
a wide range of constants and . j , applied to arbitrary real-valued
arguments zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAj from a certain interval. If one applies, for example,
such an operation to a phase of the form j = I:=, b,,2-' ', then such
a module executes with Oi 1) spikes an operation that involves tlie
ii1hok bit string zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(1 1 , j of arbitrary length I E N U { x}. In contrast
to that, any Turing machine operation can affect at best a constant
number of its stored bits.

In this section wc' will show that in addition one can construct mod-
ules for an SNN that ADD, SUBTRACT, or COMPARE any two real val-
ued phase differences ;: E lo. L 141 of two different oscillators. This
result turns out to be quite important, since in combination with (1)
and (2) i t implies that one can simulate in real-time on an SNN any
RAM with finitely many registers that stores in its registers arbitrary real
nunibers of bounded absolute value, and that uses arbitrary instructions
of the form COMPARE, MULTIPLY(j), ADD, SUBTRACT. Furthermore,
such an SNN can be built with any type of neurons whose response and
threshold functions satisfy the basic assumptions from the beginning of
Section 2.

On tlie other hand, according to Maass (1994b, 1995c), any SNN with
rirbifr17ry piecewise linear response and threshold functions can be simu-
lated in real-time by the same type of RAM. Hence, tlie computational
power of these RAMS (which we will call N-RAMS because of their close
relationships to neural networks) matches exactly that of SNNs whose re-
sponse and threshold functions are piecewise linear zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc 7 r d satisfy our basic
assumptions.

One can also show through mutual real-time simulations (see Maass
1995b,c) that the computational power of N-RAMS (and hence of the
above-mentioned SNNs) matches exactly that of recurrent nrinlog neural

Computational Power of Networks of Spiking Neurons zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA31

nets with discrete time and piecewise linear activation functions (see
Siegelmann and Sontag 1992). More precisely, any analog neural net
with any piecewise linear activation functions can be simulated in real-
time by an N-RAM; for the simulation of N-RAMS by analog neural nets
one can employ, for example, the linear saturated activation function
together with the heaviside activation function in the analog neural net.
This result implies as a side-result that these two activation functions
together are "universal" for all piecewise linear activation functions in
recurrent analog neural nets (since they allow such a net to simulate in
real-time any other recurrent analog neural net with arbitrary piecewise
linear activation functions). Hence N-RAMS also provide a very useful zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
intermediate link for the comparison of SNNs (modeling spike coding) and
analog neural nets (modeling frequency coding).

We defer the detailed discussion of N-RAMS [which are somewhat
weaker than the well-known model of Blum et al. (1989) and also related
to the computational model considered in Koiran (1993)] and the proofs
of the above-mentioned results to a subsequent article (Maass 1995~).
However we will describe in this section the construction of SNN mod-
ules for the operations ADD, SUBTRACT, and COMPARE, since those
constructions are closely related to the preceding constructions in this
article. These constructions provide the tools for the real-time simulation

Consider two oscillators 0 1 and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 2 of an SNN, both with oscillation-
period QM. Let 9, be the phase difference between 0, and the pacemaker
PM, i zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 1 ~ 2. We construct a module that receives a spike from each of the
oscillators 0 1 and 0 2 , and which is then able to kick-off a third oscillator
0 with oscillation period T P M in such a way that it will have phase-
difference p1 + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA32 to I'M. This module for the operation ADD employs
a similar arrangement of three neurons ul . zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu2. and z, as the modules for
COMPARE(2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(Y) and MULTIPLY ((1) that were constructed in Section 2.6.
We assume that neuron u, is triggered by a spike from oscillator 0, to
fire at a certain time t,. We choose delays A,,,,, in such a way that for

in case that pl = 92 = 0. We choose w > 0 so that 2w. ~ ~ (0 1) = O(O), and
we set w,,, = w,,, = w. We also add an inhibition module, which makes
it impossible for u to fire within the time interval [f' - ~ ~ , , d , t" - L / 2) for
any values of 31. 92, and which has no influence on P D (t) for f 2 t* [as in
the construction for MULTIPLY(,]) in Section 2.61.

Then for arbitrary values (PI. cp2 E [0, L/2] the neuron u fires at a time
tX E [O.L/2] such that

of N-RAMS by SNNS.

?, := f, + A,,, {, there exists some t* 2 max(il. i,) so that t" - i, = t* - i~ = "1

w ' s"p [tc - (t" + 9 1)] + w ' sup [tc - (t' + p2)] = 0.

or equivalently

32 Wolfgang Maass zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
sumofboth zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA,
fimctions zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3' e(o,t. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA: . : .7//. . . zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

W'

Figure 10: Mechanism of the module for ADD.

(see Fig. 10). The factor 1/2 of pl + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA9 2 can be removed with the help of
a subsequent module for MULTIPLY(2) (see Section 2.6). In this way the
module for ADD constructed here can generate an output spike at time
I . T P M + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(91 + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA$ 2) for some zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 E N.

The construction of a module that computes the differriice p1-32 of the
phase differences ~ 1 . 9 9 2 of two modules zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA01 and 0 2 with PI 2 p2 is quite
similar. For arbitrary given values p1, p2 E [O. L/2] with pl 2 32 we first
employ a module MULTIPLY(1/2) that replaces y1 by $1 := p1/2. For an
arrangement of neurons ul. 112. u as for ADD we choose delays All! so
that f * - T I = nI and t*-i2 = 02 in case that pl = p2 = 0, and weights w,,, ?,,

x+,, I , so that 744,, i 7 ' ~ , p = 2zul12 z r . ~ d o w n and w,,, , , . E ~ (~ I) +w,,, r , .~E(n2) = (-)((I).
Furthermore, we employ an inhibition module that makes it impossible
for neuron z1 to fire within the time-interval [t' - Tend, t" - L/2] for any
values of y1 $2 E [O . L / 2] , but that has no influence on P<,(f) for f > t*.

Then for any phase differences pl 92 E [O. L/2] with y 1 2 92 the phase
difference 91 is first transformed to = 9,/2. Neuron u1 receives a spike
with phase difference $1, and 112 receives a spike with phase difference
p2. The resulting firing time f a of neuron 11 is determined by (see Fig. 11)

Zl'ii, 1 1 ' s u p ' [fa - (f * + $ I)] - ~L'I,~,zI ' Sdown ' [fa - (t * + $9211 = 0

This yields

f a - t* = 231 - 9 2 = $31 - y2

Finally, it is easy to see that the module for COMPARE(> (I) from
Section 2.6 in combination with the preceding module for SUBTRACT

Computational Power of Networks of Spiking Neurons zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA33 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
+ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf - (f* + @J)

+ t - (t* + 93)

Figure 11: Mechanism of the module for SUBTRACT.

allows us to build a module for the test COMPARE, i.e., a module that
decides for any two given phase differences zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBApl. 32 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE [O. L/4] of two os-
cillators 0 1 and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 2 with oscillation period TTT~M whether pl > 3 2 . For
that purpose one first transforms pl with the help of a delay module to
p; := 9 1 + L/4. It is then clear that 3; zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 p2, and the module for SUB-
TRACT can be employed to compute p; - 9 2 = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp1 - 92 + L/4. With the
help of a subsequent module for COMPARE(> L/4) we can then decide
whether p1 - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA992 + L/4 > L/4, i.e., whether p1 2 3 2 .

Of course one can also build directly a module for COMPARE by
using a variation of the construction for COMPARE(> zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0) in Section 2.6.

4 Variations of the Constructions for Related Models of Spiking
Neurons

We have assumed for the constructions in the preceding two sections that
the response and threshold functions are stereotyped, i.e., that apart from
their individual delays A,,u the functions E,, L, and 0, all have the same
shape. This assumption is convenient, but not really necessary for the
preceding constructions. The same constructions can also be carried out
if these functions are differed for different edges (u. v) E E and different
v E V . More precisely, it suffices to assume that the response functions F, , (,

are defined with the help of individual delays A, l , and iizdzvicfual functions
&fZ, and ~ f , ,, so that E~ u(x) = 0 for x E [0, A, and E,, u(Au <, + x) = E: l l (x) ,

34 Wolfgang Maass

and, respectively, F ~ ~ , ~ , (A ~ , . , , zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx) = F;,,?,(.Y) in the case of an IPSP, where the
functions &,. &. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0,) satisfy the basic assumptions from the beginning of
Section 2. However, these functions E;,,,, F : ~ , ~ , , and (-I,, may be arbitrarily zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
differcwt, with different values of the parameters r,,f, ~, "d . 0,. q% L. sup. sdOwn,

for different neurons U . Z J (in fact one may assume that these functions
are chosen by an "adversary"). Under these relaxed conditions we have
to assume, however, that zue can choose arbitrarily large delays All.,, and
weights zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAZL~,,,,, Rfter the individual functions E : , ~ > , and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAOT, are given to
us. Of course one can trade off parts of the latter condition against
some quite reasonable conditions on the individual functions F:,,,. :f,.?,,

and el,.
One can also replace the basic assumptions at the beginning of Sec-

tion 2 by some alternative assumptions about E:,~,. ~ f , , ~ , , and @:,. For ex-
ample, one can postulate the existence of suitable linear segments of ~ f , , ~ ,
or zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAOZ,, and then exploit at the neuron u in the module constructions of
Sections 2 and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3 a "timing-race'' between an EPSP and an IPSP, or be-
tween an EPSP and the declining part of @,, (instead of the race between
two EPSPs). Without a "reset" at each firing of neuron zl (see below)
one needs, however, for the latter option (EPSPs versus (3J more specific
assumptions about these functions to control undesired side-effects that
may result from the end segments of EPSPs that caused the preceding
firing of zl.

We also would like to point out that the full power of the module
COMPARE(2 t ~) from Section 2.6 is actually not needed if one just wants
to simulate Turing machines on an SNN. If one employs a less concise
encoding of bit strings by assuming also that b2r = 0 for all i 5 l / 2 for
all fiiiitr bit strings (b l b e) that are encoded in the phase difference
9 = XI=, P b . . I 2-I-c of an oscillator, it is guaranteed that p 2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2-'-' or p 5
2-2-c (independently of P and of the values of the bi E (0. l}). This "gap"
of fixed length between the possible values of p allows us to determine
whether bl = 1 just with the help of delay and inhibition modules [instead
of using the more subtle mechanism of COMPARE(>@)I . But the module
for COMPARE(> a) is of independent interest, since it shows in the
context of Section 3 that discontinuous real-valued functions can also be
computed on an SNN.

The implicit assumptions about the firing mechanism of neurons in
the version of the SNN model from Section 1 ignore the well-known "re-
set" and "adaptation" phenomena of neurons. However, one can easily
adjust the definition of the SNN model so that it also takes these features
into account. To model a reset of a neuron at its moment of firing, one
can adjust the definition of the set F,, of firing times of a neuron u by
deleting (or modifying) in the definition of P , (t) those EPSPs and IPSPs
from presynaptic neurons 11 that had already arrived at u before the most
recent firing of u.

Adaptation of a neuron z i refers to the observation that the firing-rate
of a biological neuron may decline after a while even if the incoming

Computational Power of Networks of Spiking Neurons 35

excitation [i.e., zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP,(t)] remains at a constant high level (see for example
Kandel et al. 1991). This effect can be reflected in the SNN model by
replacing the term O,(t zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- s) in the definition of the set F , of firing times
by a sum over O,(t - s) for several recent firing times s E F,, [and by
assuming that O,(x) returns only relatively slowly to its initial value

We would like to point out that all of our constructions in Sections 2
and 3 are compatible with our above-mentioned changes in the SNN
mode1 for modeling the reset and adaptation of neurons. The reason for
this is that we can arrange in the constructions of Sections 2 and 3 that
all "relevant" firings of a neuron v are spaced so far apart that reset and
adaption of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu have no effect on those critical firing times.

Regarding the simulation of threshold circuits by SNNs (see Section 2.5)
we would like to point out that the corresponding SNN module can be
constructed with fewer neurons if one makes further assumptions about
the shape of EPSP and IPSP response functions. For example, one can
simulate directly a threshold gate TE with weights zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(Y, of different sign in
a similar way as we have simulated monotone threshold gates T" in Sec-
tion 2.5, provided that the EPSPs (modeling inputs with positive weights)
and IPSPs (modeling inputs with negative weights) move linearly within
the same time span from 0 to their extremal values.

Finally, we would like to point out that the class of piecewise constant
functions (i.e., the class of step-functions) provides an example for a
class of response and threshold functions that do not satisfy our basic
assumptions from Section 2, but that can still be used to build for any
Turing machine M an SNN N M f that can simulate M (although not in
real-time). We assume here that the response functions are piecewise
constant (but not identically zero), and that the threshold functions are
arbitrary functions (e.g., piecewise constant) that satisfy condition (1)
of our basic assumptions. One can then build oscillators, as well as
delay, inhibition, and synchronization modules, in the same way as in
Section zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2, and one can also simulate arbitrary threshold circuits in the
same way. Furthermore one can use the phase difference between an
oscillator 0 with the same oscillation period TPM as the pacemaker I'M
to simulate a counter. For that purpose one employs a delay module D
with a suitable delay p > 0 (so that k . p = !. TPM for any zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAk. 1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAN implies
that k = L = 0). One can then use the phase difference between 0 and
PM to record how often the "spike in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 has been directed in the course
of the computation through this delay module D. Hence one can store in
the SNN an arbitrary natural number k, which can be incremented and
decremented by suitable modules. To decide whether k = 0, one needs
a module that can carry out a special case of the operation COMPARE.
Such a module cannot be built in the same way as in Sections 2 and 3, but
one can employ directly the "jump" in the piecewise constant response
functions considered here to test whether two neurons fire exactly at the
same time

Wyl.

36 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAWolfgang Maass

I t is well known (see Hopcroft and Ullmari 1979) that any Turing
machine M can be siniulated (although not in real-time) by a machine zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAM'
that has no tapes or stacks, but two counters. The preceding argument
shows that such an M' (in fact, a machine with any finite number of
counters) can be simulated in real-time by some finite SNN ,\:MI with
piecewise comtai i t response and threshold functions.

The effect of the shape of postsynaptic potentials on the coniputational
power of networks of spiking neurons is investigated more thoroughly
in Maass and Ruf (1995). I t is shown there that computations with single
spikes in networks of spiking neurons become substantially slower if they
cannot make use of 11icrc77siiig and ilecrensi~i,y linear segments of EPSPs. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
5 Conclusion zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- -

We have analyzed the computational power of a simple formal model
SNN for networks of spiking neurons. I n particular we have shown tliat
if the response and threshold functions o f the SNN satisfy some rather
weak basis assumptions (see Section 2), then one can build modules that
can syiiclir.oiii:c the spiking of different network parts, as well as mod-
ules that can i n i ~ / f i p / y the phase difference between two oscillators with
any given constant, and add, siihtrnc?, or roiiipnrc the phase differences of
different oscillators (see tlie constructions in Sections 2 and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3) . With the
help of these quite powerful computational operations an S N N can sim-
ulate in real-time for Boolean-valued input any Turing machine, and for
real-valued input any N-RAM (a slightly weaker version of tlie model of
Blum ct 01. 1989; see Section 3 of this article). On tlie side we would like to
niention that these results also yield lower bounds for tlie VC-dimension
of networks of spiking neurons, hence for tlie number of training exam-
ples needed for learning by such networks (see Maass 1994b, 1995~). One
immediate consequence of this type is indicated in Corollary 2.2 of this
article.

The version of tlie model SNN ivitli unlimited timing-precision (i t . , zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
T = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAR' in the definition in Section 1) is not biologically realistic, insofar
as i t does not take tlie effects of noise into account. From that point of
view our alternative version of this model with discrc~h~ firing times from
{ i . > 0 is preferrable (since i t allows us t o represent
an imprecise firing anyivliere in the time interval (i - :. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi . 1' -t E) in
the biological system by a "symbolic" firing at time i . p) . Therefore it is
important to note that our results about SNNs with unlimited timing pre-
cision i i idirie corresponding results for the computational power of SNNs
ivitli discrc~tr firing times, as we Iiave indicated in Corollary 2.5 (see The-
orem 5 in Maass 1994b, as well as Maass 1995c, for further consequences
of our results for SNNs with limited timing precision). In addition our
constructions of SNN modules for the operations ADD, SUBTRACT, and
MULTIPLY(j l on time differences between spikes appear to be quite

: i zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE N} for sonie

Computational Power of Networks of Spiking Neurons 37

robust, in the sense that they provide approximate implementations of
these operations on time differences between spikes in various models
for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAreal-valued computations in networks of spiking neurons with noise.
We refer to Maass (1995d) for further results about the computational
power of SNNs with noise.

The results of this article have two interesting consequences. One is
that in order to show that a network of spiking neurons can carry out
some specific task (e.g., in pattern recognition or pattern segmentation, or
solving some binding problem; see, eg., von der Malsburg and Schneider
1986, or Gerstner e f a / . 1993) it now suffices to show that a threshold cir-
cuit, a finite automaton, a Turing machine, or an N-RAM (see Section zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3)
can carry out that task in an efficient manner. Furthermore the simula-
tion results of this article allow us to relate the computational resources
that are needed on the latter more convenient models (e.g., the required
work space on a Turing machine) to the required resources needed by the
SNN (e.g., the timing precision of the SNN, see Corollary 2.5). In other
words, one may view N-RAMS and the other mentioned common compu-
tational models as “higher programming languages” for the construction
of networks of spiking neurons. The real-time simulation methods of
this article exhibit automatic methods for translating any program that
is written in such higher programming language into the construction of
a corresponding SNN. In this way the ”user” of an SNN may choose to
ignore all worrisome implementation details on SNNs such as timing (po-
tentially at the cost of some efficiency). Furthermore the matching upper
bound result for N-RAMS (see Maass 1995b,c) shows that the correspond-
ing ”higher programming language” is able to exploit all computational
abilities of SNNs.

Second, in combination with the corresponding upper bound results
for SNNs with quite arbitrary response and threshold functions (and
time-dependent weights) in Maass (1995b,c), the lower bounds of this
article provide for a large class of response and threshold functions ex-
act characterizations (up to real-time simulations) of the computational
power of SNNs with real valued inputs, and for SNNs with bounded
timing precision. As a consequence of these results, one can then also re-
late the computational power of SNNs to that of recurrent analog neural
nets with various activation functions (see Section 3), thereby throw-
ing some light on the relationships between the computational power of
models of neurons with spike coding (SNNs) and models of neurons with
frequency coding (analog neural nets). Furthermore, the combination of
these lower and upper bound results shows that extremely simple re-
sponse and threshold functions (such as, for example, those in Fig. 2 in
Section 2) are universal in the sense that with these functions an SNN
can simulate in real-time any SNN that employs arbitrary piecewise lin-
ear response and threshold functions. Equivalence results of this type
induce some structure in the “zoo” of response and threshold functions
that are mathematically interesting or occur in biological neural systems,

38 Wolfgang Maass

and they allow us to focus on those aspects of these functions that are zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
c.;srntin/ for the computational power of spiking neurons.

Finally we would like to point out that since we have based all of
our investigations on the rather fine notion of a rd - t i r r i c siriiuhtioii (see
Section 11, our results provide information not just about the relationships
between the coii iprti l f ioi inl power of the previously mentioned models
for neural networks, but also about their capability to execute Icl7rriing

algorithms (i.e., about their zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAndnptiile qualities). zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Acknowledgments zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- .~

I ~voulcl like t o thank Wulfrani Gerstner, John G. Taylor, and three anony-
mous referees for helpful comments.

References -

Abeles, M. 1991, C o f f j m i f t - s Nwrd Cirsitifs o f fhc C c r t ~ / d Cortr’*. Cainbridge
University Press, Cambridge, England.

Aertsen, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA,, ecl. 1993. Brniii zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT/ ILYJ~! / : S~i [7 f Io-TL’ r i ipo i~~/ Aspccfs of Brniri Fir i ictfori .

Elsevier, Amsterdam.
Hum, L., Sliub, M., and Sninlc, S. 1989. On a theory of computation and

complexity over the real numbers: NP-completeness, recursive functions
ancl uni\wsal machines. Birll. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAArri. Muflr. Soc. 21(1), 1-46,

Bulimann, J , , ancl Schulten, K. 1986. Associative rccognition and storage in a
model network ot physiological neurons. B i d . C,i / l~~r i i . 54, 319-335.

Churchland, P. S., and Sejnowski, T. J. 1992. T h Ct~riipiitcitiiiriaI B r ~ I r i . MIT Press,
Cambridge, MA.

Crair, M. C., and Bialek, W. 1990. Non-Boltzmann dynaniics in networks of
spiking neurons. Ahi r iccr irf Ntpirrn/ Iiiforxinfiorf ProccsIrig Systeiris, Vol. 2,
109-116. Morgan Kaufmann, San Mateo, CA.

Cerstner, W. 1991, Associative memory in a network of ”biological” neurons.
Aifzliiiizt~s iri N c u d lriforiiiofIoii Prvc-mi~ ig Sysfeiiir, Vol. 3, pp. 84-90. Morgan
Kaufmann, San Mateo, CA.

Gerstner, W. 1995. Time structure of the actilrity in neural network models.
Plys. Rczi. P 51, 738-758.

Cerstner, W., and van Hemmen, J. L. 1994. How to describe neuronal activity:
Spikes, rates, or assemblies? At f iw i s rs iiz Nrirrnl lrijoririnfiori Prcwssiiig Sysfetiis,
Vol. 6, pp. 463470. Morgan Kaufmann, San Mateo, CA.

Gerstner, W., Ritz, I<., and van Hemmen, J. L. 1993. A biologically motivated
and analytically soluble model of collectiw oscillations in the cortex. Biol.
Cybwr. 68, 363-374.

Hajnal, A,, Maass, W., Pudlak, P., Szegedy, M., and Turan, G. 1993. Threshold
circuits of bounded depth. 1. Corript. S!ystrrii ScI. 46, 129-154.

Hopcroft, J . E., and Ullman, J. D. 1979. Irifroilirctiori to Airfomfn Tliror!y, Lnrzgirnges, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
i i r f i f Ctlr l f~Ji l t~7f l~r i . Addison-Wesley, Reading, MA.

Computational Power of Networks of Spiking Neurons 39

Horne, B. G., and Hush, D. R. 1994. Bounds on the complexity of recurrent
neural network implementations of finite state machines. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAdvances in Neu-
ral Information Processing Systems, Vol. 6, 359-366. Morgan Kaufmann, San
Mateo, CA.

Judd, K. T., and Aihara, K. 1993. Pulse propagation networks: A neural network
model that uses temporal coding by action potentials. Neural Networks 6,

Kandel, E. R., Schwartz, J. H., and Jessel, T. M. 1991. Principles of Neirra/ Science.
Prentice-Hall, Englewood Cliffs, NJ.

Koiran, P. 1993. A weak version of the Blum, Shub, Smale model. In Proceedings
of the 34th Annual I E E E Symposium on Foundations of Computer Science, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBApp. 486-
495. IEEE Computer Society Press, Los Alarnitos, CA.

Lapicque, L. 1907. Recherches quantitatives sur l'excitation electrique des nerfs
traitee comme une polarization. I . Physiol. Pafhol. Gen. 9, 620-635.

Lewis, H. R., and Papadimitriou, C. H. 1981. Elements of the Theory of Computation.
Prentice-Hall, Englewood Cliffs, NJ.

Lupanov, 0 . B. 1973. On circuits of threshold elements. Dokl. Akad. Nauk S S S X ,
Vol. 202, 1288-1291; Engl. translation in Problemy Kibernetiki, Vol. 26, 109-140.

Maass, W. 1985. Combinatiorial lower bound arguments for deterministic and
nondeterministic Turing machines. Trans. A m . Math. Sac. 292, 675-693.

Maass, W. 1993. Bounds for the computational power and learning complexity
of analog neural nets. Proc. 25th Ann. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAACM Symp. Theory Computing 335-344.

Maass, W. 1994a. Neural nets with superlinear VC-dimension. In Proceedings of
the European Conference zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAon Artificial Neural Networks 1994 (ICANN '94); journal
version appeared in Neural Comp. 6, 875-882.

Maass, W. 1994b. On the Computational Complexity of Networks of Spiking Neuraris
(extended abstract) Tech. Rep. 393 from May 1994 of the Institutes for In-
formation Processing Graz. Advances in NeuraI Information Processing Systems,
Vol. 7, 183-190. MIT Press, Cambridge, MA.

Maass, W. 199%. Vapnik-Chervonenkis dimension of neural nets. In Handbook
of Brain Theory and Neural Networks, pp. 1000-1003, M.A. Arbib, ed., MIT
Press, Cambridge, MA.

Maass, W. 199510. Analog computations on networks of spiking neurons (ex-
tended abstract); appears in Proc. 7th Italian Workshop on Neural Nets 1995,
World Scientific Press.

Maass, W. 1995c. Upper bounds for the computational power of networks of
spiking neurons (in preparation).

Maass, W. 1995d. On the computational power of noisy spiking neurons. Tech.
Rep. 412 (May 1995) of the Institutes for Information Processing, Graz, Aus-
tria; appears in Advances in Neural Information Processing Systems, Vol. 8 (1996).

Maass, W., and Ruf, B. 1995. Consequenes of the shape of postsynaptic poten-
tials for the computational power of networks of spiking neurons; appears
in Proc. lnternational Conference on Artificial Neural Networks (ICANN '95), Paris.

Maass, W., Schnitger, G., and Szemeredi, E. 1987. Two tapes are better than one
for off-line Turing machines. Proc. 29th Ann. ACM Symp. Theory Computing
94-100.

203-215.

40 Wolfgang zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAMaass

Murray, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA,, and Tarasscnko, L. 1994. Arrnlcyi i i ' Ni7irrnl zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAVLSI: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA Piilsr Sfrctirri Ap-
p ~ i s l i . Chapman & Hall, London.

Siegelmann, H. T., and Sontag, E. D. 1992. O n the coiiiputational power of
neural nets. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAh c . J f \ i ./'ICM-\~or.k.;/io;J Corrip. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAJ!.L'III.IIIII~ T\IcLJ~!/ 440449.

Tuckwell, H. C. 1988. f i i f r ~ i d ~ t i o i i to T\wor.lVisd Nriir.obIal(i~y, Vols. 1 and 2. Cam-
bridge Universitl; I'ress, Cambridge, England.

Valiant, L. G. 1994. Circxits fiir Mi r id . Oxford Univcrsitv Press, Oxford, Eng-
land.

Vapnik, V. N., and Chervonenkis, A.Y. 1971. On the uniform convergence of
relati1.e trecluencies of m'ents t o their probabilities. Tlicwy P ~ i b . Appl. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA16,
261-28(?.

\'on der Malsburg, C., and Schneider, LV. 1986. A neural cocktail-party processor.
Riol. C,iibci.ri. 54, 2Y-40.

Watts, L. 1994. Ewnt-cirkvn simulation of networks of spiking neurons. Ad-
mrim i r i Niwriil f r i f i~rrr i tzt ior i Prorcssirig S!/stivris, Vol. 6, pp. 927-934. Morgan
Kaufrnmn, San Mateo, CA.

l<t,ct.l\ed October 25, lY'I4 accepted April zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 , l Y 9 5

